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Abstract Toxicity of engineered nanoparticles on organisms
is of concern worldwide due to their extensive use and unique
properties. The impacts of ZnO nanoparticles (ZnO NPs) on
seed germination and root elongation of corn (Zea mays L.)
and cucumber (Cucumis sativus L.) were investigated in this
study. The role of seed coats of corn in the mitigation toxicity
of nanoparticles was also evaluated. ZnO NPs (1,000 mg L−1)
reduced root length of corn and cucumber by 17 % (p<0.05)
and 51 % (p<0.05), respectively, but exhibited no effects on
germination. In comparison with Zn2+, toxicity of ZnO NPs
on the root elongation of corn could be attributed to the
nanoparticulate ZnO, while released Zn ion from ZnO could
solely contribute to the inhibition of root elongation of cucum-
ber. Zn uptake in corn exposed to ZnO NPs during germina-
tion was much higher than that in corn exposed to Zn2+,
whereas Zn uptake in cucumber was significantly correlated
with soluble Zn in suspension. It could be inferred that Zn was

taken up by corn and cucumber mainly in the form of ZnO
NPs and soluble Zn, respectively. Transmission electron mi-
croscope confirmed the uptake of ZnO NPs into root of corn.
Although isolation of the seed coats might not be the principal
factor that achieved avoidance from toxicity on germination,
seed coats of corn were found to mitigate the toxicity of ZnO
NPs on root elongation and prevent approximately half of the
Zn from entering into root and endosperm.
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Uptake

Introduction

Avariety of engineered nanoparticles (ENPs) are being devel-
oped and incorporated into commercial products due to their
unique physicochemical properties comparing with bulk ma-
terials. It is estimated that the annual value of nanotechnology-
related products is expected to reach $3 trillion by 2020 (Roco
et al. 2011). Such widespread and expanding production and
application of nanoparticles increase their potential release
into the environment, raising concerns within the scientific
and regulatory communities about their potential environmen-
tal impacts (Colvin 2003).

Metal oxide nanoparticles such as ZnO nanoparticles (ZnO
NPs) are of particular interest due to their extensive use in
varied commercial products from sunscreens and cosmetics
to abrasives in slurries used for semiconductor manufacturing
(Ju-Nam and Lead 2008) and subsequently are increasingly
discharged into the environment. Although the environmental
concentrations of most ENPs remain unknown, exposure
modeling suggests that ENPs concentrations in soil are higher
than those in water and air, implying that soil may be a major
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sink for ENPs released into the environment (Ge et al. 2011;
Gottschalk et al. 2009). The predicted concentration in soil of
ZnO NPs that are being used or could be used in cosmetics
and personal care products and coatings has reached a few
milligrams per kilogram (Boxall et al. 2007). Furthermore, it
has been estimated that the environmental concentrations of
ZnONPs in sludge treated soil may increase at rates as great as
1.6 to 3.3 μg kg−1 year−1 (Gottschalk et al. 2009). However,
ZnO NPs released into soil potentially have profound impacts
on terrestrial ecosystems. They were found to be toxic to bac-
teria (Adams et al. 2006; Brayner et al. 2006; Heinlaan et al.
2008) and the earthworm (Hu et al. 2010), and they alter the
composition of the soil bacterial community by reducing both
microbial biomass and diversity (Ge et al. 2011). Dissolution
of ZnO NPs has been extensively demonstrated (Bian et al.
2011). Few studies reported that phytotoxicity of ZnO NPs to
radish, rape, and ryegrass was not directly from their dissolu-
tion in bulk aqueous solutions (Lin and Xing 2007, 2008).
However, Franklin et al. believed that toxicity experiments
using the freshwater alga Pseudokirchneriella subcapitata re-
vealed comparable toxicity for ZnO NPs and ZnCl2, attribut-
able solely to dissolved Zn (Franklin et al. 2007). Therefore,
toxicity of ZnO NPs, caused by particle-dependent effects or
by dissolution, should be further evaluated and probably
should be examined case by case (Jiang et al. 2009).

