生物炭对土壤中磷的形态转化以及有效性的影响
武玉1,2
学位类型硕士
导师徐刚 ; 韩京龙
2015-05-17
学位授予单位中国科学院研究生院
学位授予地点北京
学位专业环境工程
关键词生物炭 磷的形态 玉米 小麦 花生壳
其他摘要    磷是植物生长所必须的大量元素之一,但土壤中的磷大多数以难溶态存在,所以很难被植物吸收利用,从而导致磷成为很多地区土壤中植物生长的限制因素之一。尽管施磷可以缓解土壤缺磷状况,但是磷肥的利用效率很低,并且由于磷矿储量有限,是不可再生资源,其储量和质量都在下降。过多的施用磷肥,还会导致加入土壤中的肥料随径流到达水体,引起水体富营养化。而近几年生物炭作为一种新型的环境功能材料,在改良土壤方面引起广泛关注。研究表明生物炭能改变土壤pH和阳离子交换能力,生物炭含有大量磷素可以改变土壤磷的供应,影响作物的生长和对磷素的吸收。但是大多数的研究主要侧重于研究生物炭对土壤中总磷以及有效磷的研究,对土壤中磷的形态转化以及植物吸收利用的研究比较少。基于此,我们运用化学分级以及核磁共振的方法研究了不同材料(玉米秸秆,小麦秸秆,花生壳)在不同炭化温度下磷的形态转化及影响,对生物炭有更好的了解后,我们加入土壤进行培养,分别在添加磷肥和不添加磷肥的情况下,研究不同培养时间,生物炭对土壤中磷的形态转化的影响,以及生物炭对磷肥转化的影响;最后,我们用加入生物炭的土壤种植碱蓬,研究生物炭对作物产量以及磷素吸收的影响等。主要结论如下:
(1)生物炭中总磷(TP)和总无机磷(TIP)含量随着制备温度的升高先升高后降低,而有机磷随着炭化温度的升高而升高。在化学分级提取中H2O-Pi随着炭化温度的升高先升高后下降,NaHCO3-Pi在300℃或者400℃时含量最高,NaOH-Pi和NaHCO3-Po以及NaOH-Po有随炭化温度的升高而降低的趋势,HCl-Pi随着炭化温度的升高而升高。在核磁提取液中正磷酸盐(Orhto-p)随着炭化温度的升高先上升后下降,焦磷酸盐(Pytho-p)随着炭化温度的升高而下降,有机磷的含量随着炭化温度的升高急剧下降。固体核磁结果相对比较复杂。不同提取方法中测得的有机磷的含量结果不是特别一致。但是总体可以看出生物炭的原材料以及制备温度对TP, TIP,TOP含量及其形态分级都有很大的影响。
(2)生物炭和生物炭与磷肥处理的土壤中提取磷的总和要大于对照中的含量;生物炭加入酸土,培养初期(第四天)对各形态的磷有一个正激发效应,能够增加各形态磷的含量,但是NaHCO3-Pi除外,但是随着培养时间的推移,生物炭对H2O-Pi, NaOH-Pi正激发效应加强,对NaHCO3-Pi的负激发效应减弱,这说明生物炭添加有利于这些形态磷的生成。而对NaHCO3-Po由正激发效应转为负激发效应,可能由于生物炭加入土壤后促进微生物的活动,促使NaHCO3-Po向无机磷转化。对HCl-Pi的正激发效应减弱,这些说明生物炭的加入促使土壤中难以被植物吸收利用的HCl-Pi向其他形态转化。
(3)生物炭加入碱性土壤,培养初期对各形态的磷大致有一个负激发作用,除了NaHCO3-Pi和HCl-Pi。但是随着培养时间的延长,生物炭对H2O-Pi由负激发效应转化为正激发效应,变化显著。高温生物炭(400℃-600℃)对NaHCO3-Pi的正激发效应增强,300℃的生物炭对NaHCO3-Pi由正激发效应转为负激发效应,因此,高温生物炭能增加土壤中NaHCO3-Pi的含量。生物炭对NaHCO3-Po的负激发效应减弱,生物炭加入碱土之后,能够增加土壤中NaHCO3-Po的含量。生物炭对NaOH-Pi的负激发作用增强,从而说明生物炭加入土壤后,使土壤中的NaOH-Pi向其他形态转化。生物炭对NaOH-Po的激发效应有负转为正,对HCl-Pi的正激发效应减弱,说明了生物炭加入土壤都能促进土壤中难以被植物利用的HCl-Pi向其他形态磷转化。
(4)在加入磷肥与生物炭处理的土壤中,培养初期,磷肥更多的向无机磷转化;而在培养后期变化比较复杂。土壤中有效磷的含量随着时间的推移而减少。
(5)经过两季碱蓬种植,生物炭处理均显著(P<0.05)增加了碱蓬生物量,同时提高了碱蓬对磷的吸收。低温生物炭(300℃)似乎更有利于碱蓬对磷的吸收,这暗示了低温生物炭磷素有效性更高。生物炭的这种促进作用在第二季得到延续,说明了生物炭中磷素有效性可以维持至少两个生长季以上。但是加入生物炭和磷肥培养的碱蓬,实验组和对照组,碱蓬的生物量变化不显著,并且第一季中碱蓬对磷的吸收量下降,第二季出现好转。生物炭与磷肥之间缺乏协同作用,可能与磷肥含量和生物炭比重有关,需要进一步研究。
    通过上述研究,从生物炭和土壤磷素有效性,以及植物对磷素的吸收来看,较低温度(300℃和400℃)的生物炭更有利于增加土壤有效磷含量,提高作物对磷素的吸收利用。
;     Phosphorus is one of large amount elements for plants to grow, but most of phosphorus is existed by undissolved form in the soil. So it is difficult to be used by the plant, resulting in phosphorus as the limited factors for plant growth in many areas. Traditional remedy is applying phosphate fertilizer. But use efficiency of phosphorus is very low. Excessive use of phosphate fertilizer could cause the eutrophication of water bodies. In recent years, biochar receivedmuch attention, in carbon sequestration and soil improvement. These studies have shown that biochar could amend soil pH and CEC. In addition, biochar contains large amount of phosphorus which can be used forcrops. But most of the research mainly focused on the effect of biochar on total phosphorus and available phosphorus, little is known about the impact of biochar on the transformation of phosphorus forms in the soil. In this study, we combined chemical fractionation and 31P nuclear magnetic resonance (NMR) method to study and the influence of feedstock (corn, wheat, peanut shells) on the transformation of phosphorus forms at different carbonization temperature. Then we incubated the sampled soil applied with biochar with and without phosphorus fertilizer for one month. And we studied the influence of biochar on the transformation of the forms of phosphorus in the soil at different times. Finally, we planted Suseda salsa to study the effect of biochar on crop yield, the uptake of phosphorus and the transformation of phosphorus between crop and soil. the main conclusions came as follows:
