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ABSTRACT: Polybrominated diphenyl ethers (PBDEs) have been shown to have
a disruptive effect on the thyroid hormone system, and one possible mechanism is
the direct binding of their hydroxylated metabolites (HO-PBDEs) to thyroid
hormone receptors (TRs). However, the experimental data on the thyroid hormone
activity of HO-PBDEs are limited, and the molecular interaction mechanism
remains unclear, impeding the ecological risk assessment for these widespread
contaminants. In the present research, a quantum chemical approach was developed
to predict the thyroid hormone activity of HO-PBDEs using the electronic structure
parameters of neutral molecules. The ab initio HF/6-31G** algorithm was
employed to optimize the molecular geometry and to calculate local molecular
parameters regarding effective energy and electron transfer amount. The
mechanistic analysis shows that the ability of the hydroxyl oxygen and hydrogen
atom to donate or accept additional electron charges is an important property
affecting the chemical activity of the thyroid hormone. The derived regression model was shown to have a good statistical
performance and could be used to predict the thyroid hormone activity of other HO-PBDE congeners for which experimental
measurements are not possible or are restricted. Therefore, the model has the potential to be a useful tool in the application of
integrated testing strategies.

■ INTRODUCTION

Polybrominated diphenyl ethers (PBDEs) were originally
designed as essentially inert flame retardants, and their entry
into the environment has resulted in widespread contamination
levels in abiotic and biotic categories.1−4 The endocrine
disruption effect of PBDEs has arisen in the past decade and
is currently of high concern.5,6 More recently, in vitro tests have
revealed that the metabolic conversion of PBDEs to
hydroxylated PBDEs (HO-PBDEs) appears to be a major
cause for their potency as endocrine disruptors.7,8 HO-PBDEs
have also been detected in samples of air,9 water, and
precipitation,10 algae and mussels,11 fish,12,13 birds,14 terrestrial
animals,15 and in human blood16 and breast milk.17 These
halogenated phenolic compounds could be produced from the
parent compounds (PBDEs) through interactions with the
hydroxyl group in the atmosphere18 and/or biotransformation
catalyzed by the active center of the P450 enzyme in
organisms.19 HO-PBDEs have received substantial attention
because of their severe biological effects.20

Because of the structural resemblance to thyroid hormones
(THs), HO-PBDEs could disturb the thyroid hormone
homeostasis of experimental animals21−23 and humans.5,24 In

vitro tests have indicated that one possible mechanism of HO-
PBDE interference with thyroid hormones is for the HO-
PBDEs to act as potent competitors for binding to transport
proteins such as transthyretin (TTR)25 and/or directly binding
to thyroid hormone receptors (TRs),26 thereby displacing the
natural ligand and changing the normal level of thyroid
hormones in the bloodstream, consequently disturbing thyroid
hormone homeostasis. Therefore, HO-PBDEs have attracted
increasing attention.27

TRs are members of the nuclear receptor superfamily that
functions in ligand-dependent transcription, and they play an
important role in the regulation of metabolism and heart rate as
well as in the development of organisms.28 TRs have two gene
expressions, TRα and TRβ, and TRβ mediates thyroid
hormone effects on liver and other tissues.29 In a previous
study, the hormone activities of 18 HO-PBDEs on human TRβ
were measured, and hydrogen bonding and electrostatic
interactions were revealed as critical molecular interactions
that led to the thyroid hormone activities of HO-PBDEs. These
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properties were revealed by employing molecular docking and
by developing the quantitative structure−activity relationship
(QSAR) model.20 Similar results were also obtained through
the ligand- and receptor-based 3D-QSAR models.30 However,
the model performance should be improved for predictive
applications, and further analysis for the mechanism of activity
is also required.
Quantum chemical descriptors are widely employed in