Plants are a critical component of ecosystems and serve
both as important ecological receptors and as a potential path-
way for the transport and bioaccumulation of nanoparticles
into food chains (Zhu et al. 2008) and are considered to be
one of the groups of organisms that will be directly impacted
by nanoparticles. However, only a limited number of studies
on the effects of nanoparticles on higher plants are available,
with varied conclusions (negative, positive, and even protec-
tive effects) reported (Feizi et al. 2013; Lin and Xing 2008;
Ma et al. 2013; Stampoulis et al. 2009; Wang et al. 1999,
2012), although a relatively broad range of species have been
tested. ZnO NPs were reported to inhibit root elongation of
radish, rape, ryegrass, lettuce, corn, and cucumber, and toxic-
ity was considered mainly due to a particle-dependent effect,
although soluble Zn from particles could not be ruled out (Lin
and Xing 2007). Manzo et al. also found that ZnO NPs affect-
ed root elongation of garden cress and caused genotoxicity to
broad bean (Manzo et al. 2011). In contrast, Stampoulis et al.
demonstrated that ZnO NPs at 1,000 mg L−1 in hydroponic
solution did not show any effects on seed germination, root
elongation, or biomass of zucchini (Stampoulis et al. 2009).
The controversy in the literature indicates that the phytotoxic-
ity of nanoparticles is still poorly understood. Moreover, even
though nanoparticles do not show acute toxic effects on
plants, they may accumulate in vivo (Lin and Xing 2008;
Lin et al. 2009; Stampoulis et al. 2009), be transported into
the food chain (Judy et al. 2011), and transferred to the next
generation potentially (Lin et al. 2009).

Many studies have found that although having obviously
negative effect on root elongation, nanoparticles did not affect
seed germination (Lin and Xing 2007; Wang et al. 2012).
Researchers attributed such a phenomenon to the selective
permeability of seed coats. Also, seed coats may protect seed
from toxicity by other pollutants. Lane and Martin demon-
strated that seed coats of Raphanus sativus were a strong bar-
rier to lead and prevented contamination of embryos until the
seed coats were torn apart by the germinating embryonic roots
(Lane and Martin 1977). Wierzbicka and Obidzińska also
found that 72 and 61 % of the plant species studied had im-
permeable seed coats to lead and barium ions respectively
(Wierzbicka and Obidzinska 1998). Therefore, we hypothe-
sized that seed coats might protect from engineered nanopar-
ticles entering seeds, and thereby, mitigation of the phytotox-
icity of ENPs. The objectives of this study were to understand
the toxic effects of ZnO NPs on seed germination and root
elongation of corn and cucumber and mechanisms of phyto-
toxicity of the nanopaticles in relation to seed coats isolation
and plant uptake of the nanoparticles.

Materials and methods

Nanoparticles

ZnO NPs were purchased from Shanghai Aladdin Reagent
Co., Ltd, with a purity of 99.5 % and particle size of 30±
10 nm provided by the producer. The size of ZnO NPs mea-
sured in our laboratory using a Hitachi S-4800 Field Emission
Scanning Electron Microscope (Hitachi S-4800 FE-SEM)
was 30±12 nm (Supplementary Material Fig. S1). X-ray
difffaction analysis (XRD, Rigaku Ultima IV) of the nanopar-
ticles revealed a pure ZnO minerals composed of zincite
(Supplementary Material Fig. S2). The specific surface area
determined using the multi-point Brunauer–Emmett–Teller
(BET) method was 42.0 m2 g−1. All other chemicals of ana-
lytical reagent grade were purchased from Sinopharm
Chemical Regent Co., Ltd, China.

Preparation of particle suspensions

The nanoparticles were suspended directly in deionized water
(DI-water) and dispersed by ultrasonic vibration (500 W,
40 kHz) for 30 min. During ultrasonication, the suspensions
were continuously stirred to avoid aggregation of the particles.
Then the size of the nanoparticle aggregates was measured by
dynamic light scattering (DLS, Malvern Zetasizer Nano
ZS90). After 5 days, the ZnO suspensions were centrifuged
(10,000×g for 30 min) and were filtered through 0.22 μm
glass filters. The Zn concentration in the filtrate was deter-
mined using an inductively coupled plasma mass
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spectrometry (ICP-MS, PerkinElmer ELAN DRC II). Zn2+

solution was prepared by dissolving Zn(NO3)2 in DI-water.

Seeds

Corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds,
which are among the 10 species recommended by the US
Environmental Protection Agency (USEPA) for the determi-
nation of ecological effects of pesticides and toxic substances
and are also commonly used in phytotoxicity testing (Lin and
Xing 2007; Migliore et al. 2003; Service 2003), were pur-
chased from Yantai Dazhong Seed Co., Ltd. The average ger-
mination rates of all plant seeds were >85% as shown in a trial
study. Seeds were kept dry in darkness at room temperature
before use.

