×
验证码:
换一张
Forgotten Password?
Stay signed in
China Science and Technology Network Pass Registration
×
China Science and Technology Network Pass Registration
Log In
Chinese
|
English
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Patent type
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
QQ
Weibo
Feedback
Scholar Page
Profile
Biography
Major Research Outputs
Source Publications
Indexed By
Usage Statistics
Source
Issue Date
Keywords Cloud
More»
Research Outputs
More»
×
Knowledge Map
Co-authors[TOP 5]
Co-author Network
Co-authors
Usage Statistics
Total Views
13852
Access Source
internal: 85
External: 13767
Domestic: 12321
Abroad: 1531
Annual Views
846
Access Source
internal: 0
External: 846
Domestic: 712
Abroad: 134
Monthly Views
16
Access Source
internal: 0
External: 16
Domestic: 14
Abroad: 2
Visits
Visits
1.
A new model for electron flow during anaerobic digestion: direct i..
[1589]
2.
微生物在地球化学铁循环过程中的作用
[1058]
3.
Direct Interspecies Electron Transfer between Geobacter metallired..
[925]
4.
Carbon cloth stimulates direct interspecies electron transfer in s..
[758]
5.
产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间..
[628]
6.
Stimulation of long-term ammonium nitrogen deposition on methanoge..
[591]
7.
Thermoanaerobacteriaceae oxidize acetate in methanogenic rice fiel..
[590]
8.
Promoting Interspecies Electron Transfer with Biochar
[556]
9.
Correlation between microbial community and granule conductivity i..
[552]
10.
Seagrass (Zostera marina) Colonization Promotes the Accumulation o..
[511]
11.
厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究
[491]
12.
加强电微生物学研究持续利用海岸带新型微生物资源
[475]
13.
Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro..
[464]
14.
Heterogeneous activation of peroxymonosulfate by a biochar-support..
[381]
15.
Methanobacterium Capable of Direct Interspecies Electron Transfer
[351]
16.
HAL2 overexpression induces iron acquisition in bdf1 Delta cells a..
[350]
17.
Methane production by acetate dismutation stimulated by Shewanella..
[337]
18.
Magnetite compensates for the lack of a pilin-associated c-type cy..
[322]
19.
The possible role of bacterial' signal molecules N-acyl homoserine..
[304]
20.
Methylobacter accounts for strong aerobic methane oxidation in the..
[303]
21.
Surface properties of activated sludge-derived biochar determine t..
[301]
22.
Simultaneous intensification of direct acetate cleavage and CO2 re..
[290]
23.
生物地球化学锰循环中的微生物胞外电子传递机制
[285]
24.
The selective expression of carbonic anhydrase genes of Aspergillu..
[258]
25.
铁锰氧化物提高巴斯德梭菌电子输出率
[254]
26.
Inhibition effect of polyvinyl chloride on ferrihydrite reduction ..
[250]
27.
Electrochemically active iron (III)-reducing bacteria in coastal r..
[242]
28.
Biochar promotes methane production during anaerobic digestion of ..
[236]
29.
Reductive degradation of chloramphenicol by Geobacter metallireduc..
[228]
30.
铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程
[215]
31.
Characterization of syntrophic Geobacter communities using ToF-SIM..
[214]
32.
一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析
[213]
33.
A new insight into the strategy for methane production affected by..
[208]
34.
A potential contribution of a Fe(III)-rich red clay horizon to met..
[208]
35.
Biochar promotes methane production at high acetate concentrations..
[207]
36.
Analysis of Raman Spectra by Using Deep Learning Methods in the Id..
[203]
37.
Nano-Fe3O4 particles accelerating electromethanogenesis on an hour..
[195]
38.
异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性
[189]
39.
Trophic strategy of diverse methanogens across a river-to-sea grad..
[188]
40.
Desulfovibrio feeding Methanobacterium with electrons in conductiv..
[188]
41.
Stimulation of ferrihydrite nanorods on fermentative hydrogen prod..
[185]
42.
Spatial variation in bacterial community in natural wetland-river-..
[183]
43.
Extraction of electrons by magnetite and ferrihydrite from hydroge..
[182]
44.
Proteomics reveal biomethane production process induced by carbon ..
[173]
45.
In situ characterization of microbial aggregates using SALVI and l..
[160]
46.
Augmentation of chloramphenicol degradation by Geobacter-based bio..
[159]
47.
Magnetite production and transformation in the methanogenic consor..
[158]
48.
Enrichment culture of electroactive microorganisms with high magne..
[158]
49.
XC_0531 encodes a c-type cytochrome biogenesis protein and is requ..
[152]
50.
Peak selection matters in principal component analysis: A case stu..
[148]
51.
Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig..
[144]
52.
一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性
[138]
53.
Classification of pathogens by Raman spectroscopy combined with ge..
[138]
54.
Necessity of electrically conductive pili for methanogenesis with ..
[137]
55.
Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co..
[134]
56.
In Vivo Molecular Insights into Syntrophic Geobacter Aggregates
[134]
57.
Target-oriented recruitment of Clostridium to promote biohydrogen ..
[127]
58.
Stimulatory effect of magnetite on the syntrophic metabolism of Ge..
[123]
59.
Carbon nanotubes accelerate acetoclastic methanogenesis: From pure..
[115]
60.
Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production ..
[107]
61.
Comparative transcriptomic insights into the mechanisms of electro..
[103]
62.
Effects of Organic Phosphorus on Methylotrophic Methanogenesis in ..
[96]
63.
一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征
[90]
64.
设施种植模式对土壤细菌多样性及群落结构的影响
[83]
65.
