Effects of episodic flooding on the net ecosystem CO₂ exchange of a supratidal wetland in the Yellow River Delta

ARTICLE in JOURNAL OF GEOPHYSICAL RESEARCH: BIOGEOSCIENCES - JULY 2015

Impact Factor: 3.44 · DOI: 10.1002/2015JG002923

9 AUTHORS, INCLUDING:

Guangxuan Han
Chinese Academy of Sciences
28 PUBLICATIONS 240 CITATIONS

Dejun Li
Chinese Academy of Sciences
78 PUBLICATIONS 914 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Dejun Li
Retrieved on: 22 March 2016
Effects of episodic flooding on the net ecosystem \(\text{CO}_2 \) exchange of a supratidal wetland in the Yellow River Delta

Guangxuan Han\(^1\), Xiaojing Chu\(^1\), Qinghui Xing\(^1\), Dejun Li\(^2\), Junbao Yu\(^1\), Yiqi Luo\(^3\), Guangmei Wang\(^1\), Peili Mao\(^1\), and Rashad Rafique\(^4\)

\(^1\)Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China, \(^2\)Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China, \(^3\)Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA, \(^4\)Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, Maryland, USA

Abstract

Episodic flooding due to intense rainfall events is characteristic in many wetlands, which may modify wetland-atmosphere exchange of \(\text{CO}_2 \). However, the degree to which episodic flooding affects net ecosystem \(\text{CO}_2 \) exchange (NEE) is poorly documented in supratidal wetlands of coastal zone, where rainfall-driven episodic flooding often occurs. To address this issue, the ecosystem \(\text{CO}_2 \) fluxes were continuously measured using the eddy covariance technique for 4 years (2010–2013) in a supratidal wetland in the Yellow River Delta. Our results showed that over the growing season, the daily average uptake in the supratidal wetland was \(-1.4, -1.3, -1.0, \text{and} -1.3 \text{g C m}^{-2} \text{d}^{-1}\) for 2010, 2011, 2012, and 2013, respectively. On the annual scale, the supratidal wetland functioned as a strong sink for atmospheric \(\text{CO}_2 \), with the annual NEE of \(-223, -164, \text{and} -247 \text{g C m}^{-2} \text{yr}^{-1}\) for 2011, 2012, and 2013, respectively. The mean diurnal pattern of NEE exhibited a smaller range of variation before episodic flooding than after it. Episodic flooding reduced the average daytime \(\text{CO}_2 \) uptake and the maximum rates of photosynthesis. In addition, flooding clearly suppressed the nighttime \(\text{CO}_2 \) release from the wetland but increased its temperature sensitivity. Therefore, effects of episodic flooding on the direction and magnitude of NEE should be considered when predicting the ecosystem responses to future climate change in supratidal wetlands.

1. Introduction

Wetlands are widely recognized as one of the biggest unknowns regarding carbon dynamics and fluxes under climate change [Paul et al., 2006; Bonneville et al., 2008; Erwin, 2009]. Global climate change is predicted to increase the likelihood of potential changes in wetland ecosystem structure and function [Millennium Ecosystem Assessment, 2005], which in turn may change the carbon sink-source status of wetlands [Aurela et al., 2004; Syed et al., 2006]. As one of the most sensitive and vulnerable ecosystems to climate change [Millennium Ecosystem Assessment, 2005; Bonneville et al., 2008; Erwin, 2009], wetlands also potentially pose a great feedback to future climate change because of their large soil carbon pools [Mitsch and Gosselink, 2007; Mitsch et al., 2013]. Therefore, continuous, long-term field measurements of wetland-atmosphere carbon exchange are essential, as change in wetland hydrology or weather conditions will strongly affect carbon dynamics in these ecosystems under climate change [Bonneville et al., 2008; Jimenez et al., 2012].

The net ecosystem \(\text{CO}_2 \) exchange (NEE), the net result of the competing processes of gross primary production (GPP) and ecosystem respiration (\(\text{R}_{\text{ec}} \)), is a key measure used to examine the impact of meteorological variability on ecosystem carbon balance [Teklemariam et al., 2010]. The micrometeorological eddy covariance (EC) technique has been widely used for quantifying NEE between the atmosphere and plant canopies in various wetland ecosystems, since it can provide continuous, long-term flux information integrated at the ecosystem scale [Baldocchi, 2003; Urbanski et al., 2007]. At the end of the 1990s, some long-term \(\text{CO}_2 \) flux measurements using eddy covariance methods were started on wetlands [Lafleur et al., 2003; Aurela et al., 2004]. To date, eddy covariance measurements have been conducted to understand the carbon cycle in different wetland types, especially in peatlands, alpine wetlands, and tundra wetlands [e.g., Yurova et al., 2007; Sulman et al., 2010; Hao et al., 2011; Kang et al., 2014]. Depending on the wetland’s chemical, biological, and physical characteristics, the NEE in the wetland varies substantially in space and...
Thus, taking into account the diversity of wetland ecosystems, more studies should be conducted to include different wetland types in different climatic conditions [Aurela et al., 2007]. However, there has been relatively few direct measurement of CO2 exchange between coastal wetlands and the atmosphere at the ecosystem scale, regardless of their importance in balancing the global carbon budget [Zhou et al., 2009; Moffett et al., 2010; Han et al., 2014b; Xie et al., 2014].