QSAR models because they can express the electronic and
geometric properties of molecules and their interactions that
account for the proposed mechanism of action.31 In this
research, a series of local molecular parameters calculated by ab
initio methodology is employed to develop a new quantum
chemical model to represent the interactions between TRβ and
HO-PBDEs. These descriptors were originally introduced by
Klamt32,33 and were successfully applied to the estimation of
the hydrogen bonding strength,34,35 a process observed
between the hydroxyl groups of HO-PBDEs and the amino
acid residues of TRβ, acting as a characteristic interaction for
the thyroid hormone activity of HO-PBDE molecules.20,30 In
addition, these parameters have also been shown capable of
addressing the electrostatic interactions,34,35 another important
molecular interaction that governs the activity of HO-PBDEs to
TRβ.20,30 Consequently, the local molecular descriptors are
expected to be capable of quantifying the electronic interactions
between HO-PBDEs and TRβ and to explain the activity
mechanism because of their explicit physicochemical meanings.
Site-specific reactivity extracts energy and electronic

information that reflects the local characteristics of a given
atomic site in the molecular environment.36−38 In this study,

the site-specific reactivity is calculated at the hydroxyl group,
which has been proven to be a critical site for binding of HO-
PBDEs with TRβ to exert their disrupting activity.20,30 The
statistical robustness and predictive ability of the derived model
is tested by two validation strategies, and outliers are diagnosed
by the Williams plot.

■ MATERIALS AND METHODS
Data Set and Chemical Structure. The experimental activity of

the thyroid hormone in terms of −log REC20 values (negative
logarithm of the relative effective concentration (REC) inducing 20%
of the maximum effect) was obtained from the literature.20 Eighteen
data points of −log REC20 values were measured by a recombinant
two-hybrid yeast assay at 30 °C. The molecular structures of all HO-
PBDEs are shown in Scheme 1, and the −log REC20 values are listed
in Table 1.

Local Molecular Descriptors. The energy-weighted donor energy
EEocc (Eref, r) quantifies the electron donating ability of a molecule at
atomic site r and can be taken as a generalized site-specific highest
occupied molecular orbital (HOMO) energy, with the following
formula:
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where the linear combination of atomic orbital−molecular orbital
(LCAO-MO) coefficient cμi represents the contribution of the μth AO

Scheme 1. Molecular Structures of the Selected 18 HO-PBDEs
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at center r to the ith MO. Thus, the actual contribution of a given MO
energy Ei to EEocc (Eref, r) is evaluated by the extent of the local
characteristics of the electron charge (pi) and the ratio of Ei to Eref.
Correspondingly, the energy-weighted acceptor energy EEvac (Eref, r) is
defined by unoccupied MO energies and characterizes the capability of
the molecule to accept additional electron charges at atomic site r.
Another local molecular parameter is the charge-limited donor

energy EQocc (q,r), which is defined as follows:

EQocc (q, r) is calculated as the weighted mean of the occupied
molecular orbital energies Ei. The calculation begins from the HOMO
and stops when the electron population pi at center r reaches a
predefined charge limit q. EQocc (q, r) approaches EHOMO when q is
close to zero and decreases with an increasing amount of charge
penetration depth q, which evokes an improvement of the localizability
of EQocc. Similarly, EQvac (q, r) is defined by unoccupied MOs,
characterizing the energy gain associated with accepting charge q at
atomic site r.
Complementary to these two descriptor pairs, energy-limited

donor/acceptor charge QEocc (ε, r) and QEvac (ε, r) are designed to
quantify the associated amount of charge released from or taken up at
site r with a given energy loss or gain. QEocc (ε, r) is calculated by the
following equation:
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The parameter ε is the energy penetration depth, which is used to
limit the summation over the charge contribution pi (r) of the highest
occupied MOs i of AOs μ located at site r. Small QEocc values indicate
that the atomic sites have low electron donor ability. Correspondingly,
the amount of accepted electron charge associated with the energy
gain ε is quantified by QEvac (ε, r), which is represented as follows:
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In addition, the n-octanol/water partition coefficient (log Kow) is
selected to characterize the partition of compounds between the
biophase and the aqueous phase, according to the previous study.20

