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Abstract China is one of the largest producers, consumers,
and traders for pesticides in the world. Currently, there are more
than 600 pesticide-active substances registered in China, where-
as few studies were conducted to improve our understanding of
the occurrence and environmental impact of current-use pesti-
cides (CUPs) in China’s environment. In this work, 72 surface
sediment samples were taken from the coastal and offshore of
Bohai and Yellow seas and were analyzed for six CUPs (triflu-
ralin, dacthal, quintozene, endosulfan, chlorpyrifos, and
dicofol) and two metabolites (pentachloroanisole and endosul-
fan sulfate). Sediment samples were categorized as estuarine or
near-shore sediments (Laizhou Bay, Taozi Bay, Sishili Bay, and
Jiaozhou Bay) and offshore sediments. Trifluralin, α-
endosulfan, endosulfan sulfate, chlorpyrifos, dicofol, and

pentachloroanisole were detected in more than 60 % of the
samples. Dicofol was the predominant compound with concen-
trations mostly higher than 100 pg/g dry weight (dw) with the
highest concentration of 18,000 pg/g dw. Concentrations of
other compounds were mainly below 100 pg/g dw. CUP levels
were much lower than the sediment screening benchmark
calculated. The highest levels of α-endosulfan, endosulfan
sulfate, trifluralin, and chlorpyrifos existed at Laizhou Bay,
whereas pentachloroanisole and dicofol had highest mean con-
centrations at Jiaozhou Bay. Generally, no correlation between
pesticide concentrations and total organic carbon was observed
either for offshore samples or for near-shore samples.
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Introduction

A large quantity of pesticides is used to control weeds, dis-
eases, or insects and parts of these chemicals are entering into
the environment and ecosystem inevitably. For example, it
was reported that over two million tons of pesticides are used
in agriculture worldwide every year (USEPA 2011). Some
pesticides pose risk to both humans and sensitive ecosystems
and are undergoing regional even global transport for their
persistence in the environment and semivolatile property
(Wania et al. 1998; Hoferkamp et al. 2010). Due to the
properties of persistence, bioaccumulation, adverse effects
including human and ecotoxicity, as well as potential for
long-range transport (LRT), a dozen of pesticides are listed
as persistent organic pollutants (POPs) under the Stockholm
Convention and are banned for agricultural use worldwide
(www.pops.int). However, some of the current-use pesticides
possess parts of the POPs’ properties and are still in use widely
around the world and thus are of great concern.
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After released into the environment, pesticides under-
go a series of physicochemical processes and can trans-
port to coastal and marine environment and even the
polar region through riverine discharge and atmospheric
transport (Hoferkamp et al. 2010). Through atmospheric
transport, these chemicals reach seawater via dry depo-
sition, wet deposition, and air-sea gas exchange
(Bidleman and McConnell 1995; Bidleman 1999).
Once they reached seawater, pesticides can undergo
sedimentation processes by absorbing on particles and/
or can be transported to the deep sea or ocean far away
from their source regions (Dachs et al. 1996, 2002).
Pest ic ides associated with sediment would be
bioaccumulated by benthic invertebrates, which play a
key role in the transfer of aquatic contaminants to
higher trophic levels (Reynoldson 1987; DiPinto 1996).
Re-emission of pesticides from sediment/surface seawa-
ter could happen since primary emission dramatically
decreases or ceases (e.g., in the case of a global ban
of use), making the ocean as secondary sources of
pesticides (Lohmann et al. 2007; Breivik et al. 2004).

China is the largest producer and user of pesticide in
the world. Until 2008, more than 600 pesticide active
ingredients are produced in China with a production of
approximately one million tons/year (He 2008). From
January to November 2012, the total production of
pesticides was 3.2 million tons in China, while the
pesticide market demands for 2013 in China were esti-
mated to be around 1 million tons (Shu and Zhao
2013). In the past 20 years, investigations on legacy
organochlorine pesticides (OCPs) (such as dichlorodi-
phenyltrichloroethanes (DDTs) and hexachlorocyclohex-
anes (HCHs)) in China’s coastal environment have been
well documented, and the levels, distributions, and
sources of legacy OCPs in sediment and biota samples
and their risk assessments were widely reported (Zhang
et al. 2002, 2009; Yang et al. 2005; Hu et al. 2009).
However, there are few studies on the occurrence of
CUPs (mainly focusing on organophosphorous and py-
rethroid insecticides) in the terrestrial and coastal water
samples and urban waterway sediment samples (Zhang
et al. 2002; Mehler et al. 2011; Wang et al. 2012a).
CUPs in coastal sediment samples were rarely reported,
especially for the open sea region.

