南黄海水体中溴代阻燃剂的时空分布及生态风险
其他题名Spatial distribution and ecological risk of brominated flame retardants in seawater of the South Yellow Sea
陈亦洋
学位类型硕士
导师唐建辉
2023-05-22
培养单位中国科学院烟台海岸带研究所
学位授予单位中国科学院大学
学位授予地点中国科学院烟台海岸带研究所
学位名称资源与环境硕士
学位专业资源与环境
关键词海水 溴代阻燃剂 分布特征 年际变化趋势 南黄海
摘要溴代阻燃剂(Brominated Flame Retardants,BFRs)是一种具有防止或抑制火势传播与蔓延的含溴有机化合物,被广泛应用在纺织品、家具、建筑材料、电子电器产品等产品中。随着城市化和工业化进程的加快,中国成为世界上最大的BFRs生产和使用国。江苏是我国重要的BFRs生产基地,江苏邻近的南黄海接收了大量陆源排放物,对海洋生态系统健康带来一定的危害。但目前对BFRs在近海水体中污染水平关注较少,在中国黄海海域更是鲜有报道。本文以南黄海区域为研究对象,以BFRs为目标物,研究了其2019-2020年间水体的浓度水平、单体组成和时空分布特征,评估了南黄海BFRs生态风险,揭示了南黄海水体中BFRs的年际变化趋势,分析了不同区域BFRs浓度的可能来源及影响因素。研究结果对理解该区域新污染物的地球化学循环具有重要的科学意义。 采集了2019和2020年南黄海海域春夏季(6月)、夏季(8月)和秋季(分别为2019年10月和2020年11月)的表层和底层海水样品,并利用气相色谱-质谱联用仪分析了水体中15种BFRs。结果表明:(1)2019和2020年南黄海水体中BFRs普遍检出,总多溴联苯醚(∑8PBDEs)的浓度范围分别为n.d. - 91.86 pg L-1(均值为6.32 ± 12.99 pg L-1)和2.35 - 672.91 pg L-1(均值114.07 ± 155.29 pg L-1);总新型溴代阻燃剂(∑7NBFRs)的浓度范围为0.13 - 93.85 pg L-1(均值为14.03 ± 17.90 pg L-1)和4.22 - 450.97 pg L-1(均值37.15 ± 68.58 pg L-1)。(2)从相态分配来看,海水中90%以上BFRs富集在颗粒相中;从化合物组成来看,十溴联苯醚(BDE209)和十溴二苯乙烷(DBDPE)为主要的单体化合物。(3)南黄海水体中BFRs的季节性变化显著,2019和2020年BDE209浓度均呈现出6月> 8月> 10和11月的特点;DBDPE浓度均呈现出6月>8月的特点。水平分布上总体表现出近岸高、远岸低的分布特征;河流输入是南黄海水体中BFRs的主要来源,黄海南部海域受长江输入影响显著;夏季浮游植物迅猛生长会降低南黄海局部区域表层水中BFRs浓度,而黄海冷水团的存在使黄海中部BFRs处于较低水平。(4)根据风险熵值法估算水体中PBDEs的生态风险,结果表明南黄海中PBDEs风险水平主要来自于BDE209,并且整体上对水生生物的生态风险很低。 通过对2016 - 2020年间南黄海水体中BFRs的含量对比分析,结果表明南黄海水体中BFRs含量年际变化幅度较大,且表、底层水中BFRs含量年际变化趋势一致。2017 - 2019年间BFRs含量波动幅度较小,而2019 - 2020年间变化显著,这可能与极端气候事件有关。BDE209浓度在南黄海北部逐年降低,而在南部则逐年升高,这主要与北方BFRs生产模式的转变和受长江径流、风场影响的长江冲淡水扩展区域有关。与BDE209相比,南黄海北部海域中(34°N以北)DBDPE维持在相对稳定的水平,这表明除河流输入,DBDPE 存在其他重要方式(如大气沉降)进入南黄海水体中。
其他摘要Brominated flame retardants (BFRs) are bromine-containing organic compounds that prevent or suppress the spread of fires and are widely used in products such as textiles, furniture, building materials, and electronic appliances. With the acceleration of urbanization and industrialization, China has become the world's largest producer and user of BFRs. Jiangsu Province is an important BFRs production base in China, and the adjacent South Yellow Sea has received a large amount of land-based pollutants, posing a certain threat to the health of marine ecosystems. However, little attention has been paid to the pollution level of BFRs in coastal water, especially for the contamination of BFRs in the China Yellow Sea. In this study, BFRs had been selected as the target substance, and both surface and bottom seawater samples had been collected from the South Yellow Sea region in 2019-2020 to investigate the concentration levels, monomer composition, and spatial distribution of BFRs. The current BFRs pollution status and ecological risks in the South Yellow Sea were assessed. The inter-annual variation trend of BFRs in the water had been explored, and the possible sources and influencing factors of BFRs concentration in different regions had been analyzed. The results of this study have important scientific significance for the geochemical cycle of emerging contaminants in the region. Surface and bottom seawater samples were collected in the spring and summer (June), summer (August), and autumn (October 2019 and and November 2020) in the southern Yellow Sea in 2019 and 2020. Fifteen types of BFRs in the seawater were analyzed using a gas chromatography-mass spectrometry (GC-MS) instrument. The results showed that: (1) BFRs were widely detected in the South Yellow Sea in 2019 and 2020. The concentration ranges of total PBDEs (∑8PBDEs) were n.d. - 91.86 pg L-1 (mean: 6.32 ± 12.99 pg L-1) and 2.35 - 672.91 pg L-1 (mean: 114.07 ± 155.29 pg L-1), respectively. The concentration ranges of total new brominated flame retardants (∑7NBFRs) were 0.13 - 93.85 pg L-1 (mean: 14.03 ± 17.90 pg L-1) and 4.22 - 450.97 pg L-1 (mean: 37.15 ± 68.58 pg L-1), respectively. (2) From the perspective