Chemical forms of cadmium in a calcareous soil treated with different levels of phosphorus-containing acidifying agents

Chunfa Wu A,B,E, Shihong Yan C, Haibo Zhang D, and Yongming Luo D

A Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, P.R. China.
B Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, P.R. China.
C School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China.
D Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, P.R. China.
E Corresponding author. Email: wchf1680@sina.com

Abstract. Calcareous soils with high background cadmium (Cd) levels are widely distributed in south-west China and soil acidity is a major environmental problem. However, little effort has been made to study the changes in chemical speciation as affected by soil acidification other than by acidic rain. In the present study, we investigated the impact of mono-ammonium phosphate (MAP) and phosphoric acid on soil pH and chemical transformation of Cd in calcareous soils. Calcareous soils collected from south-west China were treated with three concentrations (0.1, 0.2 and 0.4 mol kg\(^{-1}\)) of MAP and phosphoric acid, and without the addition of acidifying agent, before being incubated at 25 ± 2°C near field capacity moisture content for 60 days. The chemical forms of Cd in the soils were determined by the Tessier sequential extraction scheme. The concentration of Cd in the form bound to iron and manganese oxides (Cd\(_{\text{FeOx+MnOy}}\)) decreased significantly with increasing levels of the two acidifying agents, but the concentration of exchangeable Cd (Cd\(_{\text{Ex}}\)) exhibited a significant increase, indicating that the two acidifying agents can effectively promote the transformation of Cd\(_{\text{FeOx+MnOy}}\) to Cd\(_{\text{Ex}}\). MAP may promote the same amount of Cd\(_{\text{FeOx+MnOy}}\) to Cd\(_{\text{Ex}}\) as phosphoric acid at the same rate of addition, but the soil pH clearly differed, implying that an increase in water-soluble P with addition of acidifying agent may be one major factor affecting the chemical transformation of Cd. MAP and phosphoric acid should be used carefully as sources of water-soluble phosphorus for calcareous soils with high background concentrations of Cd.

Additional keywords: chemical transformation, water-soluble phosphorus.

Received 15 July 2014, accepted 16 September 2014, published online 12 January 2015

Introduction

Cadmium (Cd) is a heavy metal with high toxicity at very low concentrations (John et al. 1972; Friberg et al. 1974) and it is one of the most common soil pollutants (Bloemen et al. 1995; Andreu and Gimeno-Garcia 1996; Udom et al. 2004). In general, the toxicity of Cd in soil increases as its mobility increases. Previous studies have shown that the mobility of potentially hazardous trace metals in agricultural soils is closely related to the chemical transformations of these elements in the soil environment (Sposito et al. 1982; Navarro-Pedreño et al. 2003; Lafuente et al. 2008). It is therefore necessary to know the chemical forms of Cd in soils and the factors influencing the conversion of its chemical forms in soil.

Calcareous soils have high levels of calcium and magnesium carbonates formed largely by the weathering of calcareous rocks and fossil shell beds. These soils belong to Ustic Isohumisols according to the Chinese soil classification system (CSTCRGISS-CAS 1995) or to Cumulic Haplustolls based on the US system of soil classification (Soil Survey Staff 1996). Calcareous soils are widely distributed in Guangxi, Guizhou and Yunnan provinces in China, with very high background Cd concentrations in calcareous soils in some areas. In general, the mobility and bioavailability of Cd in calcareous soils are lower than in other soils (Agency for Toxic Substances and Disease Registry 2008). However, the mobility and bioavailability of Cd in calcareous soils will increase significantly with changes in some physical and chemical properties of the soil, such as decreasing soil pH. Therefore, it is necessary to consider the problem of Cd activation in calcareous soils with high environmental background values.

