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This article retrieved the vegetation water content equivalent water thickness (EWT)
information and the relevant parameters for the land surface from full-band TM remote
sensing data. The effects of surface water heat flux and surface covering on the EWT
were analyzed via studies of the regional land cover status and the combined EWT
with land surface parameters. This article also analyzed the roles and limitations of
EWT in drought monitoring combined with classification of the regional drought and
regional water stress index (RWSI). From the results, the following conclusions were
reported. (1) The spatial distribution of the EWT is closely related to the vegetation,
and the EWT is able to monitor the regional water conditions to a certain extent. (2)
The distribution of the EWT is affected significantly by the density of vegetation
cover, land surface temperature and evapo-transpiration. (3) The correlation between
the NDVI (or fractional vegetation cover) and the EWT differs under different vegeta-
tion coverage conditions. (4) The evapo-transpiration of the ecological environment is
closely tied to the EWT such that the changes in evapo-transpiration affect the EWT
significantly. (5) The ability of the EWT to monitor regional drought is conditional,
and therefore no significant indication exists that can be used to monitor moderate to
severe drought conditions.

Keywords: equivalent water thickness (EWT); land surface parameters; remote
sensing; responses

1. Introduction

Monitoring of vegetation water not only aids in understanding the conditions for plant
growth but also plays an indispensable role in assessing the risk of forest fire, monitoring
of drought conditions and ecological security and evaluating regional water resources.
Many specialists have studied the definition of vegetation water content in detail and have
suggested several indices for vegetation water content, such as the relative water content
(RWC), relative drought index (RDI), fuel moisture content (FMC) and equivalent water
thickness (EWT). Among these indices, the EWT is defined as the ratio of the vegetation
water content and its total leaf area (Dawson, Curran, and Plummer 1998), and the EWT
can be revised using the leaf area index (Ceccato et al. 2001) to describe the vegetation
water content more accurately. The FMC is affected by the dry matter in the leaves
(Ceccato, Flasse, and Gregoire 2002; Ceccato et al. 2002). Therefore, this article adopts
the coupling of the EWT and the FMC for further study of the vegetation water content.
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With its advantages, remote sensing technology has become an important means for
monitoring the vegetation water content over the long term and large scale. Early in the
1970s, many scientists across the world began to focus on monitoring of vegetation water
content using remote sensing. Tucker (1977) first proposed a method for retrieving the
vegetation water content using the reflectance of the near-infrared band after studying the
foliar spectral reflection characteristics. Currently, researchers at home and abroad have
put forth many methods for retrieving the vegetation water content by means of remote
sensing. In summary, the main approaches include the dielectric constant based on radar
data; the vegetation index based on multispectral data, chlorophyll and vegetation status;
statistical analysis and the radiative transfer model.

Using airborne synthetic aperture radar (AIRSAR) data, Moghaddam and Saatchi
(1999) accessed the dielectric constant information from canopy vegetation on the surface
of a boreal forest area and the vegetation water content was subsequently retrieved based
on the empirical relationship between the permittivity and vegetation water. The long-
band microwave radiation is able to penetrate not only the clouds but also the vegetation
and even the soil to a certain extent, but this empirical method may result in errors in
retrieving the vegetation water content.

The vegetation index method based on the chlorophyll content assumes that the
chlorophyll content of vegetation is proportional to the vegetation water content. Thus,
the vegetation water content may be retrieved using the indirect relationship with the
vegetation indices. Currently, there are also certain indices available for retrieving the
vegetation water content, such as the RGI (relative greenness index) and GEMI (global
environment monitoring index), which assess the risk of forest and grassland fires. In later
studies, however, researchers realized that this view was unilateral. The chlorophyll
content of certain species is influenced not only by the vegetation water but also by
factors of phenology status, atmospheric pollution, nutrient supply, toxic elements, vege-
tation pests, diseases and radiation stress, among others. Therefore, it is not sufficiently
accurate to use the chlorophyll content to retrieve the vegetation water information for
these species (Tucker 1977). Moreover, the chlorophyll content of certain species in
nature is independent of vegetation water. For example, Gobron et al. (1999) discovered
five plants in which the chlorophyll content had no relationship with its vegetation water
in a temperate humid forest.