The Yellow River Delta is one of the most active regions of land-ocean interaction among the large river deltas in the world. The interaction between fresh surface water, saline groundwater, and seawater in the Yellow River Delta has produced a variety of wetland types, plant communities, and ecological functions under different hydrological regimes [Cui et al., 2009; Fan et al., 2012]. The supratidal wetlands of the Yellow River Delta lie beyond the reach of the tides, and their hydrologic regimes are dominated by the interaction of precipitation, a shallow and saline water table, and marine sediments [Yang et al., 2009; Zhang et al., 2011]. During dry seasons, driven by strong evaporation, water-soluble salts from the groundwater are transported upward to the root zone and soil surface through capillary rise [Yao and Yang, 2010; Zhang et al., 2011]. Consequently, most of the natural vegetation of the supratidal wetlands consists of salt tolerant herbs, grasses, and shrubs [Han et al., 2014a]. However, during rainy season (from June to August), the episodic flooding is often observed, following heavy rainfall events [Han et al., 2014a]. During the rainfall-driven episodic flooding, wetland water levels do not typically exceed 20 cm because much of the region is flat and there are many canals and ditches. Therefore, in supratidal zones of the Yellow River Delta, wetlands can become dry for long periods of time but can also experience short periods of rainfall-driven flooding lasting 1–2 months.

Figure 1. A schematic diagram illustrating the effect of flooding on the ecosystem CO2 exchange in a wetland, including photosynthesis (gross primary production, GPP) and ecosystem respiration (i.e., the sum of autotrophic and heterotrophic respiration). NEE, net ecosystem CO2 exchange, is the net result of the competing processes of GPP and ecosystem respiration. Flooding conditions may directly or indirectly affect the ecosystem CO2 exchange by changing O2 availability in soil, CO2 diffusion in water column, and effective photosynthetic leaf area, which subsequently affect NEE in a wetland.

Episodic flooding conditions may directly or indirectly affect the uptake of CO2 during photosynthesis (GPP) and the emissions of CO2 via respiration as well as decomposition (R_{eco}) in several different aspects, which subsequently affect NEE in wetlands (Figure 1). On the one hand, when wetlands are inundated, the effective photosynthetic leaf area may be reduced as some plant leaves are submerged [Schedlbauer et al., 2010; Jimenez et al., 2012]. On the other hand, flooding causes displacement of gases when soil pores are filled with water, and soil hypoxia or anoxia can decrease overall plant metabolic activity and force stomatal closure and transpiration cessation, which affect plant photosynthesis and autotrophic respiration [Banach et al., 2009; Dušek et al., 2009; Moffett et al., 2010; Schedlbauer et al., 2010]. Furthermore, as soils become waterlogged, the saturation of surface soils limits the diffusion of oxygen into the wetlands, which limits microbial activity and decomposition rates of soil organic matter, leading to decrease in heterotrophic respiration [Chivers et al., 2009; Jimenez et al., 2012]. In addition, flooding conditions affect the sensitivity of CO2 exchange to variation in light and temperature, which, in turn, influence the uptake of CO2 in wetlands [Polley et al., 2008; Chivers et al., 2009]. The influence of flooding on CO2 exchange is largely dependent on its characteristics (depth, frequency, duration, and starting date) in different wetland ecosystems [e.g., Riutta et al., 2007; Kathilankal et al., 2008; Dušek et al., 2009; Pelletier et al., 2011; Jimenez et al., 2012; Ballantyne et al., 2014]. It has been projected time [Bonneville et al., 2008]. Thus, taking into account the diversity of wetland ecosystems, more studies should be conducted to include different wetland types in different climatic conditions [Aurela et al., 2007]. However, there has been relatively few direct measurement of CO2 exchange between coastal wetlands and the atmosphere at the ecosystem scale, regardless of their importance in balancing the global carbon budget [Zhou et al., 2009; Moffett et al., 2010; Han et al., 2014b; Xie et al., 2014].
that the frequency and intensity of heavy rainfall will increase under future climate change. As a result, precipitation-generated local flooding will increase in future [Kundzewicz et al., 2014]. Therefore, further information on the effects of rainfall-driven episodic floods on CO₂ exchange in wetlands becomes even more important in the context of global climate change [Dušek et al., 2009]. Such information is important not only for improving our knowledge on the mechanisms that control the CO₂ fluxes in wetlands but also for predicting possible impacts of climate change [Aires et al., 2008].

The rainfall-driven episodic inundation provided the opportunity to evaluate the response of net ecosystem CO₂ exchange to flooding stress. However, compared with the intertidal wetlands, the flooding in supratidal wetlands is not predictable. Transient floods in this area occur very quickly and with little warning due to intense rainfall events and shallow water tables, which increases the difficulty of collecting field data on wetland-atmosphere exchange during specific flood events [Moffett et al., 2010]. In order to evaluate the effect of rainfall-driven episodic flooding on the magnitude of NEE and its light and temperature response in the supratidal wetlands, we selected two adjacent periods, before and after flooding, each period including 10 days. We expected that episodic flooding affected NEE by altering GPP and ecosystem respiration. Based on a 4 year record (2010–2013) of CO₂ fluxes measured over a supratidal wetland in the Yellow River Delta, our objectives are (1) to characterize seasonal and interannual variations of NEE of the ecosystem and (2) to illustrate how the magnitude of NEE and its light and temperature response changed before and after episodic flooding over the 4 years.

2. Materials and Methods

2.1. Study Site

The Yellow River Delta, one of the largest deltas in China, is located in the southern bank of the Bohai Sea and the western Laizhou Bay. The evolution of the Yellow River Delta is influenced by the river discharge, suspended sediment load, changes of the river channel, and seawater intrusion [Li et al., 2009]. Due to the low elevation (generally below 10 m) and being near the sea, the hydrological characteristics in the Yellow River Delta are affected by the interactions between freshwater and seawater and between groundwater and surface water [Cui et al., 2009]. The groundwater table in this region is shallow with an average depth of 1.1 m [Fan et al., 2012], with a high level of groundwater mineralization averaging 30.1 g L⁻¹ [Yang et al., 2009].