Quantum Chemical Calculations. The geometries of all
molecules were optimized in their neutral electronic ground state in
the gas phase employing the ab initio HF/6-31G** algorithm, which is
implemented by the Gaussian 03 program package.39 Frequency
analysis was performed on the same basis set to validate the energetic
minima. Then, six local molecular descriptors (EEocc (Eref, r), EEvac
(Eref, r), EQocc (q, r), EQvac (q, r), QEocc (ε, r), and QEvac (ε, r)) were
calculated at the hydroxyl group sites of HO-PBDEs according to eqs
1−4. Reference energies (Eref

occ,Eref
vac), charge penetration depths (qocc,

qvac), and energy penetration depths (εocc, εvac) were optimized in a
stepwise manner toward the −log REC20 values. Furthermore, log Kow
values were calculated using the EPI Suite, version 4.1.40

Model Calibration. Multilinear regression (MLR) was performed
to calibrate the prediction model employing SPSS 17.0. Squared
correlation coefficient r2 and predictive squared correlation coefficient
q2 were calculated to evaluate the calibration and predictive
performance of the MLR model.41 Other statistical parameters, root-
mean-square error (rms), mean error (me), systematic error (bias),
maximum negative error (mne, largest underestimation), and
maximum positive error (mpe, largest overestimation), were also
calculated to further characterize the statistical performance.

Model Validation. The statistical robustness and predictive ability
of the developed model were evaluated using simulated external
validation and cross-validation. First, the entire data set was randomly
divided into a temporary training set (70% compounds) and a testing
set (30% compounds), both covering the −log REC20 value range and
descriptor space. Then, a new regression model was recalibrated based
on the 70% subset and was used to predict the −log REC20 values of
the 30% subset. The resulting r2 and q2 of the application revealed the
prediction ability, and together with rms, provided further information
about statistical robustness by comparing with r2 and rms for
recalibration (70% subset).

The second validation strategy is the leave-10%-out cross-validation.
The entire data set was divided into 10 equiv subsets by stratified
random selection. Then, nine subsets were used to develop a model
that is employed to predict the one remaining subset; this process is
repeated 10 times to ensure that every compound is evaluated. The
resulting q2 further represents the predictive ability and statistical
robustness.

Influential Compounds and Outliers. Compounds with extreme
descriptor values have a larger influence on the descriptor space and

Table 1. Experimental and Predicted −log REC20 Values and
the Calculated Descriptor Values Employed in Eq 6a

−log REC20

compds Exp. Pred.
QEocc

(−8.8 eV, O)
QEvac

(3.8 eV, H)
log
Kow

3′-HO-BDE-7 7.64 7.82 0.429 3.767 4.51
4′-HO-BDE-17 8.66 8.29 0.423 3.727 5.40
2′-HO-BDE-28 8.07 8.09 0.425 3.633 5.40
3′-HO-BDE-28 7.28 7.56 0.402 3.646 5.40
4-HO-BDE-42 9.72 9.13 0.433 3.687 6.29
3-HO-BDE-47 8.77 8.32 0.400 3.687 6.29
5-HO-BDE-47 8.44 9.09 0.435 3.654 6.29
6-HO-BDE-47 10.43 10.53 0.476 3.829 6.29
4′-HO-BDE-49 7.87 7.96 0.391 3.633 6.29
6-HO-BDE-82 10.44 10.05 0.507 3.086 7.18
6-HO-BDE-85 9.77 9.75 0.502 3.016 7.18
6-HO-BDE-87 9.29 10.05 0.506 3.091 7.18
4-HO-BDE-90 7.63 8.28 0.374 3.639 7.18
6′-HO-BDE-99 9.62 9.31 0.474 3.107 7.18
5′-HO-BDE-99 10.34 9.59 0.427 3.652 7.18
6-HO-BDE-140 11.31 10.98 0.447 3.732 8.07
3′-HO-BDE-
154

10.76 11.06 0.455 3.681 8.07

6-HO-BDE-157 12.2 12.40 0.471 4.047 8.07
aQEocc (−8.8 eV, O) is the energy-limited donor charge on the
hydroxyl oxygen atom with energy penetration depth ε = −8.8 eV (eq
3), and QEvac (3.8 eV, H) is the energy-limited acceptor charge on the
hydroxyl hydrogen atom with energy penetration depths ε = 3.8 ev (eq
4). All log Kow values are calculated by EPI Suite, version 4.1.40
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calibration of the regression coefficients than other compounds. Here,
the leverage hi of a given compound i is taken as an indicator to
identify high-influence compounds. The parameter hi is the ith
diagonal element of the Hat matrix that relates the target values to
their prediction counterparts, as follows:42