The vegetation status is an indicator that reflects the vegetation as influenced by the
environment. Chuvieco et al. (2001) stated that the vegetation water content could drive
the difference in temperature between the air and the leaf surface, which may aid in
calculation of the vegetation water content for the study of the dynamic changes in
vegetation heat. Based on this theory, certain indices for measuring evapo-transpiration
were proposed, such as the crop–water stress index (CWSI), water deficit index (WDI),
the stress index (SI), etc., and these indices can be used to assess the vegetation state
(Peng, Chen, and Li 2007).

Dr. Dawson thought that the water index (WI) proposed by Penuelas et al. and the
normalized difference water index (NDWI) proposed by Gao (1996) showed a good
direct correlation with the EWT. Additionally, the physical or semi-empirical method
coupled with the radiative transfer model can simulate the effect of vegetation water
on the reflectivity. Currently, the main physical models used to retrieve the vegetation
water content are the leaf optical model based on the radiative transfer equation
known as PROSPECT, the canopy model referred to as SAIL and their various
coupling models (Wang, Xu, and Ma 2008; Pietro Ceccato et al. 2001; Brown et al.
2008; Finn et al. 2013).

2 Z. Gao et al.
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Therefore, this article retrieved the EWT over different ecosystems using TM remote
sensing data. Using studies on the regional land-cover status, the effects of surface water/
heat flux and land-cover on the EWT were analyzed by combining the EWT with other
land surface parameters (such as the fractional vegetation cover (FVC), NDVI, land
surface temperature (LST), ET, etc.). The roles and limitations of the EWT in drought
monitoring were studied by combining the classifications of the regional drought status
and the regional water stress index (RWSI).

2. Materials and methods

2.1. The study area

The study area is located at Laizhou Bay in Shandong Province, China (Figure 1) within
the latitude of 36° 48′ 43″–37° 32′ 49″ and longitude 118° 37′ 37″–119° 44′ 31″. The
length along the east–west and of north–south directions is approximately 97 and 79 km,
respectively. The total study area is 486,245 ha. Land elevation drops mildly from 30 to
2 m above the sea level. Yet the length of the meandering coastal line within the study
area is about 400 km. Such coastal region is an active floodplain that was formed by
sediment laden water being released from the neighboring river channel through the
regional morphological and sedimentary dynamics. Three cities, including the
Shouguang City, part of the Weifang City (i.e. the Hangting area) and most of the
Changyi City, are situated along this coastal line. The sediment distribution in the alluvial
plain ranges from fine sand (close to the low water line) to the typical mud carried by
flood currents. Close to the open ocean, the climate system in this area is a moist, warm,
temperate continental monsoon climate (Cao 2002; Wang, Ren, and Sun 2002).

2.2. The satellite image processing

First of all, Landsat TM images, digital elevation model (DEM) data and climate data
were collected. All datasets were vectorized and interpolated as grid datasets with UTM
projection in advance to ease the application in geographical information systems (GIS).

In this study, the raw images were geo-referenced to a common UTM coordinate
system, and we then re-sampled all of the images to unify relative resolution in images of

Figure 1. The location of the study area in Shandong Province, China.
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different sizes using the nearest neighbor algorithm with a pixel size of 30 m by 30 m for
all bands, including the thermal band.

Landsat TM/ETM+ images were processed for the mapping of land use/land cover
change (LUCC), VIs, LST and heat fluxes. LUCC associated with 7 May 1987 in the
study area was analyzed with respect to the proper interpretation of Landsat TM image
and was validated with ground truth data. Regional scale ET and heat fluxes were
estimated with the aid of remote sensing images and the surface energy balance algorithm
(e.g. SEBAL model) (Bastiaanssen, Menenti, and Feddes 1998; Bastiaanssen, Pelgrum,
and Wang 1998). LST retrieval was carried out using the thermal bands of TM/ETM+ data
to ease the application of the Radiance Transfer Equation (Qin, Karnieli, and Berliner
2001). The equations for normalized difference vegetation index (NDVI) (Rouse et al.
1973; Tucker 1979), FVC (Gutman and Ignatov 1998) were collectively employed to
produce a suite of VIs in support of vegetation water impact assessment. All of the
preparatory efforts led to develop the integrated TVDI and RWSI for final analysis in the
context of vegetation water. The following subsections will introduce these algorithms/
equations in a greater detail.

