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Nitrogen is an important nutrient in soil, a basic resource for 
maintaining the Earth’s ecosystems, and a primary restric-

tive factor for crop production. To improve crop production, ni-
trogenous fertilizers are applied to arable land. During the last 
50 yr, global nitrogenous fertilizer applications have increased 
steadily, rising almost 20-fold to the present rate of ~1011 kg yr-1 
(Glass, 2003). Soil TN content oft en exceeds plant growth re-
quirements that results in surpluses of nitrogenous fertilizer in 
soil. High N fertilization rates generally result in low N use ef-
fi ciency and high N loss (Li and Zhang, 1999). Eff ective use of 
N can improve crop production, while excessive application of 
nitrogenous fertilizers leads to negative impacts on surrounding 
environments, especially the aquatic environment (Carpenter 
et al., 1998; Smith et al., 2001; Lu et al., 2007). Understanding 
the spatial distribution of soil TN is necessary to increase the 
effi  cient use of applied fertilizers and to decrease water pollution 
potential resulting from off -site transport of excess fertilizer.

Since the 1970s, geostatistics have served to advance ana-
lytical methodology for spatial interpolation and to facilitate 
quantifi cation of spatial features of soil properties (Burgess and 
Webster, 1980). Geostatistical estimation makes it possible to 
predict values at unsampled locations by taking spatial correla-
tion into account between estimated and sampled points (i.e., 
spatial variability). In addition, geostatistical estimation mini-
mizes the variance of estimation error. Th e above two character-
istics of geostatistical estimation are critical for improving the 
accuracy of spatial prediction (Saito et al., 2005).
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Spatial Estimation of Soil Total Nitrogen Using 
Cokriging with Predicted Soil Organic 
Matter Content

Accurate measurement of soil total N (TN) content in agricultural fi elds is important to guide 
reasonable application of nitrogenous fertilizer. Estimation of soil TN content with limited 
in situ data at an acceptable level of accuracy is important because laboratory measurement of 
N is a time- and labor-consuming procedure. Th is study was conducted to evaluate cokriging 
of soil TN with predicted soil organic matter (SOM) content as auxiliary data. Th e SOM 
content was predicted by cokriging with a digital number (DN) of Band 1 of Landsat Enhanced 
Th ematic Mapper (ETM) imagery. Soil TN content was estimated by using 88 soil samples for 
prediction and 43 soil samples for validation in a study area of 367 km2 in Haining City, China. 
Field-measured soil TN content ranged from 0.47 to 2.48 g kg−1, with a mean of 1.25 g kg−1. 
Soil TN content of all 131 soil samples including samples for prediction and validation was 
highly correlated with measured (r = 0.81, p < 0.01) and predicted (r = 0.81, p < 0.01) SOM 
content in paddy fi elds. Th en, the predicted SOM content was used as auxiliary variable for 
the prediction of soil TN content. By using the 43 samples for validation, we had a mean error 
(ME) of 0.03 g kg−1 and a root mean square error (RMSE) of 0.31 g kg−1 for kriging, and a 
mean error of 0.00 g kg−1 and a root mean square error of 0.25 g kg−1 for cokriging, respectively. 
Our results indicate cokriging with predicted SOM content data was superior to kriging. In 
addition, predicted data of the auxiliary variable have the potential to be useful for cokriging 
when the predicted auxiliary data have high prediction accuracy.

Abbreviations: DN, digital number; ETM, (Landsat) Enhanced Th ematic Mapper; GPS, global positioning 
system; ME, mean error; RMSE, root mean square error; SOM, soil organic matter; TN, total nitrogen.
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Geostatistics, especially kriging, has been used widely 
in soil nutrient studies (Burrough, 1983; Zhang et al., 1992; 
Cambardella et al., 1994; Yanai et al., 2003; Gallardo, 2003; 
Ouyang et al., 2006). Cokriging is an extended technique of 
kriging. Th e technique is used to estimate a primary variable that 
is diffi  cult to measure using variables that are more easily deter-
mined and correlated with the primary variable. Many studies 
have demonstrated superiority of cokriging to kriging when aux-
iliary variables were more densely sampled and highly correlated 
to primary variables (Stein et al., 1988; Stein and Corsten, 1991; 
Zhang et al., 1992, 1997; Istok et al., 1993; Wu et al., 2003). 
Cokriging has been used extensively in soil nutrient studies in re-
cent years and has been demonstrated as a valid method that is use-
ful for increasing the precision of prediction (Yates and Warrick, 
1987; Zhang et al., 1999; Han et al., 2003; Wu et al., 2003).