It has a warm-temperate and continental monsoon climate with distinctive seasons and distribution of rain and heat. The annual average temperature is 12.9°C, with minimum and maximum mean daily temperatures of −2.8°C in January and 26.7°C in July, respectively. The average annual precipitation is 560 mm, and about 74% is concentrated in the period of June to September. Annual average evaporation from water surface is 1962 mm, and the ratio of annual potential evaporation to precipitation is about 3.6:1. Large amounts of sand and sediment carried by the Yellow River have produced alternate depositional layers of sand and clay. The Yellow River Delta is covered mainly by extensive coverage of saline and wet soils.

The area of episodic waterlogged wetlands (i.e., heavily saline-alkalized wetlands) include Phragmites australis marshes, woodlands, shrub wetlands, and wet meadows [Cui et al., 2009]. The study was conducted in a supratidal wetland located on the Research Station of Coastal Wetland in the Yellow River Delta (37°45′24″N, 118°59′24″E), Chinese Academy of Sciences. The terrain of the station is quite flat with a sufficient fetch to meet the basic assumption for proper application of the EC technique. The vegetation is relatively homogeneous and strongly dominated by common reed (Phragmites australis), with other associated species including Suaeda salsa, Tamarix chinensis, Imperata cylindrical, and Tripolium vulgare. Phragmites australis usually bud around mid-April, head in mid-August, bloom around mid-September, and begin withering during early October. The maximum canopy height at the peak of the growing season (early July to mid-August) can reach up to 1.7 m, and the closure index was between 0.3 and 0.8. The growing season of the supratidal wetland ecosystem spans from May to October.

2.2. Eddy Covariance Measurements

Fluxes of CO₂ and water vapor (H₂O) between the supratidal wetland and the atmosphere were continuously measured using the EC methods [Baldocchi, 2003] from May 2010 to December 2013, including four growing seasons. The open-path EC system was mounted on the tower at a height of 2.8 m, and fetch length from all
directions was more than 300 m. More details about the measurement system are presented elsewhere [Han et al., 2014b]. The densities of CO₂ and H₂O were measured by an open-path infrared gas analyzer (IRGA, LI-7500, LI-COR Inc., USA), and the three wind components and the speed of sound were measured with a three-axis sonic anemometer (CSAT-3, Campbell Scientific Inc., USA). Raw data outputs from the IRGA and sonic anemometer were collected at 10 Hz and recorded by a data logger (CR1000, Campbell Scientific Inc., USA) at 30 min intervals. The IRGA was calibrated once or twice every year in the laboratory using pure nitrogen gas, CO₂ calibration gas, and a dew point generator (LI-610, LI-COR Inc., USA).

2.3. Meteorological Measurements

Continuous complementary measurements included standard meteorological and soil parameters around the flux tower. Net radiation was measured at a height of 3.0 m with a four-component net radiometer (CNR4, Kipp & Zonen USA Inc., Bohemia, NY, USA). Photosynthetically active radiation (PAR) was measured above the canopy at a height of 3.0 m using quantum sensors (LI-190SB, LI-COR Inc., USA). Air temperature and relative humidity were measured at the height of 2.5 m with a humidity and temperature probe (HMP45C, Vaisala, Helsinki, Finland). Wind speed and direction were measured at a height of 2.5 m with a propeller anemometer (034B, Campbell Scientific Inc., USA). Precipitation was measured with a tipping bucket rain gauge (TES25, Texas Electronics, Texas, USA). Soil volumetric water content was measured by time domain reflectometry probes (EnviroSMART SDI-12, Sentek Pty Ltd., USA) at seven depths (5 cm, 10 cm, 20 cm, 40 cm, 60 cm, 80 cm, and 100 cm). Soil temperature was measured at depths of 5, 10, 20, 30, and 50 cm using thermistors (109SS, Campbell Scientific Inc., USA). All meteorological data were monitored every 15 s and then averaged half hourly by a data logger (CR1000, Campbell Scientific Inc., USA).

2.4. Flux Data Processing and Quality Control

Raw data were processed using the postprocessing software EdiRe (University of Edinburg, Scotland) to determine net ecosystem CO₂ exchange with an averaged half hourly period. Corrections were made according to standard methods including despiking, coordinate rotation, time lag corrections, and air density corrections [Webb et al., 1980; Kosugi et al., 2008; Schedlbauer et al., 2010]. If the number of spikes or out-of-range data exceeded 1% of the total number of data points for each element, then the 30 min flux data samples were considered to be invalid [Kosugi et al., 2008]. A Webb-Pearman-Leuning correction for the effect of air density fluctuations [Webb et al., 1980] was applied. Furthermore, faked flux due to warming of IRGA at low temperature was also corrected for half-hour NEE data [Yan et al., 2010]. Subsequently, quality filtering was applied to eliminate half-hour flux data resulting from systematic errors according to the following rejection criteria: (1) incomplete half-hour measurements during system calibration or maintenance [Jimenez et al., 2012]; (2) excessive spikes in the sonic and IRGA data [Schedlbauer et al., 2010]; (3) precipitation, condensation, or bird fouling on the IRGA or sonic anemometer [Lei and Yang, 2010; Schedlbauer et al., 2010; Jimenez et al., 2012]; (4) biologically impossible values of NEE for the reed wetlands ([|NEE| > 60 μmol CO₂ m⁻² s⁻¹]) [Zhou et al., 2009; Han et al., 2014b]; and (5) the flux data under nocturnal low atmospheric turbulence conditions were excluded based on friction velocity (u*).