In the present study, surface sediments from the Bohai
and Yellow seas were analyzed for six CUPs (trifluralin,
dacthal, quintozene, endosulfan, chlorpyrifos, and dicofol)
and two metabolites (pentachloroanisole and endosulfan
sulfate). The physicochemical properties of these target
compounds are given in Table 1. Surveys and long-term
monitoring studies have demonstrated the presence of
these CUPs in the Arctic environment (Hoferkamp et al.
2010; Zhong et al. 2012a), which suggests the potential T
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for long-range transport. Trifluralin, dacthal, endosulfan,
chlorpyrifos, and dicofol also have been detected in ma-
rine air and seawater of East Asia (Zhong et al. 2012a).
The Bohai and Yellow seas border on important agricul-
tural regions (Liaoning, Hebei, Shandong, and Jiangsu
provinces and Tianjin Municipality) of China, and these
regions account for 6 % of the total land area of China
but 23.5 % of the total pesticide consumption of the
country (www.stats.gov.cn). Jiangsu and Shandong
provinces were the first and second largest pesticide
producers of China in 2011, of which they account for
29 and 20 % of the total production, respectively (www.
chinapesticide.gov.cn). Several important rivers with huge
amounts of runoff and sediment load are emptying into
the Bohai and Yellow seas, including Liaohe River
(drainage area 2.2×105 km2), Haihe River (drainage area
2.7×105 km2), Yellow River (drainage area 7.5×105 km2),
and Yangtze River (drainage area 1.8×106 km2).
Concentrations, distributions, and potential ecological risk
of these CUPs in Bohai and Yellow sea sediments are
discussed in this paper. These results will facilitate further
research on the environmental impact and fate of CUPs in
these regions.

Materials and methods

Sample collection

Seventy-two surface sediment samples were collected from
the Bohai and Yellow seas with a stainless steel grab sampler
in September 2009 for Laizhou Bay at the south of Bohai Sea
(top 10 cm sediment collected) and with a stainless steel box
corer in April 2010 for other sampling areas (top 5 cm sedi-
ment collected). The sediment samples were stored at −20 °C
prior to freeze-drying. Sampling sites are shown in Fig. 1.

Extraction, clean-up, and analysis

Freeze-dried and homogenized sediments (10 g) were
Soxhlet-extracted with dichloromethane (DCM) for 16 h,
and activated granulated copper was used for desulfurization;
500 pg of d14-Trifluralin was added as surrogate before ex-
traction. The extracts were concentrated to 2 mL using a rotary
evaporator and further cleaned on a 2.5-g 10 % water-
deactivated silica gel (mesh size 70 to 140) column topped
with 3 g anhydrous granulated sodium sulfate. The column
was eluted with 20 mL hexane (fraction 1), followed by

Fig. 1 Location of sampling sites at the Bohai and Yellow seas
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30 mL dichloromethane/acetone (1:1) (fraction 2). Each frac-
tion was evaporated to a final volume of ~30 μL. The solvent
of fraction 2 was changed to hexane during evaporation;
500 pg of 13C-PCB 141 was added to both fractions as an
internal standard.

Both fractions were analyzed with a GC/MS system (6890
GC/5973 MSD) in electron capture negative chemical ioniza-
tion mode (ECNCI) equipped with an HP-5MS column
(30 m×0.25 mm i.d. × 0.25 μm film thickness, J&W
Scientific). Methane was used as the ionization gas. The
injector was operated in pulsed-splitless mode (injection pulse
20 psi for 2 min) with an inlet temperature program as follows:
60 °C for 0.1 min and 500 °C/min until 280 °C and held for a
final 20 min. The GC oven program was as follows: initial
60 °C for 2 min, 30 °C/min until 150 °C, 2 °C/min until
240 °C, and 20 °C/min until 300 °C and held for 5 min. The
temperature of the MS transfer line was held at 280 °C. The
ion source and quadrupole temperature was 150 °C. Total
amounts of individual compounds in the samples are the
sum of fractions 1 and 2.