Many easily measured variables, such as soil properties and 
remotely sensed imagery, are oft en highly correlated with SOM. 
However, these variables are oft en poorly correlated or uncorre-
lated with soil TN. For example, many studies have shown that 
SOM has unique spectral refl ectance characteristics in the vis-
ible and near infrared (NIR) region, and correlates signifi cantly 
with soil refl ectance (Al-Abbas et al., 1972; Mulders, 1987; 
Schulze et al., 1993; Chen et al., 2000). To our knowledge, how-
ever, no unique spectral refl ectance characteristic correlates sig-
nifi cantly with soil TN. Since soil TN is highly correlated with 
SOM (Osterhaus et al., 2008), SOM has the potential to be a 
good auxiliary variable for soil TN prediction by using a cokrig-
ing approach. From our literature search, all auxiliary data used 
for cokriging in previous studies were measured data, not pre-
dicted data. Th e objectives of this study were to investigate the 
use of predicted SOM content data as an auxiliary variable for 
improved estimation of soil TN, and to compare soil TN pre-
dictions by kriging and by cokriging using the predicted SOM 
content data. One of the potential applications of this technique 
is to reduce the cost of soil nutrient analysis by improving the ef-
fi ciency of the fi eld-related soil sampling component of nutrient 
management programs.

MATERIALS AND METHODS
Description of Study Area

Th e study area is part of Haining 
City located on the Hang-Jia-Hu Plain 
in the northeastern region of Zhejiang 
Province, China (Fig. 1). It is bounded 
by longitude 120°18' to 120 o45' east 
and latitude 30°22' to 30 o31' north 
with a total area of 367 km2. Th e area 
is in the northern subtropical zone of 
monsoonal climate with a temperate 
and humid climate throughout the year 
and four distinct seasons. Th e average an-
nual temperature is 15.9°C and the mean 
annual precipitation is approximately 1190 
mm. Paddy fi eld is the dominant land use/
land cover of arable land and paddy soil 
(Gleysols) is an anthropic soil that is domi-
nant in the study area.

Sampling Design and Soil Analysis
A total of 131 topsoil (0–15 cm) samples were collected in 

November 2003 according to land use and soil type in the study area 
(Fig. 1). Of the 131 samples, 88 soil samples (2/3) were used for soil 
TN prediction and the remaining 43 soil samples (1/3) were used for 
validation. When selecting soil samples for prediction, we ensured these 
selected samples were distributed uniformly to reduce the infl uence 
of uneven distribution of the samples used for assessing the accuracy 
of TN prediction. When sampling, surface soil of approximately eight 
points in each site of the same plot were collected, fully mixed, and then 
divided into portions of 1 to 2 kg each. Only one of the portions was 
packed with a bag and brought back to the laboratory for analysis. Th e 
positions of all sample sites were georeferenced using a hand-held global posi-
tion system (GPS). Samples were air-dried, sieved at a diameter of 2 mm, and 
then analyzed in laboratory for two variables: SOM (dry ash method), 
soil TN (Kjeldathl method digested with H2SO4 + H2O2).

Previously, we analyzed the relationship between SOM content 
and soil TN content of 131 soil samples with corresponding ETM spec-
tral data that were acquired on 23 Dec. 2003. Output from the corre-
lation analysis between the six independent spectral variables (DN, of 
Band 1–5 and Band 7 of Landsat ETM imagery) and SOM content and 
between the six independent spectral variables and soil TN (Table 1) 
revealed negative correlation coeffi  cients except the DN of Band 4, hav-
ing low to moderate positive correlation between independent spectral 
variables and the dependent variable. All the absolute correlation coef-
fi cients between soil TN and the six independent spectral variables were 
less than that between SOM and the six independent spectral variables 
(all < 0.5). Th e absolute correlation was the strongest between SOM 
and the DN of Band 1 (r = −0.587, p < 0.01). Aft er natural logarithmic 
transformation of SOM content (lnSOM) and the DN values, stronger 
correlations were found between SOM content and the spectral refl ec-
tance, that is, the correlation coeffi  cient between lnSOM and the natu-
ral logarithmic transformation of the DN values of Band 1 (lnETM 1) 
was −0.629 (p < 0.01). Yates and Warrick (1987) found that cokrig-
ing gave better predictions than kriging when sample correlation coef-
fi cients exceeded 0.5 and when the auxiliary variable was more densely 
sampled. For our study area, Landsat ETM spectral data are not good 

Fig. 1. General location of study area, soil sample distribution, and dominant land use (Other land uses 
include water bodies, orchards, built-up land, and upland crops).
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auxiliary variables for soil TN prediction; however, such data have the 
potential to be good auxiliary variables for SOM prediction.