Germination experiments

Corn and cucumber seeds were immersed in a 10 % NaClO
solution for 10 min and rinsed three times with DI-water to
ensure surface sterility. The seeds were then soaked in DI-
water, nanoparticle suspensions (10, 100, and 1,000 mg ZnO
NPs L−1), or Zn2+ solution (10 and 100 mg Zn L−1), respec-
tively, for 2 h. One piece of filter paper was put into each 100×
15 mm Petri dish, and 5 mL of a test medium containing ZnO
NPs and Zn2+ as mentioned above was added. Seeds were
subsequently placed onto the filter paper, with 10 seeds per
dish and 1 cm or larger distance between each seed. Petri
dishes were covered and placed in an incubator. There were
four replicate dishes for each treatment. Germination was
quantified when the bud length surpassed half of the seed
length (Wang et al. 2012). After 5 days in the dark under room
temperature, more than 85 % of the control seeds had germi-
nated. Then, the germination was halted, seed germination
rate was calculated, and seedling root length was measured.

To investigate whether there was protective effect of seed
coats on the phytotoxicity of nanopaticles during germination,
after surface sterilization, the seed coats of corn were removed
carefully. The corn seeds without seed coats were then treated
the same as those with seed coats as mentioned above.

After germination, the seedlings in each Petri dish were
collected as a whole, soaked in 20 mmol L−1 Na2EDTA solu-
tion for 2 h, and then washed with tap water followed by three
rinses with DI-water to remove metal ions and nanoparticles
adhered to surface (Wang et al. 2012). Zn contents in seeds
from all treatments were measured by ICP-MS after HNO3

digestion. There were four replicates for each treatment.
Fresh roots were thoroughly washed with DI-water. Root

samples were prefixed in 5 % glutaraldehyde, washed in
0.1 mol L−1 pH 7.2 phosphate buffer, postfixed in 1 % osmi-
um tetroxide, dehydrated in a graded series of ethanol, and
embedded in epoxy resin. Samples were sectioned to 60–
80 nm thick using an Ultracut E Microtome (RMC Power

Tome XL) and stained with uranyl acetate. The root tissues
were then placed on Cu-based grids and observed with a trans-
mission electron microscope (TEM, JEM 1400-plus).

Statistical analysis

Each treatment was conducted with at least three replicates,
and the results were presented as mean±SD (standard devia-
tion). The statistical analysis of experimental data was per-
formed by means of one-way analysis of variance with the
Fisher LSD post hoc test using IBM SPSS Statistics 19.0.
Statistical significance was accepted when the probability of
the result assuming the null hypothesis (p) is less than 0.05.

Results

Germination and root elongation of corn and cucumber

Effects of ZnO NPs and Zn2+ on the germination of corn and
cucumber seeds are shown in Fig. 1. In general, no statistically
significant reduction in germination was observed in the var-
ious treatments of corn and cucumber except for 100 mg L−1

Zn2+ which inhibited cucumber germination completely.
Figure 2 presents root elongation of corn and cucumber in

the presence of nanoparticles and Zn2+. It is clear from Fig. 2A
that root elongation of corn in 10 and 100 mg L−1 ZnO NPs
batches was not significantly reduced (p<0.05) relative to that
of the control which reached 51.6 mm, while 10 mg L−1 ZnO
NPs significantly promoted the root length of corn. However,
when the concentration reached 1,000 mg L−1, ZnO NPs sig-
nificantly inhibited root length by 17.3 % (p<0.05), while
10 mg L−1 Zn2+ significantly promoted root growth compared
with the control (p<0.01), and 100 mg L−1 Zn2+ displayed no
effect on root length (p<0.05). In cucumber batches, reduc-
tions against the control were observed in all treatments of
ZnO, and dose–response was present in nanoparticles
(Fig. 2b). Root growth was clearly reduced with increasing
concentrations, and Zn2+ was more toxic to cucumber than
ZnO NPs which inhibited root elongation completely at a
concentration of 100 mg L−1. The root elongation of cucum-
ber was observed to be significantly negatively correlatedwith
the dissolved Zn concentration in solution (R=−0.813,
p<0.05).

