YIC-IR

浏览/检索结果: 共2条,第1-2条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
黄海桑沟湾水体及沉积物中微塑料污染特征研究 期刊论文
海洋环境科学, 2019, 卷号: 38, 期号: 2, 页码: 198-204
作者:  熊宽旭;  赵新月;  周倩;  付传城;  涂晨;  李连祯;  骆永明
收藏  |  浏览/下载:295/0  |  提交时间:2020/06/17
桑沟湾  微塑料  潮滩  丰度  空间分布  Sanggou bay  microplastics  tidal flats  abundance  spatial distribution  In recent years,research on microplastics pollution in the marine environment has been increasing,but studies on microplastics in water bodies and sediments of the bay under the influence of high-intensity human activities are still rarely reported. In this study,the pollution characteristics of microplastics in the wayer and sediments of Sanggou bay were investigated in December 2017,after the harvest of large-scale aquaculture,with the aim to study the effects of aquaculture activities and hydrodynamics on pollution characteristics and spatial distribution of microplastics in the bay. The results showed that the types of microplastics in the water and sediments of Sanggou bay were mainly fibers,fragments,films,foams and particles. The microplastic abundances in the water and sediments were 1.8 ~ 31.2 N/L,31.2 ~ 1246.8 N/kg,respectively. The average particle sizes of microplastics in water and sediments were 0.51 0.20 mm and 1.54 1.02 mm,respectively. The results of spatial distribution of microplastics in Sanggou bay showed that the high abundance area mainly appears in the inshore waters,and the abundance of microplastics tends to decrease from the inner areas of estuary to the outshore areas. The heterogeneity of microplastic abundance and spatial distribution in Sanggou bay is mainly affected by human activities such as aquaculture,living and shipping,as well as hydrodynamics. In the future,fine sampling and analysis are needed to fully understand the temporal and spatial distribution of microplastics pollution in the bay areas.  
烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应 期刊论文
生物多样性, 2019, 卷号: 27, 期号: 2, 页码: 200-210
作者:  李宝泉
Adobe PDF(1354Kb)  |  收藏  |  浏览/下载:511/106  |  提交时间:2020/06/17
低氧  群落结构  群落恢复  敏感种  机会种  hypoxia  community structure  community recovery  sensitive species  opportunistic species  Hypoxia is a common phenomenon in the world's oceans, especially in the shallow waters of coastal zones. Rates of hypoxia are increasing due to global climatic changes and anthropogenic activities. Hypoxia can cause mass mortality of marine animals and can have severe negative impacts on marine ecosystems. To better understand the effects of hypoxia on macrobenthic communities, a survey was carried out in the Muping Marine Ranch (Yantai) during June, August and September of 2016. Results showed that seasonal hypoxia led to changes in benthic community structure, especially in terms of species composition and dominant species. The dominant species were Polychaeta Lumbrinereis latreilli, Sternaspis scutata and Mollusca Endopleura lubrica in summer. The opportunistic species Lumbrinereis latreilli increased, whereas, sensitive species such as Leptomya minuta, Glycera chirori, Upogebia major, Pontocrates altamarimus, Eriopisella sechellensis decreased during the hypoxic period of August. Hypoxia also reduced biodiversity indices. The effect of hypoxia on abundance and biomass were not significant, mainly because of the increase in the opportunistic Lumbrinereis latreilli, which counteracted the decline in abundance and biomass of other species. Individual physiological tolerance to hypoxia was different among species. Lumbrinereis latreilli showed higher tolerance to hypoxia in dissolved oxygen (DO) = 1.0 mg/L compared to other species. Some sensitive species, such as Leptomya minuta, Upogebia major, Pontocrates altamarimus and Eriopisella sechellensis showed lower tolerance when DO < 2.5 mg/L. When DO increased to 2.5 mg/L, the macrobenthic community start to recover gradually. The recovery extent and time needed were closely related to the degree of seasonal hypoxia.