2.3. The retrieval of vegetation water content information (GVMI and EWT)

Because both the near-infrared and the short-wave infrared bands are more sensitive to
changes in the vegetation water content, the Global Vegetation Moisture Index (GVMI) is
chosen to retrieve the vegetation water content and the formula is expressed as fol-
lows (1):

GVMI ¼ NIRþ 0:1ð Þ� SWIRþ 0:02ð Þ
NIRþ 0:1ð Þþ SWIRþ 0:02ð Þ (1)

where NIR is the near-infrared reflectance (band range: 0.79–0.89 µm) and the SWIR is
the shortwave infrared reflectance (band range: 0.58–1.75 µm).

The quantitative relationship between the GVMI and EWT is established according to
Ceccato, Flasse, and Gregoire (2002) and Ceccato et al. (2002) via a fitting method and
field measurement data formula is expressed as follows:

GVMI ¼ a þ b

1 þ d EWTcanopy

� �þ c EWTcanopy

� �
(2)

where a = 1.53, b = –1.40, c = –0.000099 and EWTcanopy is vegetation water content.
Later, to test on the actual application effect of the formula, Ceccato, Flasse, and Gregoire
(2002) and Ceccato et al. (2002) found that significant differences exist between the
formula calculation results and the field measurement data, but their regression lines were
parallel. Ceccato thought that systematic errors in the sensor and measurement tools led to
the generation of this error, and thus they introduced a constant into the formula to reduce
the error. The revised formula (2) is expressed as

GVMI ¼ aþ b

1þ d EWTcanopy

� �þ c EWTcanopy

� �� 0:13 (3)

4 Z. Gao et al.
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and the formula of the EWTcanopy can be derived from Equation (3), as shown in
Equation (4).

EWTcanopy ¼� ad þ c� d GVMIþ 0:13ð Þ
2cd

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad þ c� d GVMIþ 0:13ð Þð Þ2�4cd aþ b� GVMI � 0:13ð Þ

q

2cd

(4)

where a = 1.53, b = –1.40, c = –0.000099, d = 0 .000517 and r2 is the judgment
coefficient or r2 = 0.87, p < 0.001. Because the base of the extracting square root should
be greater than 0, we calculated the GVMI in the range [0, 0.556], and the corresponding
EWTcanopy range is [0, 3295.76].

2.4. The retrieval of other related parameters

2.4.1. Retrieval of the land surface heat fluxes, ET and LST

The heat fluxes in this study were estimated from the Landsat satellite images using the
SEBAL model and were calculated using Arc/Info 9.0 Macro Language (AML) and
Compaq Visual FORTRAN 6.5 mixed-language programming (Bastiaanssen, Menenti,
and Feddes 1998; Bastiaanssen, Pelgrum, and Wang 1998; Gao et al. 2010). Our SEBAL-
based computer package operated in a Microsoft Windows system using the ESRI GRID
module as the major data format. To ease application of the radiance transfer equation,
Qin, Karnieli, and Berliner (2001) derived an approximate expression for LST retrieval
that is suitable for the thermal bands of the TM/ETM+ data. Our LST maps were also
derived based on the same algorithm developed by Qin, Karnieli, and Berliner (2001).

2.4.2. Calculations for the NDVI and FVC

The equation for the NDVI (Rouse et al. 1973; Tucker 1979) is summarized as follows:

NDVI ¼ ρnir � ρred
ρnir þ ρred

(5)

where ρred is the red band (0.63–0.69 µm) reflectance, and ρnir is the near red band
(0.76–0.90 µm) reflectance.