Germination and root elongation of corn without seed
coats

To examine whether seed coats could mitigate the phytotox-
icity of nanoparticles, germination and root elongation of corn
without seed coats in the presence of ZnO or Zn2+ were eval-
uated. All treatments had no negative impact on germination
of corn without seed coats (Fig. 3), and germination rate was
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not significantly different from that of the corresponding treat-
ments of corn with intact seed coats (Fig. 1). Without seed
coats, root length of corn in DI-water reached 67 mm after
5 days, while it was 52 mm with seed coats (Fig. 3). This
suggests that seed coats delayed root elongation. In addition,
1,000 mg L−1 ZnO NPs inhibited root elongation by 26 %,
significantly greater than the 17 % in the corresponding batch
of corn with intact seed coats (p<0.05). Zn2+ treatments did
not cause any inhibition in root elongation, verifying their
non-toxicity to root growth of corn in the concentrations
tested.

Zn uptake during germination

Corn is monocotyledonous and its nutrients are supplied by
the endosperm during germination. The endosperm will
shrink instead of developing into a part of seedlings after

nutrients are depleted. In contrast, cucumber is dicotyledon-
ous and its cotyledons are vegetative organs which develop
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into the first leaf providing nutrient by photosynthesis. Given
this, the root and endosperm of corn were digested and tested
for Zn, while cucumber seed was analyzed entirely.

All treatments showed higher Zn concentrations compared
with the control (Fig. 4). Dose-dependent responses were
present in all treatments of ZnO NPs. For corn, whether seed
coats were intact or not, Zn uptake by the root was several

times higher than that by the endosperm. In addition, Zn ac-
cumulation by root and endosperm of corn without seed coats
was much higher than that of corn with seed coats. Taking 1,
000 mg L−1 ZnO NPs for example, Zn in root of corn with
seed coats was 384mg kg−1, while it was 978mg kg−1 without
seed coats, and the absence of seed coats resulted in about six
times more Zn content in endosperm. Compared with Zn2+,
ZnO NPs resulted in higher uptake of Zn by corn, in both root
and endosperm.

In batches of cucumber, Zn content was also higher out of
all treatments relative to control. Similar to the response of
root elongation to soluble Zn, the Zn contents in cucumber
seed were significantly correlated with soluble Zn in solution
(R=0.888, p<0.05).

Discussion

Phytotoxicity of the ZnO NPs

Seed germination and root elongation comprise a rapid and
widely used acute phytotoxicity test method possessing sev-
eral advantages: sensitivity, simplicity, low cost, and suitabil-
ity for unstable chemicals or samples (Munzuroglu and Geckil
2002; Wang et al. 2001).

Like the germination experiments previously reported in
which negligible adverse impact of nanoparticles on the ger-
mination of tested plants was observed (Lin and Xing 2007;
Stampoulis et al. 2009; Wang et al. 2012), the germination of
corn and cucumber in this study was not impacted by ZnO
NPs. We hypothesize that seed germination was insensitive to
nanoparticles because of selective permeability of the seed
coats, insufficient pollutant concentrations, short exposure
times, or other uncharacterized biological processes. It is,
however, unclear which factor played a more important role
and this needs further investigation.

ZnO NPs at 1,000 mg L−1 in this study significantly
inhibited root elongation of corn and cucumber. It should also
be noted that higher Zn contents were found in the roots than
in the endosperm of corn, indicating that imbibition of Zn
occurred mainly after the radicles penetrated the seed coats.
Previous work suggests that after penetrating the seed coats
the emerging radicals rapidly absorb nutrients and water and
contact the nanoparticles directly, thus, maximizing particle
exposure (Wang et al. 2012). In this scenario, a more signifi-
cant phytotoxic effect was observed on root elongation than
on seed germination. In addition, cucumber seemed more sus-
ceptible to ZnO NPs than corn in this study. This is to be
expected due to the different sensitivities of different species.
Besides, smaller seeds have higher surface-area-to-volume ra-
tios than larger ones, which increases their exposure (per unit
volume) to the test solution (Lee et al. 2010).
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Mechanism of phytotoxicity by ZnO NPs

