海月水母对海洋酸化和铜离子胁迫的生理响应研究
学位论文
学位类型硕士
导师董志军
2020-05
学位授予单位中国科学院烟台海岸带研究所
学位授予地点山东省烟台市
学位名称工程硕士
学位专业生物工程
关键词海月水母 海洋酸化 铜离子 胁迫 生理响应
摘要自工业革命以来,煤炭、石油等化石燃料使用以及森林砍伐、过度放牧等人类活动,导致全球CO2浓度大幅增加。海洋作为地球最大的碳汇,吸收了30%以上人类排放的CO2量,已造成海水pH下降0.1,并引起海水碳酸盐缓冲体系的改变,该过程被称为海洋酸化(海水酸化)。海洋酸化导致海水化学环境改变,将会影响海洋生物的基因表达、能量代谢和细胞应激等生理活动,进而影响海洋生物发育、繁殖、生物钙化等生命过程。同时人类活动过程中产生的大量含Cu2+的工业废水、生活污水及农业废水通过江河径流汇入近海,导致一些近海海域铜含量严重超标。铜是分布最为广泛环境污染物之一,高浓度的铜可引起海洋生物抗氧化系统异常、能量代谢紊乱和遗传毒性等现象的发生,造成海洋生物严重的组织损伤甚至死亡。海洋酸化可能改变重金属在水环境的形态,促进Cu2+等金属离子从沉积物或岩石中迁移至海水中,从而提高Cu2+在海水环境的浓度水平和水生生物体的生物利用率。此外,海洋酸化还会通过改变pH敏感金属的生物效应和潜在毒性,间接影响海洋生物种群的生理代谢过程。 海月水母是海洋中一种广泛分布的胶质性浮游动物,在碳、氮、磷等元素的生物地球化学循环和海洋生态系统的能量流动、物质循环过程中均扮演重要角色。本研究针对当前海洋面临的酸化和重金属污染问题,以海月水母生活史早期阶段的螅状幼体和碟状幼体为研究对象,旨在探索海月水母螅状幼体和碟状幼体应对海洋酸化和Cu2+胁迫的生理响应,为全球气候变化背景下海洋酸化和重金属污染的生态风险评价提供科学依据。 主要研究工作和结论如下: (1)以海月水母螅状幼体为研究对象,通过检测海水酸化和Cu2+胁迫对螅状幼体过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、Ca2+-ATP酶、Na+K+-ATP酶、酸性磷酸酶(ACP)和碱性磷酸酶(AKP)等多种生理代谢酶活性以及出芽无性繁殖率、呼吸率、摄食率以及组织病理学变化等生理指标,评估海洋酸化和Cu2+暴露对海月水母螅状幼体的毒性效应。研究结果表明,海水酸化和Cu2+暴露严重抑制了螅状幼体的CAT、Ca2+-ATP酶、ACP、AKP等活性,造成螅状幼体抗氧化应激效应和呼吸代谢异常升高,引起螅状幼体严重的组织毒理损伤,进而影响螅状幼体的捕食行为,导致摄食率和无性繁殖率降低。两种环境胁迫因子在Ca2+-ATP酶活性、摄食率、繁殖率以及损伤指数等方面表现出协同效应。 (2)以海月水母碟状幼体为研究对象,通过测定CAT、SOD、Ca2+-ATP酶、Na+K+-ATP、ACP和AKP等生理代谢酶活性以及呼吸率、收缩频率和伞部直径等生理指标,分析海月水母碟状幼体在海洋酸化和Cu2+胁迫的生理响应。研究结果表明,海洋酸化和Cu2+胁迫对六种酶活性具有不同影响。Cu2+暴露严重抑制海月水母碟状幼体CAT酶、Ca2+-ATP酶和AKP活性以及收缩频率和生长速率,造成SOD活性和呼吸率异常升高。Cu2+暴露可能影响海月水母运动能力,导致海月水母捕食能力下降,生长受到显著的抑制效应,海月水母碟状幼体伞径随pH降低和Cu2+浓度增加而减小。海水酸化单一暴露同样抑制碟状幼体的生长,但对Cu2+毒性具有拮抗作用。海洋酸化缓解了Cu2+对海月水母呼吸率的刺激效应以及收缩频率和生长速率的抑制作用。这可能表明在未来海洋酸化背景下,海月水母碟状幼体对Cu2+暴露的适应能力增强。 (3)海月水母螅状幼体和碟状幼体两个生活史阶段对海洋酸化和Cu2+两种环境胁迫因子的敏感性具有差异。在相同的暴露条件下,两者的Na+K+-ATP酶、ACP和AKP等酶活性以及耗氧率等生理指标表现出不同的变化趋势。海水酸化对两个生活史阶段Cu2+暴露的交互作用不同。螅状幼体实验中,海水酸化和Cu2+暴露对海月水母螅状幼体的毒性效应具有协同作用;而在碟状幼体实验中,海水酸化可以减缓Cu2+对海月水母碟状幼体的毒性效应,减轻Cu2+暴露引起的氧化应激效应,提高碟状幼体的收缩频率和生长速率。 本研究确定了海洋酸化和Cu2+暴露对海月水母早期生活史螅状幼体和碟状幼体两个阶段的不同生理影响,这种差异响应可能会改变未来海月水母的生存策略,影响海洋生物多样性和生态系统稳定。本研究结果将为评估海洋酸化背景下重金属污染物对海洋生态系统的影响提供数据支撑。
其他摘要Concentration of carbon dioxide (CO2) has went up sharply, as a result of fossil fuel use and human activities including deforestation and overgrazing since the Industrial Revolution. Being the largest carbon sink, the ocean has absorbed more than 30% of CO2 caused by activities of humankind, leading to a decrease of seawater pH to 0.1, as this process was defined as ocean acidification. Papers have showed ocean acidification could have influence on the carbonate buffer system, chemical environment of seawater and biological activities, such as gene expression, energy metabolism and cellular stress. Besides, the seawater acidification would also affect the development, reproduction, and biological calcification of marine organisms. Simultaneously, a large amount of Cu2+-containing industrial wastewater, domestic sewage, and agricultural water along with human activities are brought into the offshore waters through river runoffs, causing a high enrichment of the copper content in some offshore areas. As one of the most widely distributed environmental pollutants, High concentration of copper can cause the occurrence of abnormal antioxidant system abnormalities, energy metabolism disorders, and genotoxic effects on marine organisms, do damages to tissues, even result in death of marine organisms at high concentrations. Ocean acidification may change the form of heavy metals in the water environment, and promote the migration of metal ions such as Cu2+ from sediments to seawater, hence increasing the concentration of Cu2+ in the seawater environment and the bioavailability of aquatic organisms. Furthermore, literatures also pointed out ocean acidification would affect the physiological metabolic processes of marine biological populations indirectly by changing the biological effects and potential toxicity of pH-sensitive metals. Aurelia coerulea is a widely distributed glial zooplankton in the ocean, plays an important role in the biogeochemical cycle of important elements consist of carbon, nitrogen, phosphorus the energy flow and material cycle of the marine ecosystem. In the present study, we focused on the polyps and ephyrae in the early stages of A. coerulea, and addressed the current acidification and heavy metal pollution in the ocean. Moreover, this study explored the physiological responses of the polyps and ephyrae to ocean acidification and Cu2+ stress, we expected to provide a scientific basis for ecological risk assessment