The calculation of the FVC is based on the NDVI values, which may be calculated
using the spectral reflectance data. The atmospheric correction of the Landsat TM/ETM
data was conducted with a combination of the look up table (LUT) and dark-object
method (DOM) (Kaufman and Sendra 1988, Kaufman et al. 1997; Kaufman, Karnieli,
and Tanre 2000; Liang et al. 1997, 2002; Liang, Fang, and Chen 2001). The algorithm
developed by Gutman and Ignatov (1998) was applied to compute the FVC as expressed
below:

FVC ¼ INDVI � INDVI;s
INDVI;v � INDVI;s

(6)

GIScience & Remote Sensing 5
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where FVC is the fractional vegetation cover (%), INDVI is the NDVI value at each pixel
(dimensionless), INDVI;v is the NDVI value that corresponds to 100% vegetation cover
(dimensionless) and INDVI;s is the NDVI of bare soil (dimensionless).

2.4.3. Calculations of the regional water stress index (RWSI) and temperature vegetation
dryness index (TVDI)

According to the CWSI mechanism (Jackson and Idso 1981), this study defines the RWSI
as follows:

RWSI ¼ 1� λET
λETwet

¼ H

Rn � G
(7)

where ET is the regional actual ET (m2 ha−1 day−1) and ETwet is the regional potential ET
(m2 ha−1 day−1). The SEBAL model can be used to generate the relevant heat fluxes (H,
Rn and G), H is the sensible heat flux (W/m2), Rn is the net radiation flux (W/m2) and G is
the soil heat flux (W/m2) (Bastiaanssen, Menenti, and Feddes 1998; Bastiaanssen,
Pelgrum, and Wang 1998; Gao et al. 2010). Therefore, the regional water deficit can be
monitored on a near real-time basis with the aid of remote sensing technologies.

Sandholt, Rasmussen, and Andersen (2002) noted that the simplified triangle space of
the LST–NDVI may exhibit soil moisture contours reflecting the spatial patterns of the
vegetation index/temperature trapezoid eigenspace (VITT) (see Figure 2), which led to the
definition of the TVDI as expressed below:

TVDI ¼ Ts� Tsmin

Tsmax � Tsmin
(8)

where Tsmin is the minimum LST given the NDVI along the wet edge (K) (see Figure 2),
Tsmax is the maximum LST given the NDVI along the dry edge (K) (see Figure 2) and
Tsis the LST in any given pixel (K) (see Figure 2).

3. Results and discussion

We selected the remote sensing TM images of seven bands in the study area on 7 May
1987 and retrieved the EWT as case study. Next, using the false color images generated
from the fourth, third and second bands, we extracted the land cover information of the
study area by artificial visual interpretation and retrieved the FVC, NDVI, LST, RWSI,
ET, TVDI, and EWT and related land surface information with the infrared, near-infrared
and shortwave infrared bands. The information presented in the results and discussion was
analyzed using the above indices.

3.1. Spatial distribution analysis of EWT and other surface parameters

The Landsat TM data were used for analysis of the LULC. With the aid of actual ground
data throughout the calibration and validation stages, the findings clearly indicate that the
LULC can be classified into seven categories: farmland, grassland, woodland, water
bodies, beach land, built-up land and saline-alkali land. As shown in Figure 3, farmland
accounted for 44.9% of the total area, followed by water bodies and saline-alkali land,
which accounted for 20.4% and 17.1% of the total area, respectively. Built-up land (cities,

6 Z. Gao et al.
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rural residential areas and other constructed land) accounted for 12.6% of the total area,
and beach land accounted for only 3.2% of the total area. Thus, there are four major types
of land-cover, that is, farmland, saline-alkali land, built-up land and water body, which
together accounted for 95% of the total study area.

The changes in the land cover profoundly affect not only the changes in the vegetation
index but also the changes of LST. The average LST of this study area is 30.8°C, and from
Figure 3, we can observe that the regions of lower surface temperature are primarily

(a) (b)

Legend

Land cover in 1987
Farmland
Woodland
Grassland
Build-up
Water
Beaches
Saline-alkali land

0 3 6 12
km

Legend

LST in 1987

High : 52

Low : 14

0 3 6 12
km

Figure 3. The spatial distribution of the (a) LUCC and (b) LST.

Tmax

Tmin

Figure 2. The spatial VITT configured by the NDVI and LST.
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distributed in the coastal beaches and water bodies, and the higher temperature regions are
primarily distributed over the saline-alkali and built-up land. The LST is lower for the
farmlands and grasslands.

