Keywords Cloud

Research Outputs

Co-authors[TOP 5]

Usage Statistics


  Total Views
 13852

  Access Source
    internal: 85
    External: 13767
    Domestic: 12321
    Abroad: 1531

  Annual Views
 846

  Access Source
    internal: 0
    External: 846
    Domestic: 712
    Abroad: 134

  Monthly Views
 16

  Access Source
    internal: 0
    External: 16
    Domestic: 14
    Abroad: 2

Visits

Visits

1. A new model for electron flow during anaerobic digestion: direct i.. [1589]
2. 微生物在地球化学铁循环过程中的作用 [1058]
3. Direct Interspecies Electron Transfer between Geobacter metallired.. [925]
4. Carbon cloth stimulates direct interspecies electron transfer in s.. [758]
5. 产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间.. [628]
6. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [591]
7. Thermoanaerobacteriaceae oxidize acetate in methanogenic rice fiel.. [590]
8. Promoting Interspecies Electron Transfer with Biochar [556]
9. Correlation between microbial community and granule conductivity i.. [552]
10. Seagrass (Zostera marina) Colonization Promotes the Accumulation o.. [511]
11. 厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究 [491]
12. 加强电微生物学研究持续利用海岸带新型微生物资源 [475]
13. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro.. [464]
14. Heterogeneous activation of peroxymonosulfate by a biochar-support.. [381]
15. Methanobacterium Capable of Direct Interspecies Electron Transfer [351]
16. HAL2 overexpression induces iron acquisition in bdf1 Delta cells a.. [350]
17. Methane production by acetate dismutation stimulated by Shewanella.. [337]
18. Magnetite compensates for the lack of a pilin-associated c-type cy.. [322]
19. The possible role of bacterial' signal molecules N-acyl homoserine.. [304]
20. Methylobacter accounts for strong aerobic methane oxidation in the.. [303]
21. Surface properties of activated sludge-derived biochar determine t.. [301]
22. Simultaneous intensification of direct acetate cleavage and CO2 re.. [290]
23. 生物地球化学锰循环中的微生物胞外电子传递机制 [285]
24. The selective expression of carbonic anhydrase genes of Aspergillu.. [258]
25. 铁锰氧化物提高巴斯德梭菌电子输出率 [254]
26. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [250]
27. Electrochemically active iron (III)-reducing bacteria in coastal r.. [242]
28. Biochar promotes methane production during anaerobic digestion of .. [236]
29. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [228]
30. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程 [215]
31. Characterization of syntrophic Geobacter communities using ToF-SIM.. [214]
32. 一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析 [213]
33. A new insight into the strategy for methane production affected by.. [208]
34. A potential contribution of a Fe(III)-rich red clay horizon to met.. [208]
35. Biochar promotes methane production at high acetate concentrations.. [207]
36. Analysis of Raman Spectra by Using Deep Learning Methods in the Id.. [203]
37. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [195]
38. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [189]
39. Trophic strategy of diverse methanogens across a river-to-sea grad.. [188]
40. Desulfovibrio feeding Methanobacterium with electrons in conductiv.. [188]
41. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [185]
42. Spatial variation in bacterial community in natural wetland-river-.. [183]
43. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [182]
44. Proteomics reveal biomethane production process induced by carbon .. [173]
45. In situ characterization of microbial aggregates using SALVI and l.. [160]
46. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [159]
47. Magnetite production and transformation in the methanogenic consor.. [158]
48. Enrichment culture of electroactive microorganisms with high magne.. [158]
49. XC_0531 encodes a c-type cytochrome biogenesis protein and is requ.. [152]
50. Peak selection matters in principal component analysis: A case stu.. [148]
51. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [144]
52. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性 [138]
53. Classification of pathogens by Raman spectroscopy combined with ge.. [138]
54. Necessity of electrically conductive pili for methanogenesis with .. [137]
55. Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co.. [134]
56. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates [134]
57. Target-oriented recruitment of Clostridium to promote biohydrogen .. [127]
58. Stimulatory effect of magnetite on the syntrophic metabolism of Ge.. [123]
59. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [115]
60. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [107]
61. Comparative transcriptomic insights into the mechanisms of electro.. [103]
62. Effects of Organic Phosphorus on Methylotrophic Methanogenesis in .. [96]
63. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [90]
64. 设施种植模式对土壤细菌多样性及群落结构的影响 [83]
65. 渤海不同区域沉积物古菌的多样性分析 [74]
66. 水分条件对滨海芦苇湿地土壤微生物多样性的影响 [73]
67. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性 [71]
68. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [68]
69. 铁锰氧化物提高巴斯德梭菌电子输出率 [57]
70. Rapid removal of chloramphenicol via the synergy of Geobacter and .. [14]