It is well known that many physical and chemical properties of soil affect the chemical forms of Cd, including soil pH, soil solution ionic composition, the chloride concentration in the soil solution, cation exchange capacity, clay mineral content and types, organic matter content, calcium carbonate equivalent.
(CCE), oxides of iron (Fe), manganese (Mn) and aluminum and redox conditions (Haghiri 1974; Naidu et al. 1994; Yassebi et al. 1994; Basta et al. 2001). Soil pH is one of the major physicochemical properties of soil and, to a great extent, controls the chemistry of Cd in the soil environment (Mann and Ritchie 1993). Increasing soil acidity is a major environmental problem in China and the use of acidifying agents, including some acidifying fertilisers, can greatly accelerate the rate of acidification in addition to acid rain (Guo et al. 2010). The acidifying fertilisers include fertilisers containing the ammonium (NH₄) form of nitrogen, such as ammonium nitrate, urea, ammonium phosphate, mono-ammonium phosphate (MAP) and ammonium sulfate. There have been numerous studies on the effects of acid rain on the mobility of heavy metals in non-calcareous soils (Siepak et al. 1999; Guo et al. 2005; Kim et al. 2010). However, little attention has been paid to the effects of soil acidification in the absence of acid rain on the chemical transformation of heavy metals in calcareous soils.

Sequential extraction has been used to identify the chemical forms of trace elements and predict their mobility and bioavailability (Tessier et al. 1979; Ahnstrom and Parker 1999). In sequential extraction techniques, a sample is treated with a series of progressively harsher reagents to dissolve increasingly recalcitrant forms. In the case of heavy metals, these methods operationally estimate the amounts of metals in various solid pools that are commonly termed exchangeable, carbonate bound, Fe and Mn oxide bound, organic and residual. Although several sequential extraction techniques have been in use for four decades (Gibbs 1973; Tessier et al. 1979), there are no universally accepted procedures in terms of reagents and their order in the sequence (Sutherland et al. 2000). The Tessier scheme is a typically sequential extraction method that can provide more information about Cd mobility and bioavailability for calcareous soils than other sequential extractions tested (Abbaspour et al. 2007; Jalali and Khanlari 2008; Khanmirzaei et al. 2013).

In the past three decades, the mobility of Cd has been studied in diverse soils, including acid (Simard et al. 1999; Cornu et al. 2001) and alkaline (Walter and Cuevas 1999; Navarro-Pedreño et al. 2003) soils. Nevertheless, there is limited information on the chemical transformation of Cd as a result of soil acidification caused by factors other than acid rain in calcareous soils with high Cd background concentrations. Phosphorus (P) is an essential nutrient element for plants and P deficiency in calcareous soils is a widespread problem in the cultivation of agricultural crops. It is therefore necessary to enhance P availability in many calcareous soils. MAP is an acidifying fertiliser that is often used in the blending of dry agricultural fertilisers and it can supply the soil with N and P in plant-available forms. Phosphoric acid is increasingly used as a source of water-soluble P and is an acidifying agent that can enhance P availability in calcareous soils (Gharaibeh et al. 2010). The objectives of the present study were to evaluate the impact of the two P-containing acidifying agents (MAP and phosphoric acid) on soil pH and chemical transformations of Cd in calcareous soil and to study the potential factors affecting the chemical transformation of Cd in an incubation experiment.

Materials and methods

Soil material

The tested soil was collected from the surface horizon (0–20 cm) of an upland field under cultivation with agricultural crops. The sampling site was in Huanjiang County, Guangxi Zhuang Autonomous Region, China. The area is located at 25°5’N, 107°59’E and is situated in the subtropical monsoon climatic zone with a temperate and humid climate throughout the year. The average annual temperature is 15.7°C and the mean annual precipitation is approximately 1750 mm, with approximately 70% of the precipitation occurring from April to September. The soil collected was air dried and passed through a 2-mm sieve. The particle size distribution was determined by laser diffraction methods (Segal et al. 2009) and the textural class is clay loam (sand: 27.09%; silt: 39.64%; clay: 33.27%) according to the US Department of Agriculture soil textural triangle (Soil Survey Division Staff 1993). Soil pH was measured with a pH meter (Sartorius Basic pH meter PB-10, Goettingen, Germany) with a soil : water ratio of 1 : 2.5. Soil organic matter was determined by wet oxidation at 180°C with a mixture of potassium dichromate and sulfuric acid (Agricultural Chemistry Committee of China 1983) and CCE was determined by neutralisation with HCl (Allison and Moodie 1965). Total concentrations of Cd, Fe and Mn were determined by

Table 1. Sequential extraction steps as described by Tessier et al. (1979)