Because the dominant land cover types of this study area are farmland, saline-alkali
land, built-up land and water bodies, the average NDVI is 0.246 and the mean of the FVC
is 32.4%. Figure 4 shows that the NDVI and FVC are lower in the areas covered by
coastal beaches, saline-alkali land and water bodies and are higher in the areas covered by
farmland and grassland.

Based on the SEBAL model (Bastiaanssen, Menenti, and Feddes 1998; Bastiaanssen,
Pelgrum, and Wang 1998), with particular consideration of complex terrain features, the
daily ET was estimated with the Landsat TM data collected on 7 May 1987.

From Figure 5, we observe that the average ET of the study area is 1.95 mm day−1.
Because the spatial variation of the ET is also affected by the obvious changes of land
cover types, the larger ET value is primarily distributed in the coastal beaches and water
bodies. The smaller ET value is primarily distributed in the areas of farmland, grassland
and other regions covered with vegetation. The minimum ET value is distributed over
saline-alkali land and construction land.

Figure 4. The spatial distribution of the (a) FVC and (b) NDVI.

Figure 5. The spatial distribution of the (a) ET and (b) EWT.

8 Z. Gao et al.
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The spatial distribution of the EWT is closely related to the surface vegetation. As
shown in Figure 5, the average EWT of the study area is 515 g/m2; the EWT is higher in
the coastal regions covered by waters, crops and grass; and the highest EWT is 3233 g/m2.
Because the vegetation density directly affects the EWT, the EWT is lower in saline-alkali
land that includes a certain amount of vegetation and is equal to 0 in the vegetation-free
areas, including the built-up, shoals, and saline-alkali land.

The RWSI and TVDI are two drought-monitoring indices calculated using different
methods. The RWSI is an index for monitoring the regional drought from calculations of
the sensible heat, the net radiation of land surface and the soil heat based on the SEBAL
model. The RWSI is slightly affected by land cover conditions and soil background and is
a comparatively independent and objective indicator. The TVDI is obtained via calcula-
tion of the spatial VITT, which is obviously affected by land cover conditions and soil
background. The regions with high values of the RWSI and TVDI are severely drought-
ridden, and those areas with lower values indicate the presence of less severe drought.
From Figure 6, we observe that the regions with both a higher RWSI and higher TVDI are
distributed in the saline-alkali land followed by grassland and farmland, and the regions
with lower values are coastal beaches where drought is not a serious problem.

Examining the regional spatial water distribution monitored by the RWSI and TVDI
as standards, we can compare with the spatial distribution of the EWT. The regions with
higher EWT values are primarily covered by vegetation and the EWT values of other
regions are lower, which is not consistent with the spatial water distribution monitored by
the RWSI and TVDI; therefore, it is less accurate and reasonable to use the EWT to
monitor regional drought. Because the EWT only reflects the vegetation water content and
cannot reflect the soil moisture in the region, the EWT can be used to monitor vegetation
water and does not reflect the soil water of non-vegetation area correctly.

3.2. The analysis of spatial distribution characteristics and response for EWT

The EWT is defined as the ratio of the vegetation water content (the difference between
the fresh weight and dry weight) and the leaf area and is a method for retrieving the
vegetation water directly. The greatest advantage is that this method has nothing to do
with the vegetation type, and thus it can reflect the water content of the different
vegetation types in the study area more objectively. Although the EWT is unconcerned

Figure 6. The spatial distribution of the (a) RWSI and (b) TVDI.
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with vegetation types, it is closely related to the growing environment of the vegetation
and relates not only to the regional topography, soil types, soil moisture and LST but also
to the vegetation growth climate environment (precipitation and temperature), which
obviously affects the EWT.

The LST and surface evapo-transpiration indicators (ET) corresponding to the space–
time EWT were retrieved according to the relevant models. Next, the impacts of the LST
and ET on the EWT and their correlations were analyzed. At the same time, the NDVI and
FVC were retrieved for use in analysis of the impacts of surface vegetation density level
on the EWT and their correlations.