To improve the accuracy of SOM prediction in the study area, the 
natural logarithmic transformation of the DN values of Band 1 (lnETM 
1) was used as auxiliary variables in SOM prediction (Fig. 2). We also 
predicted SOM in the area by kriging. Th en, we compared the reliabil-
ity in SOM estimation by the methods of kriging and cokriging based 
on the maps of kriging standard deviations, and validated them by us-
ing cross-validation. Th e detail processes and results are described in 
another paper (Wu et al., 2009). Th e results indicate that cokriging 
signifi cantly improved the precision and reliability of SOM prediction. 
To use predicted SOM content data as an auxiliary variable for soil TN 
prediction, we sampled 555 pixels, 467 pixels were sampled based on a 
grid-based sampling scheme with a spacing of 1 km (east-west) and 0.75 km 
(north-south), and the other 88 pixels were sampled based on the cor-
responding location of 88 soil samples for TN prediction.

Kriging and Cokriging
Kriging and cokriging are two typical geostatistical prediction 

methods. Th e semivariogram or cross-semivariogram is one main com-
ponent of kriging or cokriging and serves as an eff ective tool for evalu-
ating spatial structure and variability (Boyer et al., 1991; Cahn et al., 
1994). Th e estimator for the semivariogram and cross-semivariogram is
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where γij is the semivariance (when i = j) with respect to random vari-
able zi, h is the separation distance (lag), n(h) is the number of pairs of 
zi(xk) and zj(xk) in a given lagged distance interval of (h + dh).When 
i ≠ j ,γij is the cross-semivariogram, which is a function of h(Yates and 
Warrick, 1987). In this study, anisotropy of variograms was not founded. 
All the semivariograms in isotropic form were fi tted to linear model, 
spherical model, exponential model, or Gaussian model, and chose its 
best fi tting semivariogram model that had relatively higher coeffi  cient 
of determination and lower residual sum of square for geostatistical pre-
diction (Wang, 1999).

Soil TN content of 88 soil samples used for prediction had high 
skewness and were transformed using the natural logarithm form before 
kriging. Th e exponential model was used to back-transform the natural 
logarithm soil TN content. Other studies have shown that logarithm 
transformation and back-transformation may have other side eff ects 
that are diffi  cult to interpret or may add uncertainty (Armstrong and 
Boufassa, 1988; Roth, 1998; Goovaerts, 1999). We did not consider the 
eff ect of logarithm transformation and back-transformation in this study 
given their diffi  culty to assess and they were used in the two predictions. 
In this study, kriging and cokriging were chosen to estimate and map the 
spatial distribution of SOM and soil TN. We used the nearest 16 sampling 
points and a maximum searching distance equal to the range distance of the 
variable. Semivariograms and cross-semivariograms were constructed using 
GS+ version 7.0 (Geostatistics for the Environmental Sciences).

Evaluation of Soil Total Nitrogen Predictions
To evaluate the performance of the two spatial interpolation meth-

ods, kriging and cokriging with predicted SOM content data, descriptive 
statistics were used to compare true (measured) soil TN content of 43 soil 
samples for validation with the predictions based on the two spatial in-
terpolation methods. In addition, we computed the ME and RMSE. Th e 
ME and RMSE are defi ned based on Isaaks and Srivastava (1989):
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where z(ui) is the measured value of z at location ui and z*(ui) is the 
predicted value at the same location. Th e ME provides a measure of bias; 
and the RMSE provides a measure of accuracy.

Cross-validation is used as another way of validating kriging pre-
dictions (Cressie, 1993; Myers, 1997). We removed one sample from 
the data set, used the remaining samples for prediction in each iteration, 
and repeated the process until all samples had been removed individu-
ally. Th en, we calculated the mean of predictions as the last prediction 
for each sample in the process of cross-validation.

RESULTS
Soil Nutrient Level and Their Correlation

Th e soil TN contents of the 131 soil samples ranged from 
0.47 to 2.48 g kg−1, with a mean of 1.25 g kg−1 and a standard 
deviation of 0.39 g kg−1. Th e mean soil TN content of the 88 soil 
samples used for prediction was equal to that of the 43 soil sam-
ples for validation (Table 2). Th e SOM contents of 131 soil sam-

Table 1. Pearson correlation coeffi cients between soil organic 
matter content (SOM) of 131 soil samples and the digital num-
ber of Landsat Enhance Thematic Mapper (ETM) imagery† and 
between soil total nitrogen content (TN) of 131 soil samples and 
the digital number of Landsat ETM imagery.