<table>
<thead>
<tr>
<th>Step</th>
<th>Chemical form</th>
<th>Symbol</th>
<th>Reagents</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exchangeable</td>
<td>Ex</td>
<td>16 mL of 1.0 M MgCl₂ (pH 7)</td>
<td>2 h (20 ± 2°C)</td>
</tr>
<tr>
<td>2</td>
<td>Bound to carbonates</td>
<td>Car</td>
<td>16 mL of 1.0 M NaOAc (pH adjusted to 5 with HOAc)</td>
<td>6 h (20 ± 2°C)</td>
</tr>
<tr>
<td>3</td>
<td>Bound to iron and manganese oxides</td>
<td>FeOₓ+MnOₓ</td>
<td>20 mL of 0.04 M NH₂OH·HCl in 25% (v/v) HOAc</td>
<td>6 h (96 ± 2°C)</td>
</tr>
<tr>
<td>4</td>
<td>Bound to organic matter</td>
<td>OC</td>
<td>6 mL of 0.02 M HNO₃ and 10 mL of 30% H₂O₂ (pH adjusted to 2 with HNO₃), 6 mL aliquot of 30% H₂O₂ (pH adjusted to 2 with HNO₃), 10 mL of 3.2 M NH₄OAc in 20% (v/v) HNO₃</td>
<td>2 h (85 ± 2°C), 3 h (85 ± 2°C), 0.5 h (20 ± 2°C)</td>
</tr>
<tr>
<td>5</td>
<td>Residual</td>
<td>Res</td>
<td>10 mL aqua regia, 5 mL 20% (v/v) HNO₃</td>
<td>3 h (60°C), 2 h (125°C), 2 h (150°C), 0.5 h (80°C)</td>
</tr>
</tbody>
</table>
inductively coupled plasma mass spectrometry (ICP-MS) after
digestion with aqua regia.

Incubation experiment
A 2 x 3 factorial experiment as a completely randomised design
with three replicates was used to study the transformation of
chemical forms of Cd in the calcareous soil with different levels
of the two P-containing acidifying agents. Factors comprised
the two P-containing acidifying agents (MAP and phosphoric
acid) at three application rates (0.10, 0.20, and 0.40 mol kg\(^{-1}\)
soil). In previous studies of heavy metal transformations, the
incubation times ranged from several days to tens of weeks, but
most were around 60 days (Mann and Ritchie 1994; Ma and
Uren 1998; Lim et al. 2002; Lu et al. 2005; Rajaie et al. 2006).
Therefore, an incubation period of 60 days was used in the
present study. The experimental units were pots containing
100 g soil mixed with the P-containing acidifying agent. In
addition, three pots of soil without acidifying agent were
used as controls (CK). Enough distilled water was added to
bring the soil moisture to near pot capacity. Pots were covered
with Parafilm with a few holes to prevent rapid evaporation
while allowing gaseous exchange. The pots were incubated at
room temperature (25 ± 2°C). Soil moisture was maintained
near field capacity by adding water to a constant weight once
every 3 days. The soil in each pot was mixed well once every
7 days to maintain intimate contact with the acidifying agent.
At the end of incubation, all the incubated soil samples were air
dried and passed through a 2-mm sieve. The chemical forms of
Cd were determined by sequential extraction as described by
Tessier et al. (1979) and indicated in Table 1. The concentrations
of Cd in the five chemical fractions were also determined by
ICP-MS after they were extracted. Lake sediment for extractable
trace elements (GBW07436) that was obtained from National
Research Center for Certified Reference Material (Beijing,
China) was used to compare recovery based on sequential
extraction with certified values, and the mean recovery of
total Cd (the sum of the five individual chemical fractions)
was 92.6 ± 12.7%. To evaluate the acidification effects of the
two P-containing acidifying agents on the calcareous soil, the pH
values of all the incubated soil samples were also determined by
a pH meter (Sartorius Basic pH meter PB-10) with a soil : water
ratio of 1 : 2.5.

Statistical analysis
To characterise the relationship between chemical
transformation of Cd and soil pH and the level of added P-
containing acidifying agent, simple linear regression analysis
and multiple stepwise regression were used. Descriptive
statistics was used to compare the three observations of three
replicates for each treatment. In the present study, both
descriptive statistics and regression analysis were performed
using SPSS for Windows version 13 (SPSS Inc., Chicago, IL,
USA).

