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a b s t r a c t

Nitric oxide (NO) is an important component of biogeochemical cycling of nitrogen, produced via bio-
logically mediated processes of nitrification and denitrification in soils. The production and consumption
processes of NO in black soils are not fully understood. We established how moisture and temperature
affect NO dynamics for black soil samples of maize land in the temperate zone of northeastern China.
The optimum soil moisture for the maximum NO production and emission was determined to be 41%
water-filled pore space (WFPS), based on laboratory experiments and modeling. For a given moisture, NO
fluxes increased exponentially with soil temperature at any given soil moisture. The optimum soil
moisture for the maximum NO emission was constant and independent of soil temperature. The NO
consumption rate constant (k) in the studied soil (range 9.31 � 10�6e15.1 � 10�6 m3 kg�1 s�1) was in the
middle of the range of similar k values published to date. The maximum NO emission potential for black
soils at 25 �C and 15 �C were about 18.6 and 9.0 ng N m�2 s�1, respectively. Based on laboratory results
and field monitoring data of soil water content and soil temperature, the average NO fluxes from black
soils in the region were estimated to be 10.7 ng N m�2 s�1 for an entire plant growth period. NO
emissions likely occur principally in July, associated with optimum soil moisture. The present study
suggests that NO fluxes from black soil are much lower than the previous reports from cropland in
southern parts of China.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nitric oxide (NO) is a frequent subject of ongoing studies due to
its importance to the production and the destruction of tropo-
spheric ozone (Cicerone, 1987; Crutzen, 1979) as well as soil
nitrogen (N) loss to the atmosphere. NO is a precursor in the
photochemical formation of gaseous nitric acid (HNO3) and thus
contributes to the acidity of clouds and precipitation (Liu et al.,
1987). It is also an important precursor to ozone (O3) formation
in the lower atmosphere, which can lead to undesirable air quality
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and detrimental effects on human health and may decrease crop
yields (Tabachow et al., 2002).

Soils are a major source of atmospheric NOx (NOx ¼ NO þ NO2)
(Delmas et al., 1997; Yienger and Levy,1995). Worldwide, the budget
of NOx source from soils is around 8.9 Tg N y�1 or about 20% of the
global total source (IPCC, 2007). Thus, soils contribute to the global
budgets of NO sources; their contribution as sinks is likely but
considered to be small (Meixner and Eugster, 1990). Nitric oxide in
soil is produced through biological processes of nitrification and
denitrification, as well as chemical decomposition of HNO2
(Firestone and Davidson, 1989; Remde and Conrad, 1991; Conrad,
1996; Gödde and Conrad, 2000; Russow et al., 2009). Temperature,
soil moisture, soil texture, fertilization and land-use have all been
shown to be key factors controlling NO emission from soils (Gut
et al., 1999, 2002; Pilegaard et al., 1999; Venterea and Rolston,
2000; Venterea et al., 2005; Williams and Fehsenfeld, 1991; Yu
et al., 2008). The approximate ranking of NO emission levels sour-
ces, viz. fertilized agricultural fields > grasslands > forests > other
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natural systems is in broad accordance with the nitrogen status of
corresponding soils (Ludwig et al., 2001). According to present
knowledge, NO is produced in soils nearly ubiquitously; therefore
soil emissions constitute a continuous background flux of NO to the
atmosphere (Williams et al., 1992). Although soils are usually net
sources for atmospheric NO, they can also act as sink, at least
temporarily (Slemr and Seiler, 1984). Most studies to date have
concentrated on production of NO and neglected consumption
processes. This is mainly because that production rates are usually
larger than consumption rates and therefore, net production is the
overall measure. NO can be both oxidized and reduced by soil
microorganisms (Remde and Conrad,1991; Rudolph et al.,1996). The
oxidative NO consumption has much lower affinity for NO than the
reductive consumption, but seems to be dominant in many soils
(Koschorrech and Conrad, 1997).