ETM 1 ETM 2 ETM 3 ETM 4 ETM 5 ETM 7

SOM −0.587‡ −0.532‡ −0.547‡ 0.273‡ −0.271‡ −0.431‡
TN −0.435‡ −0.420‡ −0.415‡ 0.160 −0.190 −0.331‡

lnETM 1 lnETM 2 lnETM 3 lnETM 4 lnETM 5 lnETM 7

lnSOM −0.629‡ −0.574‡ −0.597‡ 0.235‡ −0.290‡ −0.454‡
lnTN −0.476‡ −0.459‡ −0.459‡ 0.140 −0.197 −0.336‡
† ETM 1, ETM 2,…, ETM 7, the digital number of Band 1, Band 2, …, 
Band 7 of Landsat ETM imagery; lnSOM, the natural logarithm of soil 
organic matter content, lnTN, the natural logarithm of total nitrogen 
content; lnETM 1, lnETM 2, …, lnETM 7, the natural logarithm of ETM 1, 
ETM 2, …, ETM 7.
‡ All correlation coeffi cients listed are signifi cant at p < 0.01 level (2-tailed).

Fig. 2. Predicted soil organic matter content (g kg-1) by (a) cokriging 
with remotely sensed data and (b) cokriging prediction error map of 
soil organic matter content (g kg-1).
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ples ranged from 5.7 to 36.4 g kg-1 with 
a mean of 19.5 g kg-1 and a standard de-
viation of 6.36 g kg-1. Th e predicted SOM 
by cokriging ranged from 5.9 to 36.2 g kg-1, 
with a mean of 19.1 g kg-1 and a standard 
deviation of 5.39 g kg-1. Predicted SOM 
content of 88 soil samples (Fig. 1) used 
for prediction was also very close to the 
measured values. Th e predicted SOM 
content were also close to the measured 
SOM contents of 131 soil samples in de-
scriptive statistics. Th ese results indicated 
that the spatial prediction of SOM could 
accurately describe the spatial variability 
of SOM in the area.

Th e TN contents of soil samples 
were highly correlated with measured and predicted SOM con-
tents. Th e correlation coeffi  cient between the soil TN contents 
of all measured soil samples and measured SOM contents was 
0.81 (n = 131, p < 0.01), the coeffi  cient between the soil TN 
content of all measured soil samples and predicted SOM con-
tent was 0.81 (n = 131, p < 0.01), the coeffi  cient between the 
soil TN content of 88 soil samples for prediction and measured 
SOM content was 0.78(n = 88, p < 0.01), and the coeffi  cient be-
tween the soil TN content of 88 soil samples for prediction and 
predicted SOM content was 0.78 (n = 88, p < 0.01), respectively. 
Th e correlation coeffi  cient between soil TN and predicted SOM 
was almost equal to that between soil TN and measured SOM.

Spatial Prediction of Soil Total Nitrogen
Th e transformed soil TN contents of 88 soil samples for pre-

diction were fi tted well with a normal distribution (skewness = 
−0.13, kurtosis = 0.10) and predicted SOM content of 555 sam-
ples for cokriging were also fi tted well with a normal distribution 
(skewness = 0.07, kurtosis = −0.44). In our study, both the trans-
formed soil TN and predicted SOM passed the Shapiro-Wilk’s 
normality test (S-K p > 0.05). Th e semivariogram of transformed 
soil TN provides a clear description of its spatial structure with 
some insight into possible processes aff ecting its spatial distribu-
tion. A spherical model fi t the semivariogram well, with a high 
coeffi  cient of determination (R2 = 0.818), moderate nugget/sill 
ratio [C0(C+C0)] of 0.496, and eff ective range of 30 km. Th e 
semivariogram of predicted SOM was also fi tted well by a spheri-
cal model, with a high coeffi  cient of determination (R2 = 0.982), 
moderate nugget/sill ratio [C0(C+C0)] of 0.490 and eff ective 
range of 29 km. Th e cross-semivariogram was fi tted well by an 
exponential model, with a high coeffi  cient of determination (R2 
= 0.906), low nugget/sill ratio [C0(C+C0)] of 0.215, and eff ec-
tive range of 44.5 km.