Results and Discussion
Soil properties
The properties of the tested soil are given in Table 2, which
shows that the soil was slightly alkaline and with a low
CCE. The soil may have been slightly alkaline because of the
low concentration of calcium carbonate (CaCO\(_3\); 10.4%), with
a large proportion of the carbonates washed out from the
surface horizon. The concentration of total Cd in the soil was
very high and was approximately 33 times as high as the
guideline value of the Chinese Environmental Quality
chanel-5/GB15618-1995.doc) for total Cd (0.30 mg kg\(^{-1}\)). The
chemical form of Cd in the soil was also analysed and most of

Table 2. Selected chemical and physical properties of the test soil

<table>
<thead>
<tr>
<th>pH</th>
<th>SOM (%)</th>
<th>CCE (%)</th>
<th>Total metal concentration (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cd</td>
</tr>
<tr>
<td>7.29</td>
<td>2.61</td>
<td>1.55</td>
<td>9.86</td>
</tr>
</tbody>
</table>

Fig. 1. Proportion of the five fractions of Cd in the untreated calcareous soil. Cd\(_{\text{ex}}\), exchangeable Cd; Cd\(_{\text{Ca}}\), Cd bound to carbonates; Cd\(_{\text{FeOx+MnOy}}\), Cd bound to iron and manganese oxides; Cd\(_{\text{OM}}\), Cd bound to organic matter; Cd\(_{\text{Res}}\), residual Cd.
the Cd was only slightly available, being mostly bound to Fe and Mn oxides and not carbonates (Fig. 1). This result is consistent with the result of heavy metal analysis showing that the soil had high concentrations of Fe and Mn oxides and a low concentration of CaCO₃. Although the exchangeable Cd (Cdₑₓ) in the soil accounted for only 9.41% of total Cd, the amount of Cdₑₓ was greater than that in normal soil. Thus, the migration and toxicity of Cd in the test soil require further investigation.

Acidifying effects

Although both phosphoric acid and MAP are P-containing acidifying agents, the acidifying effects of the two agents on the calcareous soil were significantly different (Fig. 2). The acidifying effect of phosphoric acid was significantly stronger than that of MAP and the pH of the soil decreased sharply with increasing application rate of phosphoric acid. This indicates that phosphoric acid is a strong acidifying agent, whereas MAP is a weak acidifying agent because it had good acid buffering capacity. It is well known that phosphoric acid is a triprotic acid with three ionisable hydrogen atoms. The hydrogen ions are lost sequentially and the anions, after successive dissociation, are H₂PO₄⁻, HPO₄²⁻ and PO₄³⁻. Each successive dissociation step occurs with decreasing ease. Thus, H₂PO₄⁻ is a very weak acid and HPO₄²⁻ is an extremely weak acid. MAP in soil can simultaneously provide H₂PO₄⁻ and HPO₄²⁻ to the soil solution and this gives it a weak acidifying effect (Lu 2000).

Chemical transformation of Cd

The chemical forms of Cd in the calcareous soil treated with different levels of P-containing acidifying agents are presented in Table 3. Cadmium in the fractions bound to iron and manganese oxides (CdFeOₓ+MnOᵧ) and Cdₑₓ were the two dominant Cd fractions in the treated calcareous soil, whereas other fractions accounted for a small proportion. With increasing levels of acidifying agents, the concentration of CdFeOₓ+MnOᵧ decreased significant, whereas the concentration of Cdₑₓ exhibited a significant increase with both acidifying agents (Fig. 3). This indicates that addition of both agents promoted the chemical transformation of CdFeOₓ+MnOᵧ to Cdₑₓ in the calcareous soil. It was difficult to discriminate changes in the other three fractions (bound to carbonates, bound to organic matter and residual) among the treatments because of their low concentrations.