The eddy covariance technique has been recognized to underestimate the flux under low atmospheric turbulence conditions during the night [Aires et al., 2008; Lei and Yang, 2010; Schedlbauer et al., 2010]. We determined the u* threshold using the method described by Schedlbauer et al. [2010]. The nighttime fluxes measured below u* values of 0.15 m s⁻¹ were underestimated, so all half hourly NEE data with u* ≤ 0.15 m s⁻¹ were rejected from the data sets. Negative nighttime CO₂ fluxes were also removed from the data sets. After this filtering process, the remaining data set performed the tests for stationarity and integral turbulent characteristics to detect unfavorable data [Kaimal and Finnigan, 1994; Foken and Wichura, 1996]. Following these screenings and tests, roughly 43% of the data obtained from the EC system was rejected during the whole study period. By convention, negative and positive NEE values represent sinks and sources of atmospheric CO₂, respectively.

2.5. Flux Gap Filling and Partitioning

In order to provide estimates for the balance of NEE, the data gaps were filled with the following procedure [Lafluer et al., 2003; Sagerfors et al., 2008; Dušek et al., 2009; Hao et al., 2011; Han et al., 2014b]. Small gaps (< 2 h) were filled by linear interpolation using the neighboring measurements. For large gaps (≥ 2 h), the
missing NEE data were filled based on empirical models separately for daytime and nighttime data. Gap-filled half hourly fluxes were used to obtain an estimation of daily, monthly, and annual sums. When PAR was ≥10 μmol m⁻² s⁻¹, the missing daytime NEE data during the growing season were gap filled using the Michaelis-Menten model [Falge et al., 2001], with an independent 10 day window:

$$\text{NEE} = \frac{A_{\max} \alpha \text{PAR}}{A_{\max} + \alpha \text{PAR}} + R_{\text{eco, day}}$$ \hspace{1cm} (1)

where the coefficient α is the apparent quantum yield (μmol CO₂ μmol⁻¹ photon), A_{\max} is the light-saturated net CO₂ exchange (μmol CO₂ m⁻² s⁻¹), $R_{\text{eco, day}}$ is the daytime ecosystem respiration (μmol CO₂ m⁻² s⁻¹), and PAR is the photosynthetically active radiation (μmol m⁻² s⁻¹).

When PAR was <10 μmol m⁻² s⁻¹, the missing nighttime NEE (i.e., nighttime ecosystem respiration, $R_{\text{eco, night}}$) was filled using the van’t Hoff empirical exponential function [Lloyd and Taylor, 1994]:

$$R_{\text{eco, night}} = R_{10} Q_{10}^{(T-10)/10}$$ \hspace{1cm} (2)

where R_{10} is the ecosystem respiration at a reference temperature of 10°C; T is the air or soil temperature (°C); and Q_{10}, the temperature sensitivity coefficient, is the rate of change in respiration for every 10°C. Correlation analysis revealed that ecosystem respiration was more significantly related to air temperature than soil temperature (data not shown). Thus, we only used the data of air temperature to investigate the influence of temperature on ecosystem respiration. The CO₂ fluxes measured with the EC technique represent NEE, which is the result of gross primary production (GPP) and ecosystem respiration (R_{eco}). So the value of GPP can be calculated as the difference between R_{eco} and NEE [Jacobs et al., 2007; Schedlbauer et al., 2010]:

$$\text{GPP} = R_{\text{eco}} - \text{NEE}$$ \hspace{1cm} (3)

Daily R_{eco} is the sum of daytime ecosystem respiration ($R_{\text{eco, day}}$) and the nighttime ecosystem respiration ($R_{\text{eco, night}}$):

$$R_{\text{eco}} = R_{\text{eco, day}} + R_{\text{eco, night}}$$ \hspace{1cm} (4)

Based on the assumption that $R_{\text{eco, day}}$ was of similar magnitude and responsiveness as $R_{\text{eco, night}}$, $R_{\text{eco, day}}$ was estimated by the extrapolation of the function relationship (equation (2)) developed for nighttime periods [Lei and Yang, 2010; Schedlbauer et al., 2010].

2.6. Aboveground Biomass and Leaf Area Index

Aboveground biomass for the supratidal wetland was measured by harvesting the vegetation approximately every 2 weeks throughout the vegetative growth period (May–October) from 2011 to 2013. The sampling plot was 0.5 m × 0.5 m, and five replicates were taken on each measurement day. Live plants were clipped at 1 cm above the ground level. Plant aboveground biomass was oven dried for 48 h at 80°C before weighing. During the vegetative growth period from 2010 to 2013, the leaf area index (LAI) of the dominant species was also indirectly estimated at 2 week intervals in each plot using a portable meter (LI-2000, Li-COR, Inc., USA).

2.7. Statistical Analysis

Michaelis-Menten model was used to describe the relationships between daytime NEE and PAR, and exponential regression analysis was used to examine the relationships between nighttime NEE (R_{eco}) and air temperature. In order to analyze the effect of flooding on NEE, we selected four paired periods (before and after flooding, each period including 10 days). A two-tailed two-sample t test was used to test the significant differences in the magnitude of NEE, response of NEE to light (α, A_{\max}, and $R_{\text{eco, day}}$), and response of R_{eco} to air temperature (R_{10} and Q_{10}) before and after episodic flooding over the 4 years. In all tests, a significance level of $P = 0.05$ was used.

