关键词云

成果统计

合作作者[TOP 5]

访问统计


  总访问量
 18427

  访问来源
    内部: 85
    外部: 18342
    国内: 16411
    国外: 2016

  年访问量
 1384

  访问来源
    内部: 0
    外部: 1384
    国内: 1268
    国外: 116

  月访问量
 33

  访问来源
    内部: 0
    外部: 33
    国内: 33
    国外: 0

访问量

访问量

1. A new model for electron flow during anaerobic digestion: direct i.. [1802]
2. Direct Interspecies Electron Transfer between Geobacter metallired.. [1650]
3. 微生物在地球化学铁循环过程中的作用 [1301]
4. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [1069]
5. Carbon cloth stimulates direct interspecies electron transfer in s.. [964]
6. Promoting Interspecies Electron Transfer with Biochar [947]
7. Analysis of Raman Spectra by Using Deep Learning Methods in the Id.. [874]
8. 产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间.. [808]
9. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice fiel.. [751]
10. Correlation between microbial community and granule conductivity i.. [739]
11. Proteomics reveal biomethane production process induced by carbon .. [720]
12. The possible role of bacterial' signal molecules N-acyl homoserine.. [693]
13. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro.. [691]
14. 厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究 [691]
15. Seagrass (Zostera marina) Colonization Promotes the Accumulation o.. [674]
16. 加强电微生物学研究持续利用海岸带新型微生物资源 [661]
17. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [655]
18. Heterogeneous activation of peroxymonosulfate by a biochar-support.. [624]
19. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程 [622]
20. Methanobacterium Capable of Direct Interspecies Electron Transfer [615]
21. Simultaneous intensification of direct acetate cleavage and CO2 re.. [552]
22. Magnetite compensates for the lack of a pilin-associated c-type cy.. [551]
23. HAL2 overexpression induces iron acquisition in bdf1 Delta cells a.. [546]
24. Methane production by acetate dismutation stimulated by Shewanella.. [536]
25. Methylobacter accounts for strong aerobic methane oxidation in the.. [527]
26. 生物地球化学锰循环中的微生物胞外电子传递机制 [524]
27. Characterization of syntrophic Geobacter communities using ToF-SIM.. [508]
28. Surface properties of activated sludge-derived biochar determine t.. [507]
29. Biochar promotes methane production during anaerobic digestion of .. [477]
30. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [476]
31. 铁锰氧化物提高巴斯德梭菌电子输出率 [473]
32. Desulfovibrio feeding Methanobacterium with electrons in conductiv.. [454]
33. The selective expression of carbonic anhydrase genes of Aspergillu.. [449]
34. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [447]
35. Electrochemically active iron (III)-reducing bacteria in coastal r.. [420]
36. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [416]
37. A potential contribution of a Fe(III)-rich red clay horizon to met.. [413]
38. A new insight into the strategy for methane production affected by.. [407]
39. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [403]
40. Biochar promotes methane production at high acetate concentrations.. [399]
41. Peak selection matters in principal component analysis: A case stu.. [398]
42. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [397]
43. 一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析 [383]
44. Spatial variation in bacterial community in natural wetland-river-.. [381]
45. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates [381]
46. Target-oriented recruitment of Clostridium to promote biohydrogen .. [376]
47. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [369]
48. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [367]
49. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性 [360]
50. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [359]
51. Trophic strategy of diverse methanogens across a river-to-sea grad.. [358]
52. Necessity of electrically conductive pili for methanogenesis with .. [353]
53. Classification of pathogens by Raman spectroscopy combined with ge.. [341]
54. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [336]
55. Enrichment culture of electroactive microorganisms with high magne.. [332]
56. Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co.. [326]
57. Magnetite production and transformation in the methanogenic consor.. [325]
58. Effects of Organic Phosphorus on Methylotrophic Methanogenesis in .. [317]
59. In situ characterization of microbial aggregates using SALVI and l.. [314]
60. XC_0531 encodes a c-type cytochrome biogenesis protein and is requ.. [311]
61. Comparative transcriptomic insights into the mechanisms of electro.. [302]
62. Stimulatory effect of magnetite on the syntrophic metabolism of Ge.. [289]
63. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [282]
64. Rapid removal of chloramphenicol via the synergy of Geobacter and .. [270]
65. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [249]
66. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性 [247]
67. 设施种植模式对土壤细菌多样性及群落结构的影响 [245]
68. 渤海不同区域沉积物古菌的多样性分析 [238]
69. 铁锰氧化物提高巴斯德梭菌电子输出率 [235]
70. Effects of Magnetic Minerals Exposure and Microbial Responses in S.. [223]
71. 水分条件对滨海芦苇湿地土壤微生物多样性的影响 [219]
72. Iocasia fonsfrigidae NS-1 gen. nov., sp. nov., a Novel Deep-Sea Ba.. [215]
73. Respiratory electrogen Geobacter boosts hydrogen production effici.. [184]
74. Methylobacter couples methane oxidation and N2O production in hypo.. [181]
75. 一种高效定向富集分离产氢菌的方法 [74]
76. 一种脱硫弧菌及其应用 [69]
77. 一种提高产氢菌氢产量的方法 [65]
78. 一种经济便捷的微生物辅助防火制剂 [62]
79. 多功能双酶梭菌及其应用 [62]
80. 一种调控厌氧污泥降解产乙酸和丁酸的方法 [61]
81. 一株耐盐的产甲烷古菌及其应用 [51]
82. 一种海洋微藻及其应用 [51]
83. 海洋产电微藻及其应用 [48]
84. 加强电微生物学研究 持续利用海岸带新型微生物资源 [19]