From Fig. 4 it can be seen that the concentration of Cdₑₓ had a tendency to decrease with soil pH, whereas the concentration of CdFeOₓ+MnOᵧ exhibited the opposite tendency. Soil pH is one of the most important factors affecting the sorption of Cd (Naidu et al. 1994) and the impact of changes in soil pH on the sorption of Cd on Fe and Mn oxides may perhaps explain, in part, the conversion of Cd chemical forms in the calcareous soil treated with P-containing acidify agents. From Figs 2 and 3, MAP promoted about the same amount of CdFeOₓ+MnOᵧ to Cdₑₓ as phosphoric acid at the same application rate (in mol kg⁻¹ soil), whereas soil pH clearly differed between the two treatments. This indicates that soil pH is not the sole factor affecting the chemical transformation of Cd in the soil. Compared with MAP, phosphoric acid was more suitable for soil pH adjustment in the calcareous soil when considering the potential hazard of the Cd

Table 3. Characterisation of the chemical forms of Cd in a calcareous soil treated with different application rates of phosphoric acid (P1, 0.1 mol kg⁻¹ soil; P2, 0.2 mol kg⁻¹ soil; P3, 0.4 mol kg⁻¹ soil) and mono-ammonium phosphate (N1, 0.1 mol kg⁻¹ soil; N2, 0.2 mol kg⁻¹ soil; N3, 0.4 mol kg⁻¹ soil)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cdₑₓ (mg kg⁻¹)</th>
<th>Cdₑₓ (mg kg⁻¹)</th>
<th>CdFeOₓ+MnOᵧ (mg kg⁻¹)</th>
<th>CdOM (mg kg⁻¹)</th>
<th>Cdₑₓ (mg kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.05 ± 0.08</td>
<td>0.24 ± 0.05</td>
<td>7.68 ± 0.10</td>
<td>0.52 ± 0.02</td>
<td>0.37 ± 0.06</td>
</tr>
<tr>
<td>P1</td>
<td>1.93 ± 0.13</td>
<td>0.27 ± 0.08</td>
<td>6.84 ± 0.13</td>
<td>0.42 ± 0.05</td>
<td>0.40 ± 0.03</td>
</tr>
<tr>
<td>P2</td>
<td>2.63 ± 0.11</td>
<td>0.32 ± 0.06</td>
<td>6.13 ± 0.09</td>
<td>0.37 ± 0.03</td>
<td>0.42 ± 0.07</td>
</tr>
<tr>
<td>P3</td>
<td>3.66 ± 0.04</td>
<td>0.39 ± 0.04</td>
<td>5.01 ± 0.12</td>
<td>0.31 ± 0.07</td>
<td>0.47 ± 0.02</td>
</tr>
<tr>
<td>N1</td>
<td>1.72 ± 0.10</td>
<td>0.25 ± 0.07</td>
<td>7.20 ± 0.09</td>
<td>0.33 ± 0.04</td>
<td>0.36 ± 0.05</td>
</tr>
<tr>
<td>N2</td>
<td>2.42 ± 0.09</td>
<td>0.21 ± 0.04</td>
<td>6.58 ± 0.15</td>
<td>0.28 ± 0.05</td>
<td>0.37 ± 0.04</td>
</tr>
<tr>
<td>N3</td>
<td>3.52 ± 0.05</td>
<td>0.17 ± 0.03</td>
<td>5.52 ± 0.11</td>
<td>0.20 ± 0.04</td>
<td>0.45 ± 0.06</td>
</tr>
</tbody>
</table>

Fig. 2. Acidifying effects of phosphoric acid and mono-ammonium phosphate (MAP) on the calcareous soil. Data are the mean ± s.d. of three observations.
present. However, the problem of Cd activation in calcareous soil with high environmental background values should not be overlooked.

Both MAP and phosphoric acid are used as sources of water-soluble P. From Fig. 5 it can be seen that there was a significant linear correlation between concentrations of Cd\(_{\text{Ex}}\) and Cd\(_{\text{FeOx}+\text{MnOy}}\) and the addition rate of the two P-containing acidifying agents, and that the two acidifying agents at the same level of addition provided the same amount of P in water-soluble form to the calcareous soil. This indicates that the application rate of water-soluble P may be an important factor affecting the chemical transformation of Cd in calcareous soil. The increase in water-soluble P in calcareous soils with addition of the two P-containing acidifying agents induced the absorption of Cd on Fe oxides and the conversion of P in water-soluble form to the Fe-bound form (Jalali and Ranjbar 2010). This may explain the chemical transformation of Cd in calcareous soil treated with the two P-containing acidifying agents.