Although soils are a considerable source of atmospheric NOx,
there still exists huge uncertainty and controversy about the total
contribution. A probable cause of this uncertainty is that the
disproportionate numbers of previous studies of NO emissions have
been carried out for only a few regions. For example, most studies
about NO fluxes in cropland have been carried out in Europe and
USA (Aneja et al., 1995; Civerolo and Dickerson, 1998; Davidson,
1992; Gut et al., 1999; Harrison et al., 2002; Li et al., 1999; Russow
et al., 2008; Skiba and Ball, 2002; Tabachow et al., 2001; Thornton
and Valente, 1996; Venterea and Rolston, 2000). Only four reports
on NO emissions from Asian cropland soils are apparent to our
knowledge, (Fang and Mu, 2006; Li and Wang, 2007, 2008; Zheng
et al., 2003b) and none of these involve Asian black soil. However,
the controversy cannot necessarily be resolved by integration of
fluxes over larger areas and longer time periods, since most of the
observed uncertainties and problems with NO flux data can be
traced (Meixner and Yang, 2006). Some researchers have found that
net fluxes of NO, which derive from soil samples in the laboratory,
agreed well with dynamic chamber measurements at corresponding
field sites (Ludwig et al., 2001; Otter et al.,1999; vanDijk et al., 2002).
In this study, we present NO emission results from laboratory studies
on black soil samples in northeastern China, a maize distribution
regionwith heavy fertilizer application. Our specific aimswere: (i) to
study NO production, NO consumption and NO emission in black
soils from maize distribution zones as functions of soil temperature
and soil moisture, and (ii) to estimate the biogenic NO emission from
black soils in the studied region based on results obtained using
a laboratory incubation technique.

2. Materials and methods

2.1. Site description

The studied region is located in the middle of Jilin province and
Heilongjiang province at 41�e49� N,124�e127� E (240e300m above
sea level) in northeastern China. The Chinese black soil region, which
is one of threemajor black soil regions in theworld, covers an area of
11.02 M Ha (The Institute of Soil Science, Chinese Academy of
Sciences, 1978). The studied region is a semi-humid continental
monsoon climate region in the temperate zone; it is cold and arid in
winter and hot and rainy in summer. The annual average tempera-
ture is 1.5 �C, ranging from 32 �C in the summer to �37 �C in the
winter. Annual precipitation ranges from 500 to 600mm,with about
90% of the precipitation falling as rain between April and September
(Xiong and Li, 1987). This region is considered to be particularly
sensitive to global climate change (Wang et al., 2002). Recently, the
climate in this region has tended towards warm with drought
conditions. In the past 50 years (1950e2000), the mean annual and
winter temperatures have increased 1.3 and 2.1 �C, respectively (Guo
et al., 2005). Mean annual precipitation, especially in the summer
season, increased during the early 1980s, and then decreased obvi-
ously at the end of 1990s (Zu et al., 2004). The black soil region has
been one of themajor grain production areas for corn and soybean in
China because of its high fertility and arability. Thus, intensive tillage
is an important factor in declining soil nutrients and variation of soil
properties in this area (Shen, 1998; Yang et al., 2003).

The studied sites were located at Hailun National Research
Station of Agroecology and Dehui Black Soil Demonstration Station
for Agriculture, Northeast Institute of Geography and Agricultural
Ecology, Chinese Academy of Sciences, at approximately N47�260,
E126�380 and N44�120, E125�320, respectively (Fig. 1). The soil is
typical black soil (Luvic Phaeozem, FAO) developed on loess-like
parent material of the Quaternary period. The predominant land-
use type is cropland for maize. Nutrient concentrations in soil layer
at depths of 0e20 cm were 20.9e39.8 g kg�1 for TOC,
1.73e5.93 g kg�1 for TN, 0.24e1.60 g kg�1 for TP, 14.8e24.3 g kg�1

for TK, 51.2e542 mg kg�1 for available N, 0.9e144 mg kg�1 for
available P, 79.2e443 mg kg�1 for available K (Wang et al., 2004; Yu
et al., 2006; Zhang et al., 2007). Soil pH ranges from 5.90 to 6.98,
and average bulk density is 0.98 g cm3.
2.2. Laboratory experiments for NO measurement

2.2.1. Dynamic laboratory incubation system
The NO production and consumption at each sequential mois-

ture change were measured under temperatures of 15 �C and 25 �C,
respectively, in laboratory using a fully automatic laboratory
dynamic incubation system. The system includes four sub-systems:
air purification system, gas dilution system, dynamic chamber
system and measurement system (described in detail by Yu et al.,
2008). The CLD 780TR Chemiluminescence NO Analyzer (detec-
tion limit 0.052 ppb and precision �0.026 ppb, Eco Physics AG.,
Switzerland)was used for NOmeasurement and Binos (Rosemount,
Germany) for vapor signal capture. For more detailed information,
please refer to van Dijk et al. (2002).