The current study suggests two distinctive mechanisms of
ZnO NPs toxicity on corn and cucumber, respectively. The
first is related to the dissolution of ZnO NPs to Zn2+. ZnO
NPs can dissolve under many environmental conditions (Bian
et al. 2011) including the neutral conditions in this study
(Table 1). The dissolution of particles combined with high
toxicity of dissolved Zn often explains why ZnO NPs have
been found to be the most toxic compared with other metal
oxides nanoparticles (Ma et al. 2013). Based on the findings
that root elongation of cucumber was significantly negatively
correlated with dissolved Zn in solution (R=−0.813, p<0.05),
it can be inferred that toxicity of ZnO NPs to cucumber was
largely due to the dissolved Zn, although it is not yet well
understood to what extent the dissolved Zn contributes to
ZnO NPs toxicity. In accordance with the response of root
elongation to soluble Zn, the significant correlation of Zn
content in seedlings to soluble Zn in solution (R=0.888,
p<0.05) indicates that Zn entered the cucumber seed mainly
in the form of soluble Zn. Furthermore, no ZnO NPs was
found in TEM image of cucumber root under the treatment
of 1,000 mg L−1 ZnO NPs. Zn is an essential element for
plants, but it is toxic at high effective concentrations (EC50-
substrate Zn concentration resulting in 50 % biomass reduc-
tion) ranging from 43 to 996 mg L−1 Zn within different plant
species (Paschke et al. 2006). Zn2+ reduces the germination of
a range of plant seeds and also inhibits growth of their roots,
stems, and leaves (El-Ghamery et al. 2003; Munzuroglu and
Geckil 2002).

Besides particle dissolution, nanoparticulate size effect rep-
resents another important mechanism of toxicity for ZnONPs.
Results of corn batches shows that 1,000 mg L−1 ZnO NPs
significantly inhibited root elongation of corn relative to the
control and Zn2+. It should be noted that dissolved Zn in all
ZnO NPs suspensions in this experiment were below
10 mg L−1 (Table 1), indicating that the toxicity of ZnO NPs
to corn was not attributable to the Zn2+ dissolved from nano-
particles. Compared with Zn2+, ZnO NPs were more accessi-
ble to the root and endosperm of corn (Fig. 4a, b), suggesting
that nanoparticles might be the main chemical state penetrat-
ing into roots and endosperm exposed to ZnONPs. Moreover,

TEM images showed the presence of dark clusters with irreg-
ular shape and margin (particle aggregates) in the corn roots
under 1,000 mg L−1 treatment (Fig. 5b). The size of the parti-
cles in these aggregate was measured to be identified to the
size of ZnO NPs in higher magnification TEM images

Table 1 Size distributions and Zn dissolution of nanoparticles

Size distributiona

(nm)
Average sizea

(nm)
Soluble Zn
(mg L−1)

ZnO NPs 10 91–122 106±13 0.79±0.13

ZnO NPs 100 220–342 279±35 1.47±0.05

ZnO NPs 1,000 531–6439 1,102±403 7.67±0.71

a These data are in hydrodynamic size measured by DLS
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Fig. 5 TEM images showing the presence of ZnO NPs in the cells of
corn root under the treatment of 1,000 mg L−1 ZnO NPs. a and c are
magnified images of the squared regions in b
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(Fig. 5a, c). Such dark clusters were not observed in either
control or Zn2+ treatments (Supplementary Material Fig. S3).
Based on these observations, it was reasonably concluded that
ZnO NPs could enter into the roots of corn. Taken together, it
could be hypothesized that potential phytotoxicity of ZnO
NPs to corn was mainly due to the nanoparticles per se rather
than the Zn2+ dissolved.

From a retrospection of previous studies reported in which
root elongation of different species was reduced by the nano-
particles themselves (Lin and Xing 2007; Wang et al. 2012) or
not impacted at all (Stampoulis et al. 2009), a conclusion
could be reached that the mechanisms of phytotoxicity of
nanoparticles are very complicated and difficult to elucidate.
Different plant species, a wide range of nanoparticle concen-
trations, and even tiny differences in experimental conditions
may bring about different or even completely opposite exper-
imental results.

Interestingly, hydrodynamic size of aggregation in 1,
000 mg L−1 ZnO NPs measured by DLS reached 1,102 nm
which exceeds the scope of nanosize and conversely was close
to the size of bulk particles. However, the nanotoxicity of ZnO
NPs was still displayed completely. Given that, we hypothe-
size that it is the individual sizes rather than aggregate sizes
that appear to determine the toxicity of ZnO NPs. In addition
to ZnO NPs in this study, the toxicity of Al2O3 NPs and SiO2

NPs were also assumed to be independent of aggregate size
(Jiang et al. 2009).

