YIC-IR

浏览/检索结果: 共5条,第1-5条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
滨海湿地环境中微塑料表面性质及形貌变化 期刊论文
科学通报, 2021, 卷号: 66, 期号: 13, 页码: 1580-1591
作者:  周倩;  涂晨;  张晨捷;  章海波;  付传城;  李远;  李连祯;  熊宽旭;  徐笠;  骆永明
浏览  |  Adobe PDF(14272Kb)  |  收藏  |  浏览/下载:565/153  |  提交时间:2021/12/01
微塑料  盐沼  红树林  海岸带湿地  定位试验  表面变化  
环境中微塑料研究进展与展望 期刊论文
科学通报, 2021, 卷号: 66, 期号: 13, 页码: 1547-1562
作者:  骆永明;  施华宏;  涂晨;  周倩;  季荣;  潘响亮;  徐向荣;  吴辰熙;  安立会;  孙晓霞;  何德富;  李艳芳;  马旖旎;  李连祯
浏览  |  Adobe PDF(1556Kb)  |  收藏  |  浏览/下载:2679/966  |  提交时间:2021/12/01
微塑料  环境介质  环境行为  生态风险  
禾本科作物小麦能吸收和积累聚苯乙烯塑料微球 期刊论文
科学通报, 2020, 卷号: 65.0, 期号: 020, 页码: 2120-2127
作者:  李瑞杰;  李连祯;  张云超;  杨杰;  涂晨;  周倩;  李远;  骆永明
浏览  |  Adobe PDF(2104Kb)  |  收藏  |  浏览/下载:458/175  |  提交时间:2021/06/16
小麦幼苗  聚苯乙烯微球  砂培  吸收  积累  
禾本科作物小麦能吸收和积累聚苯乙烯塑料微球 期刊论文
科学通报, 2020, 卷号: 65, 期号: 20, 页码: 2120-2127
作者:  李瑞杰;  李连祯;  张云超;  杨杰;  涂晨;  周倩;  李远;  骆永明
浏览  |  Adobe PDF(2104Kb)  |  收藏  |  浏览/下载:422/167  |  提交时间:2021/12/01
小麦幼苗  聚苯乙烯微球  砂培  吸收  积累  
食用蔬菜能吸收和积累微塑料 期刊论文
科学通报, 2019, 卷号: 64, 期号: 9, 页码: 928-934
作者:  李连祯;  周倩;  尹娜;  涂晨;  骆永明
收藏  |  浏览/下载:486/0  |  提交时间:2020/06/17
微塑料  生菜  聚苯乙烯微球  吸收  积累  健康风险  microplastics  lettuce  polystyrene microbeads  uptake  accumulation  human health risk  Microplastic (MP, 100 nm-5 mm) may present an attributable risk to ecosystem and human health, and its pollution has become a global environmental concern. Despite a wealth of information on the accumulation of MPs in aquatic species, there is no information on the uptake and accumulation of MPs by higher plants. Terrestrial edible plants are directly exposed to MPs when agricultural soil was applied with organic manure, sewage sludge as fertilizer or plastic mulching. In this paper, the uptake of two sizes of polystyrene (PS) microbeads (0.2 and 1.0 mum) and then their distribution and migration in an edible plant lettuce were firstly investigated based on laboratory experiments. We used fluorescent markers to track PS microbeads in plant tissues and found fluorescence to be a sensitive and reliable detection method. Sections from untreated control lettuce showed no autofluorescence. When roots were treated with fluorescently labeled PS microbeads, the microbeads could be identified by its fluorescence. Our main study investigated the uptake of 0.2 mum beads, as few luminescence signals were observed in lettuce roots for 1.0 mum beads in our experiment. We observed that 0.2 mum fluorescent microbeads were extracellularly trapped in the root cap mucilage (which is a highly hydrated polysaccharide) and a dark green tip (which was typical of lettuce roots exposed to label PS beads) was usually visible to the naked eye. Confocal images revealed that the PS luminescence signals were mainly located in the vascular system and on the cell walls of the cortex tissue of the roots, indicated that the beads passed through the intercellular space via the apoplastic transport system. Once inside the central cylinder, the 0.2 mum PS beads were transferred from the roots to the stems and leaves via the vascular system following the transpiration stream. We also observed that the PS beads adhered to one another and self-assembled systematically into grape-like and (chain) string-like clusters in the intercellular space of the root and stem vascular tissue of lettuce plant. In contrast to the root and stem, PS beads were dispersed in the leaf tissue. Here, for the first time we provide evidence of the adherence, uptake, accumulation, and translocation of submicrometer MPs within an edible plant. Our findings highlight the previously underappreciated human exposure pathway to MPs through the consumption of contaminated crops and emphasize the need for new management strategies to control the release of MPs waste products into the terrestrial environment. Ultimately, the potential impacts of low range sized MPs on food safety of crop plants and human health need to be urgently considered.