2.2.2. Treatment of soil samples and experimental layout for NO
measurements

Black soil samples from maize land in the Hailun National
Research Station of Agroecology and Dehui Black Soil Demonstra-
tion Station for Agriculture were collected from the surface soil
(0e20 cm depth) in early October, 2005 for NO production
measurements (Fig. 1). Soil temperature, air temperature, soil bulk
density and soil water content were measured in situ when soil
samples were collected. The dry soils from different sites were
sieved through a 2 mm coarse stainless steel sieve, then mixed and
kept in sealed plastic bags at 5 �C to limit microorganism activities
until the time of the NO emission analysis. Roots and other organic
matter were removed to homogenize the sample. The soil samples
were stored for no more than two months before study.

An 80 g soil sample was weighed and spread evenly across the
bottom of the chamber. Soil samples were incubated three days
after saturation. Soil moisture was measured before NO analysis.

During the experiment, the dynamic chambers were kept in
a thermostat cabinet to maintain certain soil temperatures. The
purified air with or without NO standard gas flowed from the gas
dilution system into a main Teflon tube with 5 T-connections to
supply air, via 5 MFCs (mass flow controllers), to each chamber at
a flow rate of 2.5 L min�1 (Fig. 2 in Yu et al., 2008). The NO analyzer
was set to measure the NO mixing ratio in the headspace of the
chambers every 10 s. The measuring process for one chamber was
1.5 min. The average value of nine measurements within 1.5 min
was used for data analysis. The NOmixing ratios in the headspace of
the chambers were determined by a chemiluminescence NO
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analyzer. Calibrations were performed once a week with a NO
standard (200 ppm NO in N2, Messer-Griessheim Germany).

2.2.3. Field soil temperature and soil moisture monitoring
The field soil temperature and soil moisture of the surface soil at

a depth of 10 cmwere monitored in Dehui Black Soil Demonstration
Station for Agriculture from middle April to early October in 2005,
2006 and 2007. The Watchdog model 2700 Weather Station (Spec-
trum Technologies, Inc. USA) with temperature probe and water
content sensor was used to measure soil temperature and soil
moisture, respectively. The soil temperature and soil moisture were
measured and recorded automatically 24 times a day at 1 h intervals.

2.3. Data calculation

2.3.1. Calculation of NO release rate J
The NO release rate J was calculated using the difference of the

NO mixing ratio between the outlet and inlet of each dynamic
chamber described in Equation (1).

J ¼ Q
msdx

� ðNOoutlet �NOinletÞ �
MN

VN
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where J is the release rate of NO (ng N kg�1 s�1), Q is gas flow rate
through chambers (m3 s�1),msdx is the soil dry weight (kg), NOoutlet

and NOinlet are NOmixing ratios at chamber outlet and inlet (ppbv),
respectively, MN is the molecular weight of nitrogen
(14.0067 kg kmol�1) and VN is the molecular normal volume
(22.4 m3 kmol�1).

2.3.2. Calculation of volumetric NO uptake rate k
To determine NO uptake by the soil, the dynamic chambers

were flushed with air mixed with NO standard gas. The obtained
inlet NOmixing ratios using the gas dilution system range from 0 to
200 ppbv. The NO release rates at inlet NO mixing ratios of 0 ppbv
and 60 ppbv were measured. To obtain the volumetric NO uptake
rate k, a linear regression is used. The volumetric NO uptake rate k,
NO production ratePand NO compensation mixing ratio, NOc were
calculated as Equations (2)e(4).