下载量

1. A new model for electron flow during anaerobic digestion: direct i.. [657]
2. 微生物在地球化学铁循环过程中的作用 [524]
3. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [505]
4. Analysis of Raman Spectra by Using Deep Learning Methods in the Id.. [461]
5. Carbon cloth stimulates direct interspecies electron transfer in s.. [319]
6. Correlation between microbial community and granule conductivity i.. [287]
7. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程 [268]
8. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [242]
9. Direct Interspecies Electron Transfer between Geobacter metallired.. [235]
10. Heterogeneous activation of peroxymonosulfate by a biochar-support.. [224]
11. Proteomics reveal biomethane production process induced by carbon .. [224]
12. Promoting Interspecies Electron Transfer with Biochar [214]
13. 厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究 [207]
14. Surface properties of activated sludge-derived biochar determine t.. [205]
15. 产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间.. [170]
16. Methylobacter accounts for strong aerobic methane oxidation in the.. [161]
17. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro.. [150]
18. 生物地球化学锰循环中的微生物胞外电子传递机制 [150]
19. Simultaneous intensification of direct acetate cleavage and CO2 re.. [148]
20. Methane production by acetate dismutation stimulated by Shewanella.. [142]
21. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [129]
22. 加强电微生物学研究持续利用海岸带新型微生物资源 [127]
23. A new insight into the strategy for methane production affected by.. [125]
24. 铁锰氧化物提高巴斯德梭菌电子输出率 [124]
25. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [120]
26. Seagrass (Zostera marina) Colonization Promotes the Accumulation o.. [118]
27. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [112]
28. The selective expression of carbonic anhydrase genes of Aspergillu.. [110]
29. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [110]
30. HAL2 overexpression induces iron acquisition in bdf1 Delta cells a.. [107]
31. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [105]
32. Biochar promotes methane production at high acetate concentrations.. [102]
33. Trophic strategy of diverse methanogens across a river-to-sea grad.. [92]
34. 一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析 [92]
35. Desulfovibrio feeding Methanobacterium with electrons in conductiv.. [91]
36. A potential contribution of a Fe(III)-rich red clay horizon to met.. [89]
37. Enrichment culture of electroactive microorganisms with high magne.. [87]
38. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [86]
39. Magnetite production and transformation in the methanogenic consor.. [84]
40. Biochar promotes methane production during anaerobic digestion of .. [83]
41. Methanobacterium Capable of Direct Interspecies Electron Transfer [78]
42. The possible role of bacterial' signal molecules N-acyl homoserine.. [74]
43. Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co.. [71]
44. Classification of pathogens by Raman spectroscopy combined with ge.. [68]
45. XC_0531 encodes a c-type cytochrome biogenesis protein and is requ.. [57]
46. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates [52]
47. Stimulatory effect of magnetite on the syntrophic metabolism of Ge.. [51]
48. Peak selection matters in principal component analysis: A case stu.. [50]
49. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性 [50]
50. Necessity of electrically conductive pili for methanogenesis with .. [48]
51. Target-oriented recruitment of Clostridium to promote biohydrogen .. [45]
52. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [44]
53. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [44]
54. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性 [43]
55. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [33]
56. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [32]
57. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [29]
58. Effects of Organic Phosphorus on Methylotrophic Methanogenesis in .. [27]
59. 铁锰氧化物提高巴斯德梭菌电子输出率 [23]
60. Comparative transcriptomic insights into the mechanisms of electro.. [15]