3. Results

3.1. Meteorology, Aboveground Biomass, and LAI

Figure 2 shows the variation of the major meteorological conditions and plant parameters over the course of the study. Average daily R_n was 107.3, 115.0, and 113.1 W m⁻² for 2011, 2012, and 2013, respectively. Average
daily R_n during the growth period (May to October) followed a similar trend with means 130.8, 136.6, 146.7, and 143.9 W m$^{-2}$ in the years of 2010, 2011, 2012, and 2013, respectively. The air temperature in each year showed single-peak variation, and daily average air temperature ranged from -10.9°C in January 2013 to 31.6°C in July 2010 (Figure 2b). The air temperature during growing season followed a similar trend with means 21.4, 21.1, 21.8, and 21.9°C, for 2010, 2011, 2012, and 2013, respectively, which were near the 30 year (1978-2008) average (\pm standard deviation) (21.9 \pm 1.6°C).

Precipitation was the environmental factor that differed markedly in study years due to both the amount and pattern of rain (Figure 2c). For example, precipitation in July of 2013 (384 mm) was 239% of the long-term average of 160 mm, but its precipitation in August (39 mm) was only about 30% of normal value of 134 mm. The total precipitation received during the growing season months in 2011 (496 mm) and 2012 (506 mm) were within one standard deviation of the 30 year average (\pm standard deviation) (486 \pm 26 mm), whereas values in 2010 (433 mm) and 2013 (434 mm) were lower than the 30 year average precipitation. The variation in precipitation pattern resulted in seasonal and interannual variability in soil water content and episodic flooding (Figure 2c). Soil moisture (soil volumetric water content, SWC) presented a maximum in summer and a minimum in winter. With the onset of the rainy season at the end of June, soil moisture reached values constantly above 42%. Then a subsequent rain pulse that occurred in July and August led to episodic flooding in the wetland, and the flooding duration lasted varied 1–2 months in each study year (Figure 2c).

Aboveground biomass and LAI are primarily dependent on seasonal fluctuations in temperature and precipitation time and quantity (Figure 2d). The value of aboveground biomass increased rapidly in May and
reached a maximum between August and September, followed by a gradual decline as the wetland senesced during October and November (Figure 2d). The seasonal peak value of aboveground biomass was 425 ± 25 g C m⁻² in late September of 2011, 604 ± 33 g C m⁻² in mid-September of 2012, while in 2013 the peak was 636 ± 46 g C m⁻² in early August. Values of LAI across years showed a very similar seasonal response. The LAI was low in winter and spring, then increased during plant green-up in May to a peak in July or August, and then decreased as plants senesced in autumn. In addition, periods of peak LAI differed slightly among years but generally occurred during the mid-July to late-August period. Maximum values of LAI were 0.66, 0.67, 0.57, and 0.61 in 2010, 2011, 2012, and 2013, respectively. In the study years, the peak of LAI was about a month earlier than the peak of aboveground biomass.

3.2. Seasonal and Interannual Variations of Ecosystem CO₂ Exchange

The courses of ecosystem CO₂ fluxes (Figures 3a–3c) showed significant seasonal variations, with a net sink of CO₂ during the growing season (May–October) and a net source of CO₂ for the remainder of the year (November–April), which were closely related to meteorological conditions and vegetation phenology. In each year, both GPP and \(R_{eco} \) showed an asymmetric bell shape.

Daily values for NEE over the course of the study ranged from an uptake of \(-7.0 \text{ g C m}^{-2} \text{ d}^{-1}\) in late June of 2013 to a loss of \(2.4 \text{ g C m}^{-2} \text{ d}^{-1}\) in late July of 2012. During the early growing season (from late April to early May), with the seed germination and increasing leaf area deployment (Figure 2d), GPP and \(R_{eco} \) increased
gradually, the wetland ecosystem became a daily carbon sink (negative NEE) as rates of photosynthesis become greater than respiration rates. During the main growing season (from mid-May to early October), GPP and R_{eco} increased steadily, with an increasing dominance of GPP over R_{eco} (Figures 3a and 3b). As a consequence, daily NEE was high negative value (a net carbon sink) and remained negative until November (Figure 3c). In that period, the values of NEE reached their maximum of $4.3 \text{ g C m}^{-2} \text{ d}^{-1}$ in mid-July of 2010, $5.4 \text{ g C m}^{-2} \text{ d}^{-1}$ in late August of 2011, $4.4 \text{ g C m}^{-2} \text{ d}^{-1}$ in late June of 2012, and $7.0 \text{ g C m}^{-2} \text{ d}^{-1}$ in late June of 2013, respectively. The maximum daily values of R_{eco} did not correspond to the days with the peak GPP but lagged several days instead, occurring later after the highest GPP values with the evolution of temperature. In addition, very small values of NEE appeared occasionally from July to September, which always occurred during rainy or cloudy days with low PAR. At the end of the senescence of vegetation, GPP and R_{eco} gradually decreased, following the reductions in R_n and T_{air} (Figures 2a and 2b) and the decrease of LAI of the vegetation (Figure 2d).

Overall, the daily average uptake over the growing season in the supratidal wetland was 1.4, 1.3, 1.0, and $1.3 \text{ g C m}^{-2} \text{ d}^{-1}$ for 2010, 2011, 2012, and 2013, respectively. On the annual scale, the cumulative GPP, R_{eco}, and NEE in all 3 years (2011–2013) showed a high variation (Figure 3d). The annual cumulative NEE were $-223, -164, \text{ and } -247 \text{ g C m}^{-2}$ for 2011, 2012, and 2013, respectively. Those for annual GPP were $653, 772, \text{ and } 1004 \text{ g C m}^{-2}$ for 2011, 2012, and 2013, respectively; for annual R_{eco}, they were $430, 608, \text{ and } 757 \text{ g C m}^{-2}$ for 2011, 2012, and 2013, respectively.