J ¼ P � k� NOamb (2)

k ¼ �J½0ppbNO� � J½60ppbNO�
ð0ppb� 60ppbÞ �MA � 0:001

rA �MN
(3)
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ze land and soil moisture at constant soil temperature of 25 �C (A) or 15 �C (B).
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NOc ¼ P
k

(4)

where J is the release rate of NO (ng N kg�1 s�1), P is the NO
production (ng N kg�1 s�1), k is the volumetric NO uptake rate/NO
consumption rate constant (m3 kg�1 s�1), NOamb is the ambient
NO concentration (ng N m�3),MA is the molecular weight of dry air
(28.9644 kg kmol�1), rA the air density at certain temperature
(kg m�3) and MN is the molecular weight of nitrogen (kg kmol�1).
NOc is compensation mixing ratio (ng N m�3). The intercept of the
linear regression with the y-axis expresses the compensation point
or the compensation concentration, where NO uptake is equal to
NO production, which results in a NO release rate J ¼ 0. The algo-
rithm used to fit the laboratory data was described by Meixner and
Yang (Meixner and Yang, 2006) in detail.

2.3.3. Calculation of NO production rate
NO production can be expressed as the intercept of the linear

regression. This value represents the emission of NO by the soil
under the condition that the NO mixing ratio in the headspace of
the chamber is zero, assuming no NO uptake by the soil.

2.3.4. Determination of NO fluxes
The model of Galbally and Johansson (Galbally and Johansson,

1989) shows an algorithm of transforming the laboratory-derived
NO release into a net NO flux. The model considers 3 variables for
NO production and NO consumption in soils: (1) the soil bulk
density, (2) the NO concentration and diffusive or net gaseous flow
through the soil, and (3) two unknownparameters representing NO
production and uptake in the soil. We measured the NO flux from
soil in the laboratory under 15 �C and 25 �C, thus the NO flux for
certain soil with certain nitrogen content can be obtained from
Equation (5). A detailed description of the determination of NO
fluxes for laboratory measurements is given in van Dijk et al. (van
Dijk et al., 2002).

FNOðWFPS; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BD� kðWFPS; TÞ � D

q

�
��

PðWFPS; TÞ
kðWFPS; TÞ

�
� ½NO�amb

�
(5)

Where FNO(WFPS,T) is NO flux (ng N m�2 s�1), BD is soil bulk
density (kgm�3), kðWFPS; TÞis the volumetric NO uptake rate under
different water filled pore space (WFPS) (m3 kg�1 s�1) and
temperature (�C), D is NO diffusion coefficient in soil (m2 s�1),
PðWFPS; TÞ is the NO production under different WFPS
(ng N kg�1 s�1) and temperature. NO diffusion coefficient in soil
and WFPS were calculated as Equations (6)e(7), respectively.

D
D0

¼ 32:5

F
(6)

WFPS ¼ qg � BD
1� ðBD=PDÞ � 100% (7)

Where D0 is NO diffusion coefficient in free air (0.0000199 m2 s�1),
3 is the soil air-filled porosity (m3 m�3), F is the soil total porosity
(m3 m�3) (Moldrup et al., 2000), qg is gravimetric soil moisture
(kg H2O kg�1 oven dried soil) and PD is particle density (assumed to
be 2650 kg m�3) (Davidson and Schimel, 1995). An algorithm has
been developed to fit observed values from the laboratory flux
(Meixner and Yang, 2006), as a function of the WFPS, as shown in
Equations (8)e(11). One-way ANOVA was applied for fitted results
test.
FNOðWFPSÞ ¼ aWFPSbexpð�cWFPSÞ (8)

a ¼ FNO
�
WFPSopt

�
h
WFPSboptexpð�bÞ

i (9)

b ¼
ln
h
FNOðWFPSoptÞ
FNOðWFPSuppÞ

i

ln
	
WFPSopt
WFPSupp



þ WFPSupp

WFPSopt
� 1

(10)

c ¼ �b
WFPSopt

(11)

WhereWFPSopt is the soil moisture at which the maximum NO flux
is observed, FNOðWFPSoptÞequals the maxFNOðWFPSÞ, and WFPSupp
is the soil moisture at which FNOðWFPSÞ ¼ FNOðWFPSuppÞz0 for
WFPS > WFPSopt. The NO fluxes at different temperature were
calculated as Equations (12)e(13) (Williams et al., 1992).