渤海不同区域沉积物古菌的多样性分析
[74]
66.
水分条件对滨海芦苇湿地土壤微生物多样性的影响
[73]
67.
一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性
[71]
68.
一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征
[68]
69.
铁锰氧化物提高巴斯德梭菌电子输出率
[57]
70.
Rapid removal of chloramphenicol via the synergy of Geobacter and ..
[14]
Downloads
1.
A new model for electron flow during anaerobic digestion: direct i..
[640]
2.
微生物在地球化学铁循环过程中的作用
[515]
3.
Carbon cloth stimulates direct interspecies electron transfer in s..
[314]
4.
Correlation between microbial community and granule conductivity i..
[281]
5.
Stimulation of long-term ammonium nitrogen deposition on methanoge..
[280]
6.
Direct Interspecies Electron Transfer between Geobacter metallired..
[225]
7.
Heterogeneous activation of peroxymonosulfate by a biochar-support..
[219]
8.
Promoting Interspecies Electron Transfer with Biochar
[208]
9.
厌氧条件在不同Fe( II) 浓度测定方法中必要性的比较研究
[200]
10.
Surface properties of activated sludge-derived biochar determine t..
[194]
11.
产甲烷分离物中 Clostridium spp.与 Methanosarcinabarkeri 潜在的种间..
[165]
12.
Methylobacter accounts for strong aerobic methane oxidation in the..
[157]
13.
生物地球化学锰循环中的微生物胞外电子传递机制
[148]
14.
Co-occurrence of Methanosarcina mazei and Geobacteraceae in an iro..
[146]
15.
Simultaneous intensification of direct acetate cleavage and CO2 re..
[144]
16.
Methane production by acetate dismutation stimulated by Shewanella..
[138]
17.
Inhibition effect of polyvinyl chloride on ferrihydrite reduction ..
[122]
18.
加强电微生物学研究持续利用海岸带新型微生物资源
[120]
19.
铁锰氧化物提高巴斯德梭菌电子输出率
[119]
20.
Seagrass (Zostera marina) Colonization Promotes the Accumulation o..
[118]
21.
A new insight into the strategy for methane production affected by..
[118]
22.
Reductive degradation of chloramphenicol by Geobacter metallireduc..
[114]
23.
Nano-Fe3O4 particles accelerating electromethanogenesis on an hour..
[109]
24.
HAL2 overexpression induces iron acquisition in bdf1 Delta cells a..
[105]
25.
Stimulation of ferrihydrite nanorods on fermentative hydrogen prod..
[105]
26.
The selective expression of carbonic anhydrase genes of Aspergillu..
[103]
27.
Extraction of electrons by magnetite and ferrihydrite from hydroge..
[103]
28.
Analysis of Raman Spectra by Using Deep Learning Methods in the Id..
[101]
29.
Biochar promotes methane production at high acetate concentrations..
[100]
30.
Trophic strategy of diverse methanogens across a river-to-sea grad..
[89]
31.
一株单环刺螠致病弧菌的分离鉴定、生长特性研究及药敏分析
[88]
32.
A potential contribution of a Fe(III)-rich red clay horizon to met..
[86]
33.
Enrichment culture of electroactive microorganisms with high magne..
[85]
34.
铁还原细菌Shewanella oneidensis MR-4诱导水合氧化铁形成蓝铁矿的过程
[85]
35.
异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性
[81]
36.
Desulfovibrio feeding Methanobacterium with electrons in conductiv..
[81]
37.
Magnetite production and transformation in the methanogenic consor..
[79]
38.
Biochar promotes methane production during anaerobic digestion of ..
[77]
39.
The possible role of bacterial' signal molecules N-acyl homoserine..
[74]
40.
Methanobacterium Capable of Direct Interspecies Electron Transfer
[71]
41.
Anaerobic Bacterial Immobilization and Removal of Toxic Sb(III) Co..
[66]
42.
Classification of pathogens by Raman spectroscopy combined with ge..
[64]
43.
XC_0531 encodes a c-type cytochrome biogenesis protein and is requ..
[55]
44.
Augmentation of chloramphenicol degradation by Geobacter-based bio..
[52]
45.
Proteomics reveal biomethane production process induced by carbon ..
[52]
46.
Stimulatory effect of magnetite on the syntrophic metabolism of Ge..
[50]
47.
In Vivo Molecular Insights into Syntrophic Geobacter Aggregates
[50]
48.
Peak selection matters in principal component analysis: A case stu..
[48]
49.
Necessity of electrically conductive pili for methanogenesis with ..
[47]
50.
一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavi的生理学特性
[46]
51.
Carbon nanotubes accelerate acetoclastic methanogenesis: From pure..
[40]
52.
Target-oriented recruitment of Clostridium to promote biohydrogen ..
[40]
53.
Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production ..
[39]
54.
一株单环刺螠肠道电活性希瓦氏菌Shewanella marisflavI的生理学特性
[38]
55.
Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig..
[32]
56.
一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征
[30]
57.
一株促甲烷氧化假单胞菌Pseudomonas putida P7的分离及电活性特征
[25]
58.
Effects of Organic Phosphorus on Methylotrophic Methanogenesis in ..
[24]
59.
铁锰氧化物提高巴斯德梭菌电子输出率
[23]
60.
Comparative transcriptomic insights into the mechanisms of electro..
[15]
Major Research Outputs
Items
Views
Downloads
TC[WOS]
TC[CSCD]
H-index
Sort:
by Issued-Date Descending
by Issued-Date Ascending
by WOS-Cited-Times Descending
by Journal-Impact-Factor Descending