The NDVI and the FVC are both remote sensing indices that reflect the vegetation
density. A negative value of the NDVI means that a region has no vegetation covering,
and the FVC is also equal to 0. When the NDVI is greater than 0, this indicates that the
region is covered with vegetation and the FVC is also greater than 0. If the NDVI values
increase, the FVC value also increases, which indicates an increase in the density of
regional vegetation.

The indicative characteristics of the NDVI and FVC for the surface vegetation display
a rather close relationship with the vegetation water content (EWT). We combined the
EWT with the NDVI and FVC, and the corresponding EWT data were collected using an
interval of 0.01 with the NDVI and FVC as independent variables to generate Figure 7,
with which we analyzed the quantitative relationship between the vegetation index and
EWT and its impact on the EWT.

As shown in Figure 7, the EWT presents different patterns of changes together with
the changes in the NDVI (see Figure 7(a)) and FVC indices (see Figure 7(b)). When the
NDVI shifts between 0 and 0.18 and the FVC shifts between 0 and 0.1, the EWT shows a
decreasing trend, which indicates that the EWT has a negative correlation with the NDVI
and FVC. The regions with an NDVI between 0 and 0.18 and an FVC between 0 and 0.1
are always in the state of changing from bare vegetation cover to sparse vegetation cover.
These surfaces contain vegetation, but the vegetation cover is sparse. In this ecological
environmental condition, the effect of the soil on the regional moisture and heat is far
larger than that of the vegetation, and the EWT has a negative correlation with the NDVI
and the FVC. Therefore, we observe that under the conditions of NDVI < 0.18 and
FVC < 0.1, the vegetation coverage increases and the EWT decreases significantly. The
negative correlation coefficients reach as high as 0.99, and the degree of negative
correlation is notably high.

Figure 7. Changing graphs of the EWT with the (a) NDVI and (b) FVC.
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When the NDVI is >0.18 and the FVC is >0.1, the vegetation coverage increases to a
certain extent, and the effect of vegetation on the regional water and heat becomes larger
than that of surface soil; in other words, the vegetation transpiration is greater than the
evaporation. The EWT showed a significantly positive correlation with the NDVI and the
FVC. The EWT also increases accordingly together with the increase in the NDVI and
FVC indices. These indices showed a significant positive correlation, and their correlation
coefficients were both 0.97.

From the above analysis, we observe that the changes in land coverage affect the EWT
significantly. In an ecological environment with low vegetation coverage, the EWT
changes produce negative relationships with the changes in vegetation density. When
vegetation density increases to a certain extent, the EWT presents a significant positive
correlation with the vegetation density.

The graph in Figure 8(a) illustrates the relationship of the LST and the EWT. As can
be observed, when the LST is below 15°C, the land cover consists of beaches and water
and contains no vegetation cover. When the LST is between 15°C and 25°C, the EWT
shows an obvious increasing trend together with the increase in the LST, and a positive
correlation exists between the EWT and LST. In this temperature range, vegetation
transpiration and photosynthesis are gradually enhanced, and the vegetation water content
also increases accordingly with the increase of the LST.

The LST at 25°C represents an inflection point and is also the most suitable tempera-
ture for vegetation photosynthesis. If the LST is >25°C, the vegetation water content
gradually reduces along with the increasing LST.

Between 25°C and 35°C, the EWT reduces significantly with the increasing LST; the
EWT is significantly influenced by the LST, and an obvious negative correlation exists
between the EWT and LST. If the LST is >35°C, the EWT presents a slowly decreasing
trend with the increase of the LST, which means that when the LST is >35°C, the
vegetation loses a large amount of water through transpiration, and the vegetation water
content is notably low. When the LST is >50°C, the vegetation exists in a state of
withering or death.

From the above analysis, we observe that the LST has a significant impact on the
vegetation water content and presents different relationships between the EWT and LST
with varying LST. When the LST is <25°C, the EWT has a positive correlation with the
LST. When the LST is >25°C, the EWT has a negative correlation with the LST.

Figure 8. Changing graphs of the EWT with the (a) LST and (b) ET.
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As shown in Figure 8(b), the ET of the ecological environment affects the vegetation
water content significantly. In different intervals of ET, the correlation between the EWT
and ET is also different. When the ET is <1 mm/day, the effect of the ET on EWT is small,
and the EWT changes rather little with the increase of the ET.