(1) The content of total phosphorus (TP) and total inorganic phosphorus (TIP) in biochar increased at first and then decreased as the carbonization temperature rising, while total organic phosphorus (TOP) showed an increasing trend. The water extracted phosphorus (H2O-Pi) increased at first and then decreased with rising temperature. Labile inorganic phosphorus (NaHCO3-Pi) reached the highest content at 300℃ or 400℃, moderately labile inorganic phosphorus (NaOH-Pi), labile organic phosphorus (NaHCO3-Po) and secondary labile organic phosphorus (NaOH-Po) all showed a reducing trend with rising carbonization temperature.By contrast, apatite p (HCl-Pi) increased in this process. The 31P NMR showed phosphate (Orhto-p) increased first and then decreased, pyrophosphate (Pytho-p) decreased, and organic phosphorus significantly reduced with rising carbonization temperature. The solid state nuclear magnetic results of were relatively complex. The content of organic phosphorus in different extraction methods was inconsistent,In generally, the feedstock and  carbonization temperature had significant impact on the TP, TIP, TOP and their forms.
(2) Biochar had a positive priming effect on the forms of phosphorus in acid soil at the 4 day. Over the incubation process, the positive priming effect of biochar on H2O-Pi, NaOH-Pi increased, and negative priming effect of biochar on NaHCO3-Pi was observed, suggesting that biochar was favorable for the formation forms of phosphorus. The priming effect of biochar on NaHCO3-Po from positive to negative indicated that biochar could promote soil microbial activity, shift NaHCO3-Po to inorganic phosphorus. The priming effect of biochar on HCl-Pi was reduced, which suggested that the addition of biochar could transfer HCl-Pi to other forms of P.
(3)For alkaline soil, biochar had a negative effect on different forms of phosphorus except for NaHCO3-Pi and HCl-Pi. But with increasing incubation time, the priming effect of biochar on H2O-Pi shift from negative to positive effect. The primingeffect of biochar of high temperature (400℃-600℃) on NaHCO3–Pi was more pronounced, however the priming effect of 300℃biochar on NaHCO3-Pi changed from a positive to negative which suggested that the high temperature biochar can increase the content of NaHCO3-Pi in the soil. The negative priming effect of biochar on NaHCO3-Po was observed due to the increase the amount of NaHCO3-Po in the alkaline soil. Biochar enhanced negative priming effect on NaOH-Pi to show biochar can transfer NaOH-Pi to other forms. Biochar priming effect on NaOH-Po from negative to positive effect and positive priming effect on HCl–Pi was lessnoticeable.
(4)In early incubation time, phosphate fertilizer mainly transformed to the inorganic phosphorus while the transformation became complex in the later incubation time. The content of soil available phosphorus decreased with increased incubation time.
(5)Based on the two growth seasons of Suseda salsa, biochar significantly (P = 0.05) increased the Suseda salsabiomass, and enhanced plant phosphorus concentration. Biochar produced at low temperature (300℃) showed more beneficial for the growth of Suseda salsaand uptake of phosphorus. The effective use of p with biochar application could be maintained for at least two growth seasons. But biochar amendment combined with phosphate fertilizer, the Suseda salsa biomass change was not significant compared with control. In the first growth season, the uptake of phosphorus of Suseda salsa decreased, and this trend became better in the second growth season. The lack of synergy between biochar and phosphate may be associated with phosphorus content and proportion of biochar, which needs further research.
    In conclusions, from the plant growth and the phosphorus use efficiency, low temperature (300℃ and 400℃) biochar showed more advantage to increase the available phosphorus in the soiland subsequent plant biomass.
语种中文
文献类型学位论文
条目标识符http://ir.yic.ac.cn/handle/133337/7913
专题中国科学院烟台海岸带研究所知识产出_学位论文
作者单位1.中国科学院烟台海岸带研究所
2.中国科学院大学
第一作者单位中国科学院烟台海岸带研究所
推荐引用方式
GB/T 7714
武玉. 生物炭对土壤中磷的形态转化以及有效性的影响[D]. 北京. 中国科学院研究生院,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
???????.pdf(3672KB)学位论文 开放获取CC BY-ND浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[武玉]的文章
百度学术
百度学术中相似的文章
[武玉]的文章
必应学术
必应学术中相似的文章
[武玉]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ???????.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。