FNOðT2Þ ¼ FNOðT1Þ � exp½ � q� ðT2 � T1Þ� (12)

q ¼ �lnðQ10Þ
10

(13)

Where FNOðT2Þ and FNOðT1Þ are NO flues (ng N m�2 s�1) at different
temperature at certain WFPS, q is exponential factor, T2 and T1
are different temperature (�C). When T2 � T1 ¼ 10, Q10 ¼ FNO(T2)/
FNO(T1).
3. Results

The modified algorithm as applied to fit the laboratory results at
constant soil temperatures of both 25 �C and 15 �C versus soil
moisture for black soils is shown in Fig. 2. The first guess curve is
made up of guesstimate results because the parameters of a, b, and
c were calculated from three laboratory measurement data of
FNOðWFPSoptÞ, WFPSopt and WFPSupp based on Equations (9)e(11).
The fitted results show that the algorithm was well fitted with the
laboratory data (R > 0.98** at the 0.01 level, sum of square for
corresponding value difference ranges from 0.05 to 0.10).
The optimum soil moisture for black soil NO emission was
approximately 25.7%, which is equivalent to 41%WFPS (water-filled
pore space) (Fig. 2A, B).

According to Equations (1) and (2), the production P (i.e., NO
release J at NOamb is nearly zero) in black soils was evaluated
(Fig. 3A). The maximum NO production (in terms of mass of N) at
optimum soil moisture was 0.65 and 0.22 ng N kg�1 s�1 in soils
temperatures of 25 �C and 15 �C, respectively. The NO production
results at soil temperature of 15 �C and 25 �C in laboratory showed
that the optimum soil moisture for NO production did not change
significantly with soil temperature (Fig. 3A). Within the range of
soil moisture in favour of NO production, the slopes of the average
ratio of NO production versus NO release at soil temperatures of
25 �C and 15 �C are about 1.032 (SD ¼ 0.104) and 1.009
(SD ¼ 0.135), respectively. Nitric oxide consumption rate constant
k ranges from 9.31 � 10�6 to15.1 � 10�6 m3 kg�1 s-1 (results not
shown). The average k value at soil temperature of 25 �C was
higher than that at 15 �C within range of soil moisture in favour of
NO production. Fig. 3B shows that the compensation concentra-
tion varies at soil temperatures of 25 �C and 15 �C. Under optimum
soil moisture conditions for NO production, the NO compensation
point mixing ratio was about 60.2 and 43.1 mg N m�3 (96.3 and
68.9 ppb) for black soils at temperatures of 25 �C and 15 �C,
respectively.
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We applied the modified algorithm (Galbally and Johansson,
1989) on NO potential fluxes from black soils in maize land in
northeastern China. With increased soil moisture, the NO fluxes
increased gradually and peaked at soil moisture about 41% WFPS,
then decreased gradually and were up to nearly zero below 80%
WFPS (Fig. 4A, B). As soon as soil moisture was no longer the
limiting constraint (Fig. 4B), NO emission strongly depended on
temperature (Q10 ¼ 2.02). NO fluxes increased exponentially with
soil temperature at any given soil moisture (Fig. 4C). The maximum
NO potential fluxes for black soils at 25 �C and 15 �C were 18.6 and
9.0 ng N m�2 s�1, respectively.

Based on our laboratory NO flux parameterizations and field
data (soil temperature and soil moisture monitoring data), we
estimated net field NO fluxes from black soil planted maize in
different months (Fig. 5). The results showed that NO emissions
increased gradually from April to July; then peaked in July followed
by gentle declines. The NO “pulse” emissions were observed in July
because of high temperature and high precipitation, which led to
optimum soil moisture, and then NO fluxes decreased with soil
temperature and moisture. The peak of NO fluxes from black soils
was 16.5 ng N m�2 s�1. The average of NO fluxes was about
10.7 ng N m�2 s�1 for an entire plant growth period.
4. Discussion

4.1. Effects of soil moisture and temperature on NO emissions

Many studies have shown that an optimum soil moisture does
exist for soil NO emissions (Otter et al., 1999; Verchot et al., 1999;
Yang and Meixner, 1997; Yu et al., 2008), but the value varied with
soils. For example, a laboratory study showed an optimum soil
moisture of about 20% WFPS (Yang and Meixner, 1997), but in
another study conducted in saline sodic soil of northeastern China,
maximum NO fluxes was observed at approximately 9.5%e18%
WFPS (Yu et al., 2008). The optimumvaluewas even discovered to be
approximately 50% WFPS in a seasonally dry forest of the eastern
Amazon (Verchot et al., 1999). In this study, the optimum soil
moisture for black soil NO emission was approximately 25.7%. This
phenomenon can be plausibly interpreted by that diffusion of NO
through pore spaces to atmosphere is limited under high soil
moisture (Skopp et al., 1990), while substrate diffusion through
water films to microbial active cells is limited under low soil mois-
ture (Linn and Doran, 1984; Russow et al., 2009). For all soils, we
observed that the relationship of NO production and soil tempera-
ture at a given soil moisture was similar to previous results (van Dijk
et al., 2002; van Dijk and Meixner, 2001; Yu et al., 2008). Compared
with NO production (25 �C) in pasture soil (maximum value of
0.26 ng N kg�1 s�1) (van Dijk andMeixner, 2001), our results for NO
production in black soils are more than twofold higher.