of phase distribution, more than 90% of BFRs in seawater were enriched in the particulate phase. In terms of compound composition, decabromodiphenyl ether (BDE209) and decabromodiphenyl ethane (DBDPE) were the dominant compounds. (3) The seasonal variation of BFRs in the South Yellow Sea was significant. In 2019 and 2020, the concentration of BDE209 showed a characteristic trend of June > August > October and November, while the concentration of DBDPE showed a characteristic trend of June > August. The horizontal distribution generally showed a pattern of high concentration near the coast and low concentration far from the coast. River inputs were the main source of BFRs in the South Yellow Sea, and the southern Yellow Sea was significantly affected by the Yangtze River input. Rapid growth of phytoplankton in summer can lower the concentration of BFRs in surface water in some areas of the South Yellow Sea, while the presence of the Yellow Sea cold water mass results in lower BFRs levels in the central Yellow Sea. (4) Ecological risk of PBDEs in the water was estimated using the risk entropy method. The results showed that the risk of PBDEs in the South Yellow Sea was mainly due to BDE209, and overall, the ecological risk to aquatic organisms was low. Through comparative analysis of the BFRs content in the South Yellow Sea seawater from 2016 to 2020, the results showed that the inter-annual variation of BFRs content in the South Yellow Sea seawater was large, and the variation trend of BFRs in the surface and bottom water was consistent. The fluctuation range of BFRs content from 2017 to 2019 was small, while the change from 2019 to 2020 was significant, which may be related to extreme weather events. The concentration of BDE209 decreased year by year in the northern part of the South Yellow Sea, while it increased year by year in the southern part, mainly due to the changes in BFRs production patterns in the north and the expansion of the Yangtze River diluted water influenced by the Yangtze River runoff and wind field. Compared with BDE209, the content of DBDPE in the northern seawaters of the South Yellow Sea (north of 34°N) remained relatively stable, indicating that besides river inputs, DBDPE also entered the South Yellow Sea water through other important pathways, such as atmospheric deposition.
目录第1章 绪论 1 1.1 溴代阻燃剂概述 1 1.1.1 溴代阻燃剂的使用现状和危害 1 1.1.2 溴代阻燃剂的分类 2 1.2 溴代阻燃剂在国内外近海区域的研究现状 5 1.3 研究目的、意义和内容 7 1.3.1 研究目的和意义 7 1.3.2 研究内容 8 第2章 样品采集与分析 9 2.1 研究区域概况 9 2.2 样品的采集 10 2.3 样品的处理分析 12 2.3.1 实验准备工作 12 2.3.2 样品的实验分析 13 2.4 质量保证与质量控制(QA/QC) 13 第3章 2019年南黄海水体中溴代阻燃剂的分布特征 15 3.1 南黄海表层水体中总BFRs污染水平 15 3.2 南黄海水体中BFRs组成分析 19 3.2.1 南黄海水体中NBFRs组成分析 19 3.2.2 南黄海水体中PBDEs组成分析 19 3.2.3 南黄海水体中NBFRs/PBDEs比值分析 20 3.3 南黄海表层水体中BFRs的时空分布特征 21 3.3.1 南黄海表层水体中BFRs的季节特征 21 3.3.2 南黄海表层水体中BFRs的空间分布特征 25 3.4 PBDEs在南黄海海水中的生态风险评估 28 3.5 本章小结 29 第4章 2020年南黄海水体中溴代阻燃剂的分布特征 31 4.1 南黄海表层水体中BFRs污染水平 31 4.2 南黄海水体中BFRs组成分析 35 4.2.1 南黄海水体中NBFRs组成分析 35 4.2.2 南黄海水体中PBDEs组成分析 36 4.2.3 南黄海水体中NBFRs/PBDEs比值分析 37 4.3 南黄海水体中BFRs的时空分布特征 38 4.3.1 南黄海表层水体中BFRs的季节特征 38 4.3.2 南黄海表层水体中BFRs的空间分布特征 42 4.4 南黄海表层水体中BFRs的来源解析 47 4.5 PBDEs在南黄海海水中的生态风险评估 50 4.6 本章小结 51 第5章 南黄海水体中BFRs的年际变化趋势 53 5.1 南黄海水体中总BFRs的年际变化 53 5.2 南黄海表层水体中BDE209的年际变化 55 5.3 南黄海表层水体中DBDPE的年际变化 58 5.4 本章小结 60 第6章 主要结论、创新与展望 61 6.1 主要结论 61 6.2 创新与展望 62 参考文献 63 附录 73 致谢 79 作者简历及攻读学位期间发表的学术论文与其他相关学术成果 81
页数81
语种中文
文献类型学位论文
条目标识符http://ir.yic.ac.cn/handle/133337/32039
专题中国科学院烟台海岸带研究所知识产出_学位论文
推荐引用方式
GB/T 7714
陈亦洋. 南黄海水体中溴代阻燃剂的时空分布及生态风险[D]. 中国科学院烟台海岸带研究所. 中国科学院大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
陈亦洋硕士学位论文.pdf(4478KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[陈亦洋]的文章
百度学术
百度学术中相似的文章
[陈亦洋]的文章
必应学术
必应学术中相似的文章
[陈亦洋]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 陈亦洋硕士学位论文.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。