To study the main factors affecting the chemical transformation of Cd in calcareous soil treated with the two P-containing acidifying agents, two independent variables (soil pH and the addition level of P in water-soluble form \(P_{\text{addition}}\)) were used in a multiple stepwise regression analysis. The results (see Eqs 1 and 2) indicated that only \(P_{\text{addition}}\) remained as a statistically significant predictor variable \((P<0.05)\):

\[
\begin{align*}
\text{(a)} & \quad y = -6.596x + 7.568 \quad R^2 = 0.990 \\
\text{(b)} & \quad y = 6.411x + 1.193 \quad R^2 = 0.983
\end{align*}
\]
Acknowledgements

be paid to the problem of Cd activation in calcareous soils with the adsorption of Cd on Fe oxides. Considerable attention should be given to two acidifying agents, and the increase in water-soluble P in the study area. The authors thank all their colleagues who helped with the collection and analysis of the soil samples. The authors are very grateful to Dr Peter Christie (Belfast, UK) for his revision of the manuscript.

References

Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. Journal of

\[
\text{Cd}_{\text{EX}} = 6.206 \times P_{\text{addition}} + 1.254
\]

\[
R^2 = 0.983; \text{SE} = 0.137
\]

\[
\text{Cd}_{\text{FeOx}+\text{MnOy}} = -6.437 \times P_{\text{addition}} + 7.520
\]

\[
R^2 = 0.990; \text{SE} = 0.107
\]

where \(\text{Cd}_{\text{EX}}\) is the concentration of exchangeable Cd in mg kg\(^{-1}\), \(\text{Cd}_{\text{FeOx}+\text{MnOy}}\) is the concentration of Cd in the form of bound to iron and manganese oxides in mg kg\(^{-1}\) and \(P_{\text{addition}}\) is the addition level of P in water-soluble form in mol kg\(^{-1}\) soil. From Eqns 1 and 2 it can be seen that the two models had a high coefficient of determination \((R^2)\) and a small standard error of the estimate (SE), which means the chemical transformation of Cd in calcareous soil treated with the two P-containing acidifying agents was mainly associated with the addition level of P in water-soluble form and not soil pH. However, several studies have reported that water-soluble phosphate compounds can immobilise Cd through various mechanisms, such as surface complexation, ion exchange, precipitation and adsorption (Levini-Minzi and Petruzelli 1984; Pearson et al. 2000; McGowen et al. 2001; Bolan et al. 2003; Thawornchaisit and Polprasert 2009). Further research is needed to investigate the mechanism of chemical transformation of Cd in calcareous soil treated with the two P-containing acidifying agents.

Numerous studies have shown that the use of phosphate fertilisers can control plant accumulation of Cd (Takijima and Katsumi 1973; MacLean 1976; Williams and David 1976; Street et al. 1978). However, the present study suggests that MAP applied as a phosphate fertiliser cannot reduce the availability of Cd in calcareous soil and should therefore be used carefully in the study area and in other regions with similar conditions.

Conclusions

The concentration of total Cd in the calcareous soil of the study area was very high and most of the Cd in the soil was only slightly available, being primarily bound to Fe and Mn oxides. Phosphoric acid is a strong P-containing acidifying agent that can significantly decrease the pH of the calcareous soil at a low application rate, whereas MAP is a weak P-containing acidifying agent and acidifying fertiliser that can slightly decrease the pH of the soil at normal application rates with its higher acid buffering capacity. However, both P-containing acidifying agents can markedly and effectively promote the conversion of \(\text{Cd}_{\text{FeOx}+\text{MnOy}}\) to \(\text{Cd}_{\text{EX}}\). The amount of \(\text{Cd}_{\text{FeOx}+\text{MnOy}}\) converted to \(\text{Cd}_{\text{EX}}\) was significantly correlated with the addition rate of the two acidifying agents, and the increase in water-soluble P in the calcareous soil with the addition of acidifying agent induced the adsorption of Cd on Fe oxides. Considerable attention should be paid to the problem of Cd activation in calcareous soils with application of the two acidifying agents.

Acknowledgements

This research was funded, in part, by a project supported by the Key Laboratory of Soil Environment, the Environmental Protection Research Project of Jiangsu Province (Grant no. 201264) and Pollution Remediation and the National Natural Science Foundation of China (Grant no. 41001315). The authors thank all their colleagues who helped with the collection and analysis of the soil samples. The authors are very grateful to Dr Peter Christie (Belfast, UK) for his revision of the manuscript.