4.2. Nitric oxide consumption rate and compensation mixing ratio

Nitric oxide consumption rate constant k is determined largely
by the type of microbial consumption that takes place in different
soils. The kvalues range in this study (ranging from 9.31 � 10�6

to15.1�10�6 m3 kg�1 s�1) are in the middle of the range of k values
so far published (ranging from 0.5�10�6 to 60� 10�6 m3 kg�1 s�1)
(Baumgartner and Conrad, 1992; Bollmann and Conrad, 1997; Saad
and Conrad, 1993; van Dijk and Meixner, 2001; Yu et al., 2008). Van
Dijk and Meixner (2001) found that the value of the NO
consumption rate constant, k, evidently depends on soil moisture
and soil temperature, i.e., k value decreased with soil moisture and
increased with soil temperature. In agreement with those findings,
we observed that the average k value at soil temperature of 25 �C
was higher than that at 15 �C at certain soil moisture. The depen-
dence on soil temperature can be explained by themicrobial nature
of the consumption processes both through reduction (Bender and
Conrad, 1994) and through oxidation (Gödde and Conrad, 1999).

The NO compensation concentration, NOc, is the concentration
of ambient NO where production of NO is equal to consumption; at
this point, there is no net uptake or release of NO from the soil. The
soil acts as a source for NO only when its NOc exceeds the atmo-
spheric concentrations of NO. Our results show that the optimum
soil moisture for the NO compensation mixing ratio is similar to
that for NO production for a certain landscape soil (Fig. 3A, B),
because the NO compensation mixing ratio for studied soils is
much dependant on NO production.

4.3. Nitric oxide fluxes from black soils

The NO potential fluxes were estimated applying the modified
algorithm (Galbally and Johansson, 1989). Compared to previous
laboratory results at 25 �C, the maximum NO potential emission in
this study (18.6 ng N m�2 s�1) is much higher than semi-arid
savanna in South Africa (1.3e2.4 ng N m�2 s�1) (Feig et al., 2008),
and arid and dry/hot semi-arid soils (<0.15 ng N m�2 s�1)
(Davidson and Kingerlee, 1997; Meixner et al., 1997; Meixner and
Yang, 2006), but similar to saline sodic soil in pasture and paddy
field (16e30 ng N m�2 s�1) (Yu et al., 2008). Fig. 4B shows that the
NO emissions are strongly affected by soil moisture. The optimum
soil moisture at which maximum NO flux is observed is indepen-
dent of soil temperature. Statistically sound relationships have
been observed between NO fluxes and soil moisture (optimum
curves). The effects of soil moisture on biological, physical and
chemical processes mediating NO emissions have been proposed in
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Fig. 4. NO fluxes from black soil samples versus soil temperature and soil moisture (A), the relation of NO fluxes and soil moisture (B) and soil temperature (C).
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previous studies (Bollmann and Conrad, 1998; Davidson, 1993;
Davidson and Schimel, 1995). Similar results of NO flux and soil
temperature relations have also been observed in other studies
(Hutchinson and Brams, 1992; Maljanen et al., 2007; Meixner et al.,
1997; Yang and Meixner, 1997; Yu et al., 2008). This is because the
dominance of soil microbial processes in the production of NO
anticipates a marked influence of soil temperature on NO emission
rates. The rates of chemical and/or enzymatic processes change
exponentially with temperature, as long as others factors (substrate
or moisture available) are not limiting.