Th e semivariogram provides a description of the spatial 
structure of the predicted variable and some insight into pos-
sible processes aff ecting soil property distribution (Paz González 
et al., 2001).Th e nugget/sill ratio can be regarded as a criterion 
to classify spatial dependency of soil properties when the ef-
fect of sampling design on nugget/sill ratio was negligible. A 
variable has strong spatial dependency when the ratio is <25%. 
Comparatively, the variable has moderate spatial dependency 
with the ratio between 25 and 75%, and weak spatial dependen-
cy with nugget/sill > 75% (Cambardella et al., 1994; Chien et 

al., 1997). Additionally, spatial dependency is defi ned as weak 
if the best-fi t semivariogram model has an R2 < 0.5 (Duff era et 
al., 2007). From the spatial prediction maps of soil TN content 
by kriging and cokriging with predicted SOM content data (Fig. 
3), we found that soil TN content generally had moderate spatial 
variability in the study area, and soil TN content in the central 
region was lower than that in the eastern and the western regions. 
However, the prediction map of soil TN content by cokriging had 
more classes than the prediction map by kriging, which indicated 
that the prediction map by cokriging was an improvement over that 
by kriging in describing content and spatial variability of soil TN.

Comparison and Validation of Spatial Predictions
Summary statistics for soil TN content estimated by krig-

ing and cokriging with predicted SOM content data for the 43 
validation samples are shown in Table 3. For comparison, this 
table also shows summary statistics of the true values of soil TN 
content. Th e ME and RMSE of cokriging for 43 validation sam-
ples were 0.00 and 0.25 g kg-1, respectively; and ME and RMSE 
of kriging for 43 validation samples were 0.03 and 0.31 g kg-1, 
respectively. Th e minimum and maximum of the prediction for 
43 validation soil samples by cokriging with predicted SOM con-
tent data were 0.70 and 1.85 g kg-1, respectively; and the mini-
mum and maximum of prediction for 43 validation soil samples 
by kriging were 0.80 and 1.85 g kg-1, respectively. Th e true (mea-

Table 2. Statistical summary† for soil total nitrogen (TN) content (g kg-1) and soil organic 
matter content (SOM, g kg-1) in the study area.

N Min Max Mean SD CV(%) Skew Kurt

TN

All soil samples 131 0.47 2.48 1.25 0.39 31.2 0.64 0.76
Samples for Pred 88 0.56 2.48 1.25 0.37 29.6 0.82 1.14

Samples for Valid 43 0.47 2.35 1.25 0.42 33.6 0.38 0.16

SOM

All soil samples 131 5.7 36.4 19.5 6.36 32.6 0.17 −0.08

Measured‡ 88 5.7 33.4 19.4 5.82 30.0 −0.10 −0.29

Predicted1§ 88 5.9 33.2 19.4 5.74 29.6 −0.11 −0.25
Predicted2# 555 5.9 34.1 19.2 5.51 28.7 0.07 −0.44

† Skew, skewness; Kurt, kurtosis; TN, soil total nitrogen content; SOM, soil organic matter content; 
Pred, prediction; Valid, validation.
‡ Measured, measured SOM values of 88 soil samples for prediction.
§ Predicted1, predicted values of corresponding 88 soil samples for prediction.
# Predicted2, predicted values extracted from the prediction map of SOM in the study area.

Fig. 3. Predicted soil total N content (g kg-1) by (a) kriging and (b) 
cokriging with predicted soil organic matter data.
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sured) minimum and maximum of 43 validation samples, how-
ever, were 0.47 and 2.35 g kg-1, respectively (Table 3).

Th e minimum and maximum of prediction for entire study 
area by cokriging with predicted SOM content data were 0.56 
and 2.45 g kg-1, respectively; and the minimum and maximum 
of prediction for the entire study area by kriging were 0.73 and 
1.89 g kg-1, respectively. However, the minimum and maximum of 
all 131 samples were 0.47 and 2.48 g kg-1, respectively (Table 3). 
Both the medians and means of two predictions were very similar; 
however, they were less than that of 131 in situ soil samples. From 
the results of cross-validation (Fig. 4), we found that the mean 
predicted soil TN content by cokriging was closer to the corre-
sponding measured value than that by kriging to the majority of 
88 soil samples for prediction. Th e ME and RMSE for 88 samples 

for prediction were 0.05 and 0.33 g kg-1 for kriging 
cross-validation and 0.02 and 0.30 g kg-1 for cokrig-
ing cross-validation.