3.3. Effect of Episodic Flooding on the Magnitude of NEE

Figure 4 shows the impact of episodic flooding on the diurnal pattern of NEE averaged over 10 day periods before and after flooding in 2011 and 2012, respectively. For both years, the mean diurnal patterns of measured NEE before and after flooding were very similar in shape but varied substantially in amplitude (Figures 4a and 4b). Average NEE after flooding exhibited a smaller range of variation than that before flooding, with net carbon loss during the nighttime and net carbon uptake during the daytime. In 2011, nighttime NEE
The impact of the episodic flooding on the response of ecosystem respiration (R_{eco}) to air temperature in the supratidal wetland from 2010 to 2013 (Figure 6 and Table 2). R_{eco} was positively related to air temperature. We also compared the effect of the episodic flooding on the response of ecosystem respiration (R_{eco}) to air temperature in the supratidal wetland from 2010 to 2013 (Figure 6 and Table 2). R_{eco} was positively related to
air temperature and could be expressed by the exponential function for both before- and after-flooding periods in all study years ($P < 0.01$). The temperature sensitivity coefficient R_{10} before flooding (2.2) was significantly greater ($P < 0.01$) than that after flooding (0.7), indicating the episodic flooding decreasing the basal respiration of a supratidal wetland. However, the temperature sensitivity coefficient Q_{10} before flooding (1.5) was significantly lower ($P < 0.01$) than that after flooding (2.6). Comparison of Q_{10} under two conditions suggests that the episodic flooding increased Q_{10} of ecosystem respiration in a supratidal wetland. Thus, the ecosystem respiration after flooding was more sensitive to the change of air temperature than that before flooding.

Table 1. Comparison of Coefficients α, A_{max}, and $R_{\text{eco, day}}$ Estimated Using Equation (1) and Their Paired Sample t-Test Before and After Flooding in a Supratidal Wetland Over the Period of 2010–2013 in a Supratidal Wetland

<table>
<thead>
<tr>
<th>Year</th>
<th>α (μmol μmol$^{-1}$) Before Flooding</th>
<th>A_{max} (μmol CO$_2$ m$^{-2}$ s$^{-1}$) Before Flooding</th>
<th>$R_{\text{eco, day}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) Before Flooding</th>
<th>$R_{\text{eco, day}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) After Flooding</th>
<th>$R_{\text{eco, day}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) Before Flooding</th>
<th>$R_{\text{eco, day}}$ (μmol CO$_2$ m$^{-2}$ s$^{-1}$) After Flooding</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0.099 ± 0.030</td>
<td>33.8 ± 2.1</td>
<td>12.0 ± 3.2</td>
<td>0.74</td>
<td>0.099 ± 0.030</td>
<td>0.061 ± 0.032</td>
<td>7.3 ± 3.5</td>
</tr>
<tr>
<td>2011</td>
<td>0.107 ± 0.052</td>
<td>23.1 ± 2.8</td>
<td>10.2 ± 3.5</td>
<td>0.62</td>
<td>0.107 ± 0.052</td>
<td>0.048 ± 0.021</td>
<td>5.2 ± 2.1</td>
</tr>
<tr>
<td>2012</td>
<td>0.033 ± 0.013</td>
<td>20.6 ± 1.4</td>
<td>5.6 ± 1.8</td>
<td>0.54</td>
<td>0.033 ± 0.013</td>
<td>0.047 ± 0.024</td>
<td>5.2 ± 2.2</td>
</tr>
<tr>
<td>2013</td>
<td>0.073 ± 0.024</td>
<td>32.3 ± 1.6</td>
<td>9.5 ± 2.6</td>
<td>0.72</td>
<td>0.073 ± 0.024</td>
<td>0.075 ± 0.035</td>
<td>8.1 ± 3.3</td>
</tr>
<tr>
<td>Mean</td>
<td>0.078 ± 0.033</td>
<td>27.4 ± 6.6</td>
<td>9.3 ± 2.7</td>
<td>0.72</td>
<td>0.078 ± 0.033</td>
<td>0.058 ± 0.013</td>
<td>6.4 ± 1.5</td>
</tr>
</tbody>
</table>

α is the ecosystem apparent quantum yield, A_{max} is the ecosystem light-saturated net CO$_2$ exchange, $R_{\text{eco, day}}$ is the ecosystem respiration in the daytime estimated from the NEE-PAR response curve, n is the number of observations, and R^2 is the coefficient of determination. Values of coefficients represent the mean ±SE.

$^bP < 0.05$, t test; $^{c}P < 0.01$, t test.

Figure 6. Comparison of the temperature-response curves for nighttime NEE (ecosystem respiration, R_{eco}) during the before-flooding (closed circles) and after-flooding (open circles) periods in 2010, 2011, 2012, and 2013. Each before-flooding and after-flooding periods include 10 days. The curves were fitted using equation (2), and the regression coefficients are presented in Table 2.
Table 2. Values of Coefficients R_{10} and Q_{10} of the Equation $[R_{\text{eco,night}} = R_{10}Q_{10} (T-10)/10]$ and Their Paired Sample t Test Before and After Flooding Over the Period of 2010–2013 in a Supratidal Wetland of the Yellow River Delta, China

<table>
<thead>
<tr>
<th>Year</th>
<th>Before Flooding</th>
<th>After Flooding</th>
<th>R_{10}</th>
<th>Before Flooding</th>
<th>After Flooding</th>
<th>Q_{10}</th>
<th>Before Flooding</th>
<th>After Flooding</th>
<th>R^2</th>
<th>Before Flooding</th>
<th>After Flooding</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2.05</td>
<td>0.71</td>
<td>1.46</td>
<td>2.86</td>
<td>0.14</td>
<td>0.25</td>
<td>0.39</td>
<td>0.001</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>1.86</td>
<td>0.48</td>
<td>1.56</td>
<td>2.80</td>
<td>0.14</td>
<td>0.53</td>
<td>0.14</td>
<td>0.001</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>2.39</td>
<td>0.64</td>
<td>1.51</td>
<td>2.46</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.001</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>2.65</td>
<td>0.97</td>
<td>1.46</td>
<td>2.44</td>
<td>0.14</td>
<td>0.28</td>
<td>0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2.22</td>
<td>0.71</td>
<td>1.50</td>
<td>2.64</td>
<td>0.14</td>
<td>0.28</td>
<td>0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

t test Before and After Flooding Over the Period of 2010–2013 in a Supratidal Wetland of the Yellow River Delta, China

- $P < 0.05$, t test.
- $P < 0.01$, t test.