= −h x X X x( )i i
T T 1

i (5)

where X is a two-dimensional descriptor matrix comprising n rows
(compounds) and p columns (descriptors), XT is the transposition of
X, (XTX)−1 is the inverse of matrix XTX, and xi is the descriptor row-
vector of the query compound. An hi larger than the warning leverage
h* indicates that compound i is distant from the descriptor space
center and has a high influence on the model regression perform-
ance.42 Warning leverage h* equals 3p/n, where p is the number of
predictor variables, and n is the number of observations.
A large gap exists between the calibrated values from regression

models and the experimental values for the target property in the case
of outliers; thus, a standardized residual greater than 3 or less than −3
is taken as an indicator for outliers. Influential compounds and outliers
are visualized by a Williams plot of standardized prediction residuals
versus leverage hi.

■ RESULTS AND DISCUSSION
Dataset Characteristics. As shown in Table 1, the

experimental −log REC20 values vary from 7.28 (3′-HO-
BDE-28) to 12.20 (6-HO-BDE-157), covering 5 orders of
magnitude.
In this study, all compounds of interest are known to be

monohydroxylated PBDEs with different numbers of bromine
atoms. Among the 18 monohydroxylated PBDEs, one molecule
is dibrominated (6%), three are tribrominated (17%), five are
tetrabrominated (28%), six are pentabrominated (33%), and
three are hexabrominated (17%) HO-PBDEs (Scheme 1 and
Table 1). The average −log REC20 value for every group from
di- to hexabrominated substitution is 7.64, 8.00, 9.05, 9.52, and
11.42, indicating that the thyroid hormone activity increases
with increasing number of bromine atoms in the HO-PBDE
molecules.
Model Calibration. After the application of MLR analysis,

the following regression model is obtained:

− = × −

+ × + × −

QE

QE K

log REC 24.22 ( 8.8eV, O)

2.61 (3.8eV, H) 0.79 log 15.96
20 occ

vac OW
(6)

The developed model is a simple linear equation that
contains two local descriptors located on the hydroxyl oxygen
and hydroxyl hydrogen atoms, as well as log Kow, with good
statistical performance reflected by r2 = 0.902 and rms = 0.427
(Table 2). r2 indicates that 90.2% of the −log REC20 variance
could be explained by the regression on two local reactivity
parameters and log Kow. The −log REC20 values predicted by
eq 6 and the descriptor values are listed in Table 1, and the
statistical performance of the regression model is shown in
Table 2. We found the maximum negative and positive errors
with 5′-HO-BDE-99 (experimental value 10.34 vs predicted
value 9.59) and 6-HO-BDE-87 (8.44 vs 9.09), respectively.
However, both of these values are smaller than the 2-fold rms

(0.427), indicating the consistency between experimental and
predicted values.
Figure 1 shows that the predicted −log REC20 is consistent

with the experimental values, and Figure 2 indicates that with

our developed model, there is no obvious dependence on
experimental values for prediction errors and that no
compound exceeds a 2-fold rms.

To analyze the predictive performance for HO-PBDEs with a
different number of bromine atoms, the rms values for
subgroups with different numbers of bromine atoms are
calculated: rms = 0.180 for dibrominated HO-PBDEs, and
0.269, 0.445, 0.549, 0.282 for tribrominated, tetrabrominated,
pentabrominated, and hexabrominated HO-PBDEs, respec-
tively. The class-specific rms values indicate that the prediction
precision for tetra- and penta-substituted HO-PBDEs is
significantly inferior to other HO-PBDE subsets. This
observation indicates the need for further research when
additional experimental data are available.

Model Interpretation. The regression model contains
QEocc and QEvac evaluated at the hydroxyl oxygen atom and
hydroxyl hydrogen atom, respectively, and log Kow that
characterizes the partitioning behavior of the compounds
between the biophase and water. The energy-limited donor
charge QEocc (−8.8 eV, O) quantifies the amount of the
donated electron charge associated with energy loss (−8.8 eV)

Table 2. Statistical Performance of Regression and Simulated External Validation for Predicting the −log REC20 of HO-PBDEs

n r2 q2 rms bias me mpe mne

regression model 18 0.902 0.902 0.427 0.001 0.358 0.760 −0.750
training set 13 0.888 0.888 0.462 0.001 0.388 0.670 −0.840
test set 5 0.936 0.921 0.362 −0.122 0.350 0.360 −0.450

Figure 1. Predicted versus experimental −log REC20 for 18 HO-
PBDEs.