of ocean acidification and heavy metal pollution in the context of global climate change. The main research process and results are as follows: (1)The effects of ocean acidification and Cu2+ stress on polyps could be reflected on activities of catalase (CAT), superoxide dismutase (SOD), Ca2+-ATPase, Na+K+-ATPase, acid phosphatase (ACP) and alkaline phosphatase (AKP). Physiological indicators including budding asexual reproduction rate, respiration rate, feeding rate and histopathological changes were also determined to evaluate the toxic effects of ocean acidification and Cu2+ exposure on polyps of A. coerulea. The results exhibited that ocean acidification and Cu2+ exposure inhibited the activities of CAT, Ca2+-ATPase, ACP, AKP of polyps notably, resulting in antioxidative stress effects and significantly increasement on respiratory metabolism. In addition, the combination of ocean acidification and Cu2+ exposure would also do severe tissue toxicological damages to polyps, which in turn affected the predation behavior of polyps and reduced feeding rate and asexual reproduction rate. The two environmental stress factors showed synergistic effects in terms of Ca2+-ATPase activity, feeding rate, reproduction rate, and injury index. (2)In the study of A. coerulea ephyrae, the activities of physiological metabolic enzymes including CAT, SOD, Ca2+-ATPase, Na+K+-ATP, ACP and AKP, as well as respiration rate, contraction frequency and umbrella diameter were measured. The physiological response of A. coerulea ephyrae under ocean acidification and Cu2+ stress was analyzed as well. The results suggested that ocean acidification and Cu2+ stress had different effects on the activities of six enzymes. Cu2+ exposure significantly inhibited the activities of CAT, Ca2+-ATPase and AKP, as well as the contraction frequency and growth rate of A. coerulea ephyrae, resulting in an abnormal increase in SOD activity and respiratory rate. Moreover, copper pollution might affect the movement ability of A. coerulea, leading to the decline in the predation ability of A. coerulea, and significantly inhibits growth. There’s a positive correlation between the umbrella diameter of A. coerulea ephyrae and pH, whereas a negative correlation was observed between the umbrella diameter and Cu2+ concentration. Single-factor exposure to ocean acidification also restrained the growth of ephyrae, but had an antagonistic effect on Cu2+ toxicity. Ocean acidification alleviated the stimulating effect of Cu2+ on the respiration rate of A. coerulea ephyrae, the inhibitory effect of contraction frequency and growth rate. This may indicate that with ocean acidification being the background, it seems probably that the adaptability of A. coerulea ephyrae to copper pollution is enhanced. (3)The sensitivity of A. coerulea to the two environmental stress factors consist of ocean acidification and Cu2+ was different in polyps and ephyraes. Under the same exposure conditions, Na+K+-ATPase, ACP, AKP and other physiological indicators such as oxygen consumption rate showed different patterns. The interactions between ocean acidification and Cu2+ exposure was different in two life history stages. Ocean acidification and Cu2+ exposure had a synergistic effect on the toxic effects of A. coerulea polyps, while ocean acidification could alleviate the toxic effect of Cu2+ on the ephyrae, reduce the oxidative stress effect caused by Cu2+ exposure, and increase the contraction frequency and growth rate of ephyrae. This study identified the different physiological effects of ocean acidification and Cu2+ exposure on the two stages of the polyps and ephyrae of A. coerulea. This differential response might change the survival strategy of A. coerulea in the future, affecting marine biological diversity sexuality and ecosystem stability. The results of this study will provide a theoretical basis and technical support for assessing the impact of global and regional marine environmental problems on marine life and marine ecosystems, as well as marine environmental monitoring.
语种中文
文献类型学位论文
条目标识符http://ir.yic.ac.cn/handle/133337/24237
专题中国科学院烟台海岸带研究所知识产出_学位论文
推荐引用方式
GB/T 7714
学位论文. 海月水母对海洋酸化和铜离子胁迫的生理响应研究[D]. 山东省烟台市. 中国科学院烟台海岸带研究所,2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[学位论文]的文章
百度学术
百度学术中相似的文章
[学位论文]的文章
必应学术
必应学术中相似的文章
[学位论文]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。