4. Discussion

4.1. Annual Ecosystem CO$_2$ Budget

In the supratidal wetland, the annual NEE budgets between $–164$ and $–247$ g C m$^{-2}$ yr$^{-1}$ are in accordance with the results of earlier studies, showing most wetland ecosystems acting as a net uptake of CO$_2$ (Table 3). The annual net uptake of CO$_2$ of the supratidal wetland is comparable to values reported for temperate cattail marsh [Bonneville et al., 2008] and temperate sedge-grass marsh [Dušek et al., 2009]. In addition, the carbon budgets determined in this study are higher than the average net annual uptake of a tidal wetland (65 g C m$^{-2}$ yr$^{-1}$) in northeast China [Zhou et al., 2009] and lower than that of an estuary wetland (639 g C m$^{-2}$ yr$^{-1}$) in the Yangtze River estuary of China [Yan et al., 2010]. The differences in annual NEE between locations might be attributable to climatic conditions, hydrologic regime (e.g., flood magnitude, duration, frequency, and timing), nutrient availability, and vegetation [Law et al., 2001; Kathilankal et al., 2008; Dušek et al., 2009; Zhou et al., 2009]. Based on recent literature on carbon storage and fluxes within freshwater wetlands, Kayranli et al. [2010] indicate that wetlands can be both sources and sinks of carbon, depending on their age, operation, and the environmental boundary conditions such as location and climate. Across 11 different ecosystems types in sub-Saharan Africa, the maximum carbon assimilation rates were highly correlated with mean annual rainfall [Merbold et al., 2009]. Across 12 northern peatland and tundra sites in northern Europe and North America, annual GPP and NEE correlated significantly with LAI and pH [Lund et al., 2010]. However, by examining midsummer CO$_2$ fluxes measured above 7 northern peatlands, Humphreys et al. [2006] found that NEE was similar among most of the sites despite large differences in water table depth, water chemistry, and plant communities.

In addition, there was large interannual fluctuation in NEE in the supratidal wetland (Figure 3). Some studies have shown significant interannual variability in net CO$_2$ exchange in different wetland types. For example, in a freshwater marsh, the NEE over 5 years (1999–2003) demonstrated large interannual variability, ranging from $–251$ g C m$^{-2}$ yr$^{-1}$ in 2000 to 515 g C m$^{-2}$ yr$^{-1}$ in 2001 [Rocha and Goulden, 2008]. Interannual variations of the CO$_2$ balance in wetlands are likely related to the direct effects of climate variability [Aurela et al., 2004], plant phenology [Laffleur et al., 2003], water table position [Yurova et al., 2007; Ballantyne et al., 2014], and shifts in wetland production efficiency [Rocha and Goulden, 2008]. For example, in a subarctic fen the snowmelt timing is the most important single determinant of the annual carbon balance [Aurela et al., 2004]. A pronounced reduction in salt marsh-atmosphere CO$_2$ exchange during tidal flood events was in proportion to flood duration [Moffett et al., 2010]. However, in a freshwater marsh, interannual variation in carbon exchange resulted from shifts in the marsh’s production efficiency (net CO$_2$ exchange per LAI) that were not caused by changes in wetland hydrology or weather conditions [Rocha and Goulden, 2008]. Therefore, more long-term data sets are required to better determine the annual cycle and interannual variability in NEE and identify its controlling factors.

4.2. Episodic Flooding Controls on Ecosystem CO$_2$ Exchange

Our results show that episodic flooding conditions reduced daytime uptake rate of CO$_2$ (Figure 4c) and the maximum rates of photosynthesis (Table 1), maybe owing to reduced rates of photosynthetic carbon fixation. The same results have been found in a short-hydroperiod marsh [Schedlbauer et al., 2010], a temperate sedge-grass marsh [Dušek et al., 2009], and a freshwater marsh [Jimenez et al., 2012]. During flooding events, the
Table 3. Comparison of Ecosystem CO₂ Exchange Among Different Wetland Ecosystems Across the Globe²