Figure 2. Prediction errors versus experimental −log REC20 values for
18 HO-PBDEs.
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at the oxygen atom. An oxygen atom with a larger QEocc value
prefers to donate electron charge and, accordingly, can easily
form a hydrogen bond with other hydrogen atoms as receptors.
Because forming hydrogen bonds between HO-PBDEs and
TRβ is a key step for exerting thyroid hormone activity,20 it
follows that increasing QEocc correlates with increasing thyroid
hormone activity, thus increasing −log REC20. Therefore, QEocc
yields a positive regression coefficient in eq 6 (24.22).
The second descriptor is the energy-limited acceptor charge

QEvac (3.8 eV, H). Converse to QEocc, which extracts electronic
and energy information for occupied molecular orbitals, QEvac
characterizes the ability of unoccupied orbitals to accept
additional electron charges from specific sites, which can be
interpreted as a localization of ELUMO. Thus, QEvac (3.8 eV, H)
quantifies the amount of accepted electron charge when the
hydrogen atom gains 3.8 eV energy. Given a constant Eref
parameter (here, 3.8 eV), a larger QEvac at the hydrogen atom
indicates that it could accept larger amounts of electron charge,
thus tending to bind with atoms of high electronegativity. Thus,
the HO-PBDE molecule with higher QEvac has a stronger
binding ability with TRβ and has a positive coefficient (2.61) in
the regression model of −log REC20.
log Kow is also selected in the regression model with a

positive coefficient (0.79), indicating that the thyroid hormone
activity of HO-PBDE molecules increases with log Kow values.
Molecules with larger log Kow prefer to partition into yeast cells;
thus, they have more potency to disturb the activity of TRβ and
have a larger −log REC20 value.
Furthermore, the variable inflation factor (VIF) values are

1.222, 1.727, and 1.470 for log Kow, QEocc (O), and QEvac (H),
respectively, indicating that no multicollinearity exists, which is
also reflected from the t-test result in which all parameters in
the regression model are statistically significant at α = 0.001
level (p < 0.001).
Model Validation. As described above, two temporary

subsets (70% subset and 30% subset) were randomly produced,
both covering the −log REC20 value range and chemical
domain of the full dataset. Then, 70% of the compounds were
recalibrated based on the descriptors in Table 1, yielding a new
model to predict the −log REC20 values of the remaining 30%
of the compounds. The associated calibration and prediction
statistics of this simulated external validation are listed in Table
2.
The 70% training subset yields a statistical result similar to

that of the full data set, r2 = 0.888, rms = 0.462 vs r2 = 0.902,
and rms = 0.427. The new recalibration model also has
regression coefficients similar to those of the original model,
25.85 for QEocc (−8.8 eV, O) on the 70% training subset and
24.22 on the full dataset, 2.82 vs 2.61 for QEvac (3.8 eV, H) and
0.70 vs 0.79 for log Kow. These results indicate that the
developed model is statistically stable. The 30% testing subset
has a performance comparable (and slightly superior) to that of
the 70% subset and the full dataset, q2 = 0.921, rms = 0.362.
Again, the model appears to be statistically robust and has good
predictive ability within the structural and −log REC20 domain.
Then, the leave-10%-out cross-validation was performed.

Every time, 10% of the compounds remained to be predicted
by the regression model based on 90% of the compounds, and
this operation was repeated 10 times. The resulting q2 equals
0.845, and rms equals 0.536, which remain similar to the
statistical parameters of the calibration model, reflecting again
that our model has a good degree of robustness and predictive
power.