DISCUSSION
Soil TN content was highly correlated with 

SOM content in the study area and accurate SOM 
content can be obtained by many approaches, 
such as fi eld soil survey, remote sensing estima-
tion, prediction by kriging with auxiliary data. 
Predicted SOM content has the potential to be a 
good auxiliary variable for soil TN content pre-

diction when the prediction map of SOM in the study area is of 
high precision.

Th e eff ective range was a parameter that can refl ect some 
information about spatial dependency of environmental vari-
ables ( Journel and Huijbregts, 1978). Th e semivariogram of 
transformed soil TN had approximately 30 km of eff ective range, 
indicating that soil TN has strong spatial structure. Th e nugget/
sill ratio of a spherical model for soil TN by lognormal kriging 
was between 25 and 75% with a high R2 (0.818). Th is ratio in-
dicates that soil TN content has a moderate spatial dependency 
in the area. Th e coeffi  cient of variation of soil TN (31.2%) also 
indicated moderate spatial variability of soil TN.

Th e spatial variability of soil TN may be aff ected by both in-
trinsic (soil formation factors, such as soil parent materials) and 
extrinsic factors (soil management practices, such as fertiliza-
tion). Generally, strong spatial dependence of soil properties can 
be attributed to intrinsic factors, and weak spatial dependence 
can be attributed to extrinsic factors (Cambardella et al., 1994). 
Soil TN had moderate spatial dependency in our study area. Th is 
may indicate that soil TN content was aff ected by both intrinsic 
factors and extrinsic factors in the area. Th is is consistent with the 
conclusion of Dinnes et al. (2002) that N dynamics in agricultural 
fi elds in humid regions are aff ected by a multitude of factors including 
tillage, drainage, crop type, SOM content, and weather conditions.

Th e prediction of soil TN content for 43 validation samples 
based on two kriging methods resulted in some diff erences from 
measured values. Sampling density is likely an important reason. 
Th e minimum, maximum, and mean of soil TN content predic-
tions by cokriging were similar to all of 131 soil samples than 
to the predictions by kriging. Th is indicates that cokriging can 
describe better the variability of soil TN than kriging. Th e two 
parameters for validation (ME and RMSE) for cokriging were 
also an improvement over those parameters for kriging. Th is 
demonstrates that predicted SOM content data as auxiliary data 
for soil TN content prediction can improve the prediction. Th e 
ME and RMSE of cokriging for 88 samples for prediction were 
an improvement over that for kriging in cross-validation. Th is 
result indicates that cokriging with predicted SOM data was an 
improvement over kriging for soil TN prediction. All the results 
comparing soil TN spatial prediction and validation demon-
strates that remotely sensed data such as Landsat ETM images 
have the potential as good auxiliary variables for improving the 
reliability of soil TN prediction by method of SOM prediction 
using cokriging.

Fig. 4. Measured soil total N (TN) content (g kg-1) and predicted TN content 
from cross-validation by (a) kriging and (b)cokriging, respectively.

Table 3. Statistical summary† for measured and estimated soil total nitrogen con-
tent of 43 soil samples for validation (g kg-1) and study area, kriging and cokriging 
with predicted soil organic matter content data were applied in the estimation.

Min Max Median Mean ME RMSE rp
2

Validation
soil samples

Measured 0.47 2.35 1.27 1.25
Kriging 0.80 1.85 1.22 1.21 0.03 0.31 0.426

Cokriging 0.70 1.85 1.25 1.25 0.00 0.25 0.614

Study area Measured 0.47 2.48 1.23 1.25

Kriging 0.73 1.89 1.15 1.18
Cokriging 0.56 2.45 1.15 1.19

† ME, mean error, RMSE, root mean square errors; rp
2, coeffi cient of determination.
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CONCLUSIONS
Th e soil TN content of all 131 soil samples were highly cor-

related with SOM content (r = 0.81, p < 0.01), and they were 
also highly correlated with predicted SOM content (r = 0.81, 
p < 0.01), which were estimated by cokriging with remotely 
sensed data. Th e prediction of soil TN content by cokriging 
with predicted SOM content data was an improvement over that 
by kriging as measured by descriptive statistics, ME, RMSE, and 
cross-validation. Th is study demonstrates that predicted SOM 
content as auxiliary data improved the prediction of soil TN 
content and indicates that predicted data of auxiliary variables 
have the potential to be good sources of auxiliary data for cokrig-
ing. Th is is especially the case when the predicted data have been 
demonstrated to be of high accuracy and are highly correlated with 
the primary variate.
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