<table>
<thead>
<tr>
<th>Wetland Types</th>
<th>Location</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Period of Observation</th>
<th>Annual Air Temperature (°C)</th>
<th>Annual Precipitation (mm)</th>
<th>NEE</th>
<th>GPP</th>
<th>(R_{eco})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperate sedge-grass marsh</td>
<td>South Bohemia, Czech Republic</td>
<td>49°01′</td>
<td>14°46′</td>
<td>2006</td>
<td>7.9</td>
<td>713</td>
<td>−199</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>9.1</td>
<td>586</td>
<td>−220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate cattail marsh</td>
<td>Ontario, Canada</td>
<td>45°24′</td>
<td>75°30′</td>
<td>2005–2006</td>
<td>7.6</td>
<td>896</td>
<td>−264</td>
<td>831</td>
<td>567</td>
</tr>
<tr>
<td>Freshwater tidal wetland</td>
<td>The Liaohai Delta, China</td>
<td>41°08′</td>
<td>121°54′</td>
<td>2005</td>
<td>8.3</td>
<td>631</td>
<td>−65</td>
<td>1257</td>
<td>1192</td>
</tr>
<tr>
<td>Flooded restored wetland (Old)</td>
<td>The Sacramento-San</td>
<td>38°06′</td>
<td>121°39′</td>
<td>2012–2013</td>
<td>15.6</td>
<td>278</td>
<td>−397</td>
<td>1506</td>
<td>1108</td>
</tr>
<tr>
<td>Flooded restored wetland (Young)</td>
<td>Joaquin Delta, USA</td>
<td>38°03′</td>
<td>121°45′</td>
<td>2012–2013</td>
<td>15</td>
<td>390</td>
<td>−368</td>
<td>2106</td>
<td>1834</td>
</tr>
<tr>
<td>Freshwater marsh</td>
<td>Southern California, USA</td>
<td>33°39′</td>
<td>117°51′</td>
<td>1999–2003</td>
<td>16.6</td>
<td>266</td>
<td>−251–515</td>
<td>1090–1639</td>
<td>1313–1632</td>
</tr>
<tr>
<td>Freshwater marsh</td>
<td>Everglades, USA</td>
<td>25°26′</td>
<td>80°35′</td>
<td>2006</td>
<td>23.7</td>
<td>1206</td>
<td>−78.8</td>
<td>468</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>1284</td>
<td>−11</td>
<td>456</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>Tropical peat swamp forest</td>
<td>Central Kalimantan, Indonesia</td>
<td>21°21′</td>
<td>114°12′</td>
<td>2002</td>
<td>26.7</td>
<td>1852</td>
<td>802</td>
<td>361</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25°33′</td>
<td>80°47′</td>
<td>2009</td>
<td>24.6</td>
<td>1090</td>
<td>−80</td>
<td>361</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>26.4</td>
<td>2292</td>
<td>802</td>
<td>361</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2004</td>
<td>25.9</td>
<td>2560</td>
<td>802</td>
<td>361</td>
<td>442</td>
</tr>
<tr>
<td>Supratidal wetland</td>
<td>The Yellow River Delta, China</td>
<td>37°46′</td>
<td>118°59′</td>
<td>2011</td>
<td>12</td>
<td>600</td>
<td>−223</td>
<td>653</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>12</td>
<td>615</td>
<td>−164</td>
<td>772</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td>12.1</td>
<td>634</td>
<td>−247</td>
<td>1004</td>
<td>757</td>
</tr>
</tbody>
</table>

²NEE, GPP, and \(R_{eco} \) in g C m⁻² yr⁻¹. NEP used where NEE unavailable.
On the one hand, when soil is inundated, the saturation of surface soils limits the diffusion of oxygen into the wetlands. Thus, lower O₂ availability and inhibition of aerobic respiration lead to lower CO₂ emissions [Jimenez et al., 2012; McNicol and Silver, 2014]. On the other hand, due to slow diffusion rate of CO₂ in water, the diffusive boundary layer resistance can limit rates of CO₂ emission through the surface water [Vogel, 1994]. Therefore, wetland inundation generally is expected to decrease CO₂ emissions to the atmosphere. However, previous studies also found that flooding had no marked effect on ecosystem respiration in some wetland ecosystems [Dušek et al., 2009; Tong et al., 2014] depending on site and vegetation characteristics [Chivers et al., 2009].

Episodic floods due to intense rainfall events are characteristic of many wetlands [Moffett et al., 2010]. Changes in rainfall frequency and intensity will significantly change periods of inundation, which may strongly affect carbon dynamics in these wetland ecosystems [Jimenez et al., 2012]. Variation in water level, flooding frequency, and duration can have multidimensional and synergistic effects on CO₂ exchange in wetlands, leading to a shift of carbon sink source [Riutta et al., 2007; Moffett et al., 2010; Jimenez et al., 2012; Ballantyne et al., 2014; Xie et al., 2014]. Furthermore, wetland microforms and vegetation composition also affect the response of CO₂ fluxes to flooding [Schedlbauer et al., 2010; Pelletier et al., 2011]. Therefore, it is necessary to carry out further measurements to assess the long-term effect of flooding on the wetland ecosystem CO₂ exchanges in this region.

5. Conclusions

This study demonstrated that episodic flooding reduced the average daytime net CO₂ uptake and the maximum rates of photosynthesis. In addition, flooding clearly suppressed the nighttime CO₂ release but increased its temperature sensitivity. These results emphasize that episodic flooding will modify the magnitude of NEE and its response to light and temperature in supratidal wetlands. However, in our study the effect of flooding on NEE was only observed during the four paired periods before and after flooding (each period including 10 days) and did not hold the entire flooding periods over 4 years. Additionally, surface water depth was not measured during the flooding periods. These limited data will increase the uncertainty about the effect of episodic flooding on NEE in the supratidal wetland. Moreover, flooding exerts disproportionate influence on export of dissolved and particulate organic carbon and especially CH₄ emission. Hence, further research and more continuous data sets of carbon exchange, wetland hydrology, and other environmental factors are needed to understand how carbon exchange respond to flooding and to assess the direction and magnitude of future carbon changes in supratidal wetlands.

References

Meinhold, L. et al. (2003), Precipitation as driver of carbon fluxes in a African ecosystem, Biogeosciences, 6, 1027–1041.
Riutta, T., J. Laine, and E. S. Tuttitt (2007), Sensitivity of CO2 exchange of fen ecosystem components to water level variation, Ecosystems, 10, 718–733.