Influential Compounds and Outliers. Initially, the
Kolmogorov−Smirnov test was applied to confirm that the
prediction residuals of −log REC20 followed normal distribu-
tions at the 95% confidence interval. Then, a Williams plot was
drawn using leverage hi values and standardized residues
(Figure 3). Clearly, all compounds were distributed at the left

side of the Williams plot, i.e., all hi values were smaller than the
warning value (h* = 0.667), indicating that the model has no
influential compounds and that the dataset has great
representativeness in descriptor space.
Furthermore, the standard residual is smaller than 3 (even

smaller than 2) for every molecule, as shown in Figure 3.
Therefore, there is no large gap between calibrated values and
experimental values for the selected compounds; thus, there are
no outliers. As shown in Scheme 1, our chemical domain
consists of di-, tri-, tetra-, penta-, and hexabrominated
monohydroxylated BDEs; therefore, the developed model
could be applied to predict the thyroid hormone activity of
these chemical congeners.
The regression model was developed based on experimental

activity data, and the predictive results could also validate the
experimental reliability to a certain extent. For example, the
measured −log REC20 for 4-HO-BDE-90 is 7.63, which is
abnormally lower than the congeners with similar structures
(9.29−10.44), and a very high positive predictive error (0.65) is
observed for this compound, implying that the experiment may
underestimate its hormone activity (Table 1). Furthermore, the
experimental data for two HO-BDE-28 and three HO-BDE-47
molecules show that the substitution of the hydroxyl group
ortho to the C−O−C linkage could pose a larger thyroid
disrupting effect than the meta substitution, with a difference of
0.79 and 0.65, respectively (Table 1). However, the measure-
ment value of 5′-HO-BDE-99 (meta-) is 10.34, which is
markedly higher than 9.62 for 6′-HO-BDE-99 (ortho-), and 5′-
HO-BDE-99 shows the largest negative error in the regression
model. Thus, its experimental hormone activity may also be
somewhat doubtful. These indicate that in addition to clarifying
the thyroid hormone activity mechanism of HO-PBDEs, an in
silico study could also contribute to the quality diagnostics for
the experimental data.

Comparison with Reference Results. The model
performance was compared with reference results. For the
same chemicals, there are two other studies that analyzed the
interactions between HO-PBDE molecules and TRβ and
developed QSAR models.20,30 These research efforts reveal
that the hydrogen bonding and electrostatic interactions are
important molecular interactions, providing a theoretical basis

Figure 3. Williams plot with warning leverage h* = 0.667.
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for the present investigation. The approach introduced in this
study employs local molecular descriptors to extract electron
and energy information for specific molecular sites relevant to
the action center. As reflected by the regression parameters and
mechanism analysis, the derived model could quantify the
inherent electronic actions between HO-PBDEs and TRβ,
identify the significant structural features of HO-PBDEs for
hormone activity, and explain their activity mechanism through
the physicochemical meanings of the descriptors.
Because the statistical parameters in different studies are not

uniform, we recalculated some parameters and summarized all
of the statistics in Table 3. Compared with the model
developed by Li et al.,20 the present introduced model includes
fewer descriptors (3 vs 6) and obtains better statistical results
(r2 = 0.902, rms = 0.427 vs r2 = 0.872, rms = 0.487) for the full
dataset. The prediction performance for the test set also shows
that our model has stronger robustness because q2 is larger
(0.845 vs 0.676), and rms is smaller (0.427 vs 0.589).
On the basis of the comparison, the performance of our

model appears inferior to 3D-QSAR30 (Table 3). However,
although 3D-QSAR obtains excellent results for calibration, its
prediction ability decreases significantly, reflected by q2 = 0.813
and rms = 0.448 for the test set, which are inferior to those of
our model. Furthermore, 3D-QSAR has no detailed equation
expression but only shows the important molecular force fields
for hormone reactivity, which is not beneficial for an in-depth
explanation of the mechanism and for predictive applications.
The present developed model could capture intrinsic

reactivity by employing local molecular descriptors and has
superior robustness and predictive capability. This result will be
helpful for in-depth investigations and accurate predictions of
the thyroid hormone activities of other HO-PBDE compounds.
Ionization Effect on Hormone Activity. Because HO-