Seed germination is the start of plant growth and always
plays an important role in the life cycle of plants. It is reported
that nanoparticle pollutants, such as fullerene C70, commercial
quantum dots, and nano-Au exposed to seed, were always
transferred during the whole lifetime of plant growth through
various pathways and were eventually present in progeny or
biomagnified in primary consumers of plants (Judy et al.
2011; Lin et al. 2009; Zhu et al. 2010). We could reasonably
draw a conclusion that although the nanoparticle uptake by
seedlings might have no negative effect on seed germination
or root elongation, they could accumulate and translocate into
plants and thus affect subsequent metabolic activity of plants.
The accumulation and translocation in plants of Zn from nano-
particles may indicate some potential for environmental im-
pacts via trophic transfer and cycling.

Role of seed coats of corn in the presence of nanoparticles

The seed coats protect the seed (embryo and endosperm) from
mechanical damage (insects, abrasion, and crushing), infec-
tion (bacteria, virus particles, and fungi), desiccation, freezing,
and in some cases, the effects of fire. Seed coats also provide a
time-delay factor to the germination of the seed which needs
to be wet or immersed in water to initiate germination.
Efficient seed germination and early seedling establishment
are important processes in commercial agriculture.

Sometimes people damage seed coats by means of carving
by rasp, soaking in acid, base or other reagents, and
ultrasonication to accelerate germination.

Seed coats with selective permeability and secrete seed
mucilage are considered to play a very important role in
protecting the embryo from harmful external factors (Kurepa
et al. 2010; Lin and Xing 2007). Pollutants may not affect
germination if they cannot pass through seed coats. This is
the explanation that seed germination was not greatly affected
by nanoparticles in many previous studies (Kurepa et al. 2010;
Lin and Xing 2007; Wang et al. 2012). Therefore, it is neces-
sary to investigate whether and to what extent seed coats can
alleviate the phytotoxic effects of nanoparticles on germina-
tion and root elongation.

Our observation that all ZnO NPs treatments did not have
negative effect on germination of corn, regardless of seed
coats removal (Fig. 3a), suggests that seed coats might not
be the principal factor that mitigated toxicity to germination
of corn. It might be insufficient concentrations, low toxicity of
the nanoparticles investigated, or other uncharacterized bio-
logical processes that lead to the non-significant impact of
nanoparticles on germination of corn. However, in 1,
000 mg L−1 ZnO NPs, a higher inhibition rate of root growth
without seed coats was found than with intact seed coats
(Fig. 3). This implies that seed coats can alleviate toxicity of
ZnO NPs on root elongation of corn. This result is in accor-
dance with the fact that seed coats can prevent a great propor-
tion of ZnO NPs from entering into the root and endosperm of
seed (Fig. 4). Lane andMartin demonstrated that seed coats of
R. sativus were a strong barrier to Pb and prevented contam-
ination of embryos until the seed coats were torn apart by the
germinating embryonic root (Lane and Martin 1977).
However, considerable toxicity to root elongation and Zn con-
tent in corn with seed coats manifested that plant could not be
sufficiently protected by their seed coats. Carbon nanotubes
(CNTs) were confirmed to be able to penetrate thick seed coats
into tomato seeds by Raman spectroscopy and to penetrate
root systems by TEM (Khodakovskaya et al. 2009).
Previous studies indicate that engineered nanoparticles can
penetrate an intact seed coat via the intercellular spaces
(<10 μm) in the parenchyma which are filled with aqueous
media facilitating the transport of soluble nutrients as well as
small particles to the embryo (Lee et al. 2010; Van Dongen
et al. 2003).

Conclusions

To characterize the potential risks of nanoparticles, it is nec-
essary to improve our knowledge of their bioavailability and
toxicity. The interactions between nanoparticles and plants are
of particular concern as plants closely interact with the atmo-
sphere, water, and soil, and constitute one of the main routes
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of exposure for consumers. We tested the phytotoxicity of
ZnO NPs to corn and cucumber during germination. The ger-
mination of both species was unaffected by the nanoparticles,
but ZnO NPs exhibited toxicity to root elongation.
Nanoparticulate size and soluble Zn fromZnONPswere reck-
oned to contribute to the inhibition on root elongation of corn
and cucumber, respectively. Seed coats of corn may have mit-
igated the toxicity of ZnO NPs on root elongation and
prevented a large proportion of ZnO NPs from entering the
root and endosperm, but might not be the principal factor that
prevented toxicity on germination. Although showing no or
less adverse effects during germination, abundant Zn uptake
in corn and cucumber was detected and might affect the
growth of the plants subsequently or accumulate in higher
trophic levels.
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