Compared to previously reported NO fluxes from cropland of
different regions (Table 1), our results are generally higher than
those from corn land in Mexico, Western Tennessee and Central
Pennsylvania of USA, as well as most of croplands in Europe;
however, our results aremuch lower than that from sugar cane land
in Hawaiian Islands, soybean land in Spain and cropland in
southern China, all of which received high nitrogen input (Matson
et al., 1996; Slemr and Seiler, 1984; Walsh, 2001). Peculiarly, high
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NO fluxes were observed from temperate zone cropland by Matson
et al. (1996).

It has been shown by some studies that nitrogen input has
a strong impact on NO emission rates since these compounds (NH4

þ

and NO3
�) serve as substrate for nitrifying and denitrifying bacteria

(Akiyama et al., 2000; Williams and Fehsenfeld, 1991; Skiba et al.,
1994). However, we cannot find a significant relationship
between NO fluxes and nitrogen input based on present reports in
different regions, i.e., Matson et al. (1996) observed that NO flux
was up to 430 ng N m�2 s�1 from sugar cane land (loam soil) with
100 kg N ha�1 urea application, while very low NO flux
(1.5 ng N m�2 s�1) was observed from wheat land with
218 kg N ha�1 fertilized in Germany (Meixner, 1994). The estimated
net field NO flux in this study was also low even though heavy
fertilizer was applied (120e180 kg N ha�1) in study region. It
indicates that the surface NO exchange is strongly dependent on
substrate only if other influential factors such as soil moisture, soil
temperature and soil texture are not limiting.
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Table 1
Reported NO fluxes from cropland of different regions.

Location Crop NO fluxes (ng N m�2 s�1) Reference

North China Corn 66.4e150.8 (Walsh, 2001)
Southeastern China Wheat 21.3e28.5 (Zheng et al., 2003a)
Yangtze Delta, China Potato, Cabbage, Soybean 11.5e34.2 (Fang and Mu, 2006;

Fang and Mu, 2007)
Southern China Flowering Chinese Cabbage 63.5 (Li and Wang, 2007)
Northeastern China Maize 10.72 This study
Western Tennessee, USA Corn 3.06e6.39 (Thornton and Valente, 1996)
Alabama, USA Cotton 16.11 (Valente et al., 1995)
Central Pennsylvania, USA Wheat, corn 1.11e9.44 (Williams et al., 1988)
North-Carolina USA Soybean, cotton, corn 1.67e8.06 (Aneja et al., 1995)
Hawaiian Islands, USA Sugar Cane 16.4e430 (Matson et al., 1996)
Spain Soybeans 18.33e94.44 (Slemr and Seiler, 1984)
France Maize 1.11e1.94 (Jambert et al., 1994)
England Wheat 6.9 (Skiba et al., 1992)
Canada Beans 2.1e31.8 (Shepherd et al., 1991)
Germany Wheat 2.50e4.17 (Meixner, 1994)
Mexico Corn 2.78 (Davidson et al., 1991)
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The seasonal variation of simulated NO fluxes from black soil
depends on field soil temperature and soil moisture, which are
related to precipitation. The NO flux increased with soil tempera-
ture and optimum soil moisture range for NO emission from early
April to middle July, and then decreased until October (Fig. 5)
because precipitation decreased steadily during the period and
thus soil moisture deviated gradually from optimum value for NO
production (about 41% WFPS). Consistently, field studies have
shown that the soil water content was a very important factor
controlling the seasonal patterns of soil NO emissions from
ecosystems. For example, Johansson et al. (1988) observed the large
increases in NO emission from savannas after small wetting events
(<25mm) following protracted dry periods (Johansson et al., 1988).
However, more intensive (>25 mm) wetting events occurring
during the wet season appear to prevent NO emission (Cardenas
et al., 1993; Davidson, 1993).

5. Conclusions

Up to now, nearly the entire studied region has been changed
into cropland from the original natural landscape of wet grassland
and the average cultivation age is about 100e200 years. Thus, the
black soil distribution in China has been disturbed heavily by
human activities. Our findings of biogenic NO emission supports
a laboratory study by van Dijk and Meixner (2001) on the rela-
tionship of NO production and soil temperature. Statistically sound
relationships have been observed between NO fluxes and soil
moisture, and NO fluxes also increase exponentially with soil
temperature (Q10 ¼ 2.02). The estimated NO emissions mainly
occur in July when the soil temperature and soil moisture are
relatively high. The present study suggests that NO fluxes from
black soil are much lower than the previous reports from cropland
in southern parts of China.
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