PBDEs contain ionizable functional groups, namely, −OH, they
could ionize depending on the pH of the environment and their
pKa values. Yang et al. reported that the anionic phenolic
compounds bind more strongly with human transthyretin
(hTTR) than the corresponding neutral forms and found that
the pKa is a very important parameter for quantifying the
relative competing potency of the chemicals with T4 to
hTTR.43 Therefore, we considered a similar question to
determine whether the dissociation of HO-PBDEs affects
their interaction with TRβ.
To determine the answer, we calculated pKa values using the

commercial software ACD 12.0. Table S1 (Supporting
Information) shows that pKa varies from 5.5 to 9.2. The pH
value of the buffer solution in which experimental −log REC20
data were obtained is 4.12, and the endocellular pH of the yeast
cell is approximately 5.5. Therefore, a large majority of the
compounds maintain neutral forms at these pH values. Hence,
dissociation has a slight effect on the hormone activity of the
HO-PBDEs under these experimental conditions, which was
also demonstrated by the poor negative correlation (r2 = 0.302)
between pKa and −log REC20. However, we should realize that
the endocellular pH values of other cellular species or

physiological pH values in organisms are higher than the pH
in this experiment, normally 7.0− 7.4 (e.g., pH 7 for HepG
cells), which cause the dissociation for HO-PBDE compounds.
However, such experimental data have been missing to date.
The effect of molecular dissociation on thyroid hormone
activity requires further experimental investigation to obtain
more high-quality data for in silico studies.

Implications. In this study, the thyroid activity of HO-
PBDEs through the interaction with TRβ was studied by an in
silico approach. The molecular mechanism involved was
analyzed in-depth via the electronic and energy properties of
the chemicals. Because the interactions of xenobiotic
compounds with biomacromolecules in the endocrine system
are important molecular initiating events (MIEs) that incur
endocrine disrupting effects,44 revealing the interactive
mechanism of HO-PBDEs with TRβ can help unveil the
adverse outcome pathway (AOP). The predictive results could
also verify the experimental reliability. Furthermore, the
research approach is of great importance for investigating the
interactions of HO-PBDEs with other biomacromolecules in
the thyroid system, such as hTTR and the thyroid hormone
sulfotransferase (SULT1A1), as well as with other endocrine
systems.
Theoretically, there are 837 monohydroxylated BDEs and

many chemicals with similar structures, e.g., HO-PCBs and
HO-PCDDs. The predictive model that was developed will play
an important role in virtual screening to identify compounds
that potentially interact with TRβ and disrupt thyroid hormone
activity. The predictive model could also assist with “green
chemistry” in designing products with low toxicity.
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acceptor energy; hi, leverage value; h*, warning leverage value;
HOMO, the highest occupied molecular orbital; HO-PBDEs,
hydroxylated polybrominated diphenyl ethers; hTTR, human
transthyretin; LCAO-MO, linear combination of atomic
orbitals to molecular orbitals; log Kow, n-octanol/water partition
coefficient; log REC20, minus logarithm of the chemical
concentration inducing 20% of the maximum effect; me,
mean error; MIEs, molecular initiating events; MLR, multi-
linear regression; mne, maximum negative error; MOs,
molecular orbitals; mpe, maximum positive error; PBDEs,
polybrominated diphenyl ethers; pKa, dissociation constant; q2,
predictive squared correlation coefficient; QEocc (ε, r), energy-
limited donor charge; QEvac (ε, r), energy-limited acceptor
charge; QSAR, quantitative structure−activity relationship; r2,
squared correlation coefficient; rms, root-mean-square error;
SULT1A1, sulfotransferase; T4, 3,3′,5,5′-tetraiodo-L-thyronine;
THs, thyroid hormones; TRα, thyroid hormone receptor alpha;
TRβ, thyroid hormone receptor beta; TRs, thyroid hormone
receptors; TTR, transthyretin; VIF, variable inflation factor; yi

fit,
regression-fitted value; ymean, observed mean value; yi

obs,
observed value; yi

pred, predicted value
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(2009) Prediction of the intrinsic hydrogen bond acceptor strength of
organic compounds by local molecular parameters. J. Chem. Inf. Model.
49, 956−962.
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(2009) Modeling the H bond donor strength of -OH, -NH, and -CH
sites by local molecular parameters. J. Comput. Chem. 30, 1454−1464.
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