When the ET is >1 mm/day and <4 mm/day, the EWT increases with the increase in
the ET and a distinctly positive correlation exists between the EWT and ET with a
correlation coefficient of 0.97. When the ET is between 4 and 5 mm/day, the EWT
increases more significantly with the increase in the ET and a distinctly positive correla-
tion between the EWT and ET.

If the ET is between 1 and 5 mm/day, a positive correlation exists between the EWT
and ET, the vegetation water content is sufficient for transpiration and the EWT increases
with the increase in ET.

If the ET is >5 mm/day, the surface evapo-transpiration is too strong and not enough
vegetation water content exists for transpiration; the EWT falls sharply with the increase
of the ET and forms a significant negative correlation the between the EWT and ET.

From the analysis in Figure 8, we observe that the ET of the ecological environment is
closely related to the vegetation water content, and the EWT changes distinctly with
different values of the ET. The changes of the ET affect the EWT significantly.

This analysis shows that the EWT is significantly affected by the vegetation cover
density, as shown by the LST and ET. Under low-density vegetation coverage, a negative
correlation exists between the EWT and the vegetation index (NDVI or FVC), and with
high-density vegetation coverage, a positive correlation exists between the EWT and the
vegetation index (NDVI or FVC).

When the LST is <25°C, the EWT is positively correlated with the LST, and if the
LST is >25°C, a negative correlation exists between the EWT and LST. The ET of the
ecological environment is closely related to the EWT. The EWT changes distinctly with
different values of the ET such that the changes in the ET affect the EWT significantly.

3.3. The action of the EWT in monitoring of regional drought

The ET of the land surface is an important measure for water loss and is closely related to
the soil moisture conditions. Therefore, we can understand the changes in the soil
moisture supply by monitoring the changes of the ET on the land surface, and monitoring
for drought occurrence and development can provide a reliable basis for decision-making
departments to enact timely and effective measures.

In this work, the RWSI was calculated with the SEBAL model as an indicator for
regional drought monitoring. In formula (7), H is the sensible heat flux, Rn is the net
radiation flux, G is the soil heat flux and all of these parameters can be obtained from the
SEBAL model. Therefore, the regional water stress could be monitored by coupling of the
SEBAL model and remote sensing. We observe that the larger the RWSI, the more serious
the water shortage, which is only a qualitative description of the soil water stress in these
regions. To further determine the relationship between the RWSI and soil moisture, we
need the observed values of soil moisture measured in the field to establish a regression
model between the RWSI and soil moisture. Next, we will need to develop drought level
indicators to monitor the regional drought conditions.

According to the research of other scholars, drought classification system was devel-
oped according to correlations between the relative soil moisture and the RWSI. The
relative soil moisture and RWSI are two objective indicators in regional drought monitor-
ing and reflect the gains and losses of regional water situation quite well (Table 1).

12 Z. Gao et al.
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Vegetation water originates from the soil water of the land surface, and the soil water
is derived from relatively stable groundwater and largely changeable precipitation.
Because the precipitation condition is an important criterion of drought, the vegetation
water content becomes an indirect indication of the local drought conditions. Therefore,
the study of vegetation water content only can not only directly reflect the conditions of
vegetation growth but also provide important reference information for drought and
ecological security monitoring.

Combining the RWSI with the EWT and taking the RWSI as the standard and
argument for drought monitoring, the correlation diagram between the EWT and RWSI
was constructed as follows:

Figure 9 shows that when the RWSI is <0.2, the soil moisture exists in a relatively wet
state according to the drought classification (RWSI < 0.332). In this area, the EWT has a
positive correlation with the RWSI and the EWT will increase with the increasing RWSI.

When the RWSI is between 0.2 and 0.6, the soil moisture is in the normal state
according to the drought classification, or in other words, the soil moisture is able to meet
the demands of the vegetation for water, and the area will experience no drought. In this
area, the EWT has a negative correlation with the RWSI, and the EWT will decrease with
the increasing RWSI. The increasing RWSI means that the regional soil moisture is
reduced and the EWT is also gradually reduced, which is consistent with the relationship
between vegetation and soil moisture. The changes in the EWT can indicate the changes

Figure 9. Correlation diagram between the EWT and RWSI.