Downloads

1. A new model for electron flow during anaerobic digestion: direct i.. [640]
2. 微生物在地球化学铁循环过程中的作用 [515]
3. Carbon cloth stimulates direct interspecies electron transfer in s.. [314]
4. Correlation between microbial community and granule conductivity i.. [281]
5. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [280]
6. Direct Interspecies Electron Transfer between Geobacter metallired.. [225]
7. Heterogeneous activation of peroxymonosulfate by a biochar-support.. [219]
8. Promoting Interspecies Electron Transfer with Biochar [208]
9. 厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究 [200]
10. Surface properties of activated sludge-derived biochar determine t.. [194]
11. 产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间.. [165]
12. Methylobacter accounts for strong aerobic methane oxidation in the.. [157]
13. 生物地球化学锰循环中的微生物胞外电子传递机制 [148]
14. Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro.. [146]
15. Simultaneous intensification of direct acetate cleavage and CO2 re.. [144]
16. Methane production by acetate dismutation stimulated by Shewanella.. [138]
17. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [122]
18. 加强电微生物学研究持续利用海岸带新型微生物资源 [120]
19. 铁锰氧化物提高巴斯德梭菌电子输出率 [119]
20. Seagrass (Zostera marina) Colonization Promotes the Accumulation o.. [118]
21. A new insight into the strategy for methane production affected by.. [118]
22. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [114]
23. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [109]
24. HAL2 overexpression induces iron acquisition in bdf1 Delta cells a.. [105]
25. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [105]
26. The selective expression of carbonic anhydrase genes of Aspergillu.. [103]
27. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [103]
28. Analysis of Raman Spectra by Using Deep Learning Methods in the Id.. [101]
29. Biochar promotes methane production at high acetate concentrations.. [100]
30. Trophic strategy of diverse methanogens across a river-to-sea grad.. [89]
31. 一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析 [88]
32. A potential contribution of a Fe(III)-rich red clay horizon to met.. [86]
33. Enrichment culture of electroactive microorganisms with high magne.. [85]
34. 铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程 [85]
35. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [81]
36. Desulfovibrio feeding Methanobacterium with electrons in conductiv.. [81]
37. Magnetite production and transformation in the methanogenic consor.. [79]
38. Biochar promotes methane production during anaerobic digestion of .. [77]
39. The possible role of bacterial' signal molecules N-acyl homoserine.. [74]
40. Methanobacterium Capable of Direct Interspecies Electron Transfer [71]
41. Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co.. [66]
42. Classification of pathogens by Raman spectroscopy combined with ge.. [64]
43. XC_0531 encodes a c-type cytochrome biogenesis protein and is requ.. [55]
44. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [52]
45. Proteomics reveal biomethane production process induced by carbon .. [52]
46. Stimulatory effect of magnetite on the syntrophic metabolism of Ge.. [50]
47. In Vivo Molecular Insights into Syntrophic Geobacter Aggregates [50]
48. Peak selection matters in principal component analysis: A case stu.. [48]
49. Necessity of electrically conductive pili for methanogenesis with .. [47]
50. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性 [46]
51. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [40]
52. Target-oriented recruitment of Clostridium to promote biohydrogen .. [40]
53. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [39]
54. 一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性 [38]
55. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [32]
56. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [30]
57. 一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征 [25]
58. Effects of Organic Phosphorus on Methylotrophic Methanogenesis in .. [24]
59. 铁锰氧化物提高巴斯德梭菌电子输出率 [23]
60. Comparative transcriptomic insights into the mechanisms of electro.. [15]