Table 1. Regional drought classification categories.

Class Relative soil moisture RWSI Drought level

1 <0.4 >0.892 Heavy drought
2 0.4–0.5 0.752–0.892 Medium drought
3 0.5–0.6 0.612–0.752 Light drought
4 0.6–0.8 0.332–0.612 Normal
5 >0.8 <0.332 Wet

Note: *Relative soil moisture = soil moisture/soil saturation moisture × 100.

GIScience & Remote Sensing 13
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in the regional soil moisture quite well and can act as an indicator and reference in
regional drought monitoring.

When the RWSI is >0.6, the regional soil moisture begins to display mild and
moderate drought conditions. Although the EWT also has a negative correlation with
the RWSI, the EWT is reduced but decreases rather slowly, which indicates that when the
regional soil water deficit reaches drought levels and the soil moisture is not sufficient to
meet the demand of the vegetation, the vegetation will exist in a dry state and the action of
the EWT for regional drought monitoring is not obvious.

From the above analysis we observe that although the EWT can monitor regional
drought, its monitoring role is limited and the EWT is greatly affected by soil moisture.
The EWT can indicate the changes in the regional soil water content, the presence of
regional drought, and the gains and losses of soil moisture only when the soil water
content is in a normal state (0.3–0.6). Because the region exists in the arid state, the EWT
has no obvious indicator roles. Thus, the EWT is a conditional indicator of regional
drought and has no significant effect for moderate to severe drought.

4. Conclusions

This article retrieved the EWT data from the near-infrared and shortwave infrared bands.
False color composition was combined with the fourth, third, and second visible bands,
and the land cover data were extracted with the aid of machine-assistant interpretation for
use as a background for the related research.

At the same time, the NDVI and FVC were calculated using the infrared and near-
infrared bands, and the LST was retrieved with a single-window algorithm (Qin, Karnieli,
and Berliner 2001). The parameters of the surface net radiation (Rn), sensible heat (H),
soil heat (Gn) and evapo-transpiration (ET) were calculated using the SEBAL model
(Bastiaanssen, Menenti, and Feddes 1998; Bastiaanssen, Pelgrum, and Wang 1998).
Furthermore, the RWSI was obtained according to the CWSI mechanism (Jackson and
Idso 1981).

Using the analysis of the regional land cover status, the impacts of surface water heat
flux and surface covering on the EWT were analyzed by combining the EWT with the
vegetation index (NDVI and FVC) or the EWT with LST and ET. Finally, the roles and
limitations of the EWT in drought monitoring were analyzed combined with the regional
drought classification and the RWSI. From this analysis, the following conclusions can be
drawn:

(1) The spatial distribution of the EWT is closely related to the land surface vegeta-
tion, and the density and sparse degree of vegetation cover affect the EWT
directly. In regions with no vegetation cover (i.e., built-up land, shoals and
saline-alkali soil), the EWT is nearly equal to 0.

(2) The EWT is affected significantly by the vegetation cover density, the LST and
the ET. In the case of low vegetation coverage, the NDVI and FVC are negatively
correlated with the EWT. Under conditions of high vegetation coverage, the
NDVI and FVC are positively correlated with the EWT. When the LST is <25°
C, the EWT is positively correlated with the LST and if the LST is >25°C, a
negative correlation exists. The ET of the ecological environment is closely
related to the vegetation water content. The vegetation water changes distinctly
with different values of the ET, and thus the changes in the ET affect the EWT
significantly.

14 Z. Gao et al.
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(3) Although the EWT can monitor regional drought, its monitoring role is limited
because it is greatly affected by the soil moisture. If the soil water is in a normal
state (0.3–0.6), the EWT can act as a response and indicate the changes in the
regional soil water, changes in the regional drought, and changes in the gains and
losses in soil moisture. Because the region exists in an arid state, the EWT has no
obvious indicator roles. Thus, the EWT is conditional for monitoring of regional
drought and indicates no significant effect for moderate to severe drought.
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