Quality assurance and quality control

Onemethod blank was run for each batch of samples extracted
(12 samples per batch) and six method blanks were obtained
in total for the 72 samples extracted. Mean absolute blank
values of CUPs ranged from 0.27 to 14 pg. Method detection
limits (MDLs) were derived frommean field blank values plus
three times the standard deviation (σ) (for compounds not
present in the field blanks), then instrumental detection limits
at a signal-to-noise ratio of three were used instead. Using a
mean sediment sample mass of 10 g, the MDLs ranged from
0.067 to 2.6 pg/g. Concentrations calculated from GC/MS
signals which were below the MDLs were defined as not
detected in this work. The spike test recoveries for α-
endosulfan, β-endosulfan, endosulfan sulfate, trifluralin,
pentachloroanisole, quintozene, dicofol, chlorpyrifos, and
dacthal were 66±4, 96±7, 65±67, 58±8, 49±3, 58±4, 123
±27, 51±28, and 109±9 %, respectively. Surrogate recoveries
in this study were 52±19 %. Therefore, the analysis of CUPs
in this study was semiquantitative. The concentrations were
corrected with surrogate recoveries. Namely, the concentra-
tions calculated from GC/MS signals are divided by the sur-
rogate (d14-Trifluralin) recovery to get the reported concentra-
tions in this paper. Details of MDLs, spike test recoveries, and
surrogate recoveries are provided in Tables S1 and S2 in the
Supplementary material.

Total organic carbon (TOC) analysis

Total organic carbon of freeze-dried powdered sediments was
determined by a LECO® RC612 multiphase carbon and
hydrogen/moisture analyzer. Total organic carbon is analyzed

by placing approximately 0.20 g of dried, ground, and ho-
mogenized sediment sample into a clean, carbon-free com-
bustion boat. The sample is placed into an oven set at 60 °C
and then combusted at 550 °C until no more CO2 is created
(~15 min). CO2 from the combustion is quantified by infrared
detection and used to estimate TOC. TOCs for sediments in
this study range from 0.035 to 1.3 % (average 0.54±0.33 %).
TOCs of individual sampling sites were provided in Table S2
in the Supplementary material. Pearson correlation between
TOC and pesticide concentrations was performed using the
program SPSS 16.0 for Windows (SPSS Inc., Chicago, IL).

Results and discussion

Concentrations

Concentrations (dry weight, dw) for individual sampling sites
were listed in detail in Table S2. The sampling sites were
classified into two groups (Table S2), namely near-shore
samples along the coast of Shandong Peninsula (Laizhou
Bay, Taozi Bay, Sishili Bay, and Jiaozhou Bay) and the
offshore samples.

α-Endosulfan, endosulfan sulfate, trifluralin, chlorpyrifos,
dicofol, and pentachloroanisole were the most frequently de-
tected compounds with 60 % of the samples detected. β-
Endosulfan, dacthal, and quintozene were detected in 36, 17,
and 7 % of the samples, respectively. Dicofol was the pre-
dominant compound with ~90 % of the concentration values
larger than 100 pg/g, followed by chlorpyrifos, with a maxi-
mum level of 140 pg/g dw. Other compounds had maximum
concentrations around 10 pg/g dw. The levels of the target
compounds (excluding dicofol) in surface sediments (ranging
from 0.0050 to 140 pg/g) were lower than previously reported
levels of legacy OCPs, i.e., HCHs and DDTs (160–5,700 pg/
g), while these two pesticides accounted for about 78 % of the
total pesticide production and usage in China during the 1960s
to 1983 (Hu et al. 2009).

The levels of dicofol in the Bohai andYellow sea sediments
spanned a wide range from 0.30 to 18,000 pg/g dw with an
average of 1,300±2,500 pg/g dw. Dicofol is a broad spectrum
insecticide with excellent efficacy. It is widely used for mites
control on a wide variety of fruits and crops. Dicofol has been
produced in China since 1976 and its production in China was
estimated to be 3,500 tons per year in recent years (Project
Document for China Dicofol Project 2008). Dicofol contains
DDTas an impurity, since it is mainly synthesized from DDT.
It is widely accepted that dicofol usage is an important current
source of DDT in China (Qiu et al. 2005; Yang et al. 2008),
while only a few studies focus on dicofol itself. Xue et al.
analyzed dicofol in water and sediment of the Beijing
Guanting Reservoir and reported a mean concentration of 49
±15 pg/g dw (Xue et al. 2005). The relatively high
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concentrations of dicofol in the present study indicate that the
occurrence of dicofol in China’s coastal environment deserve
more attention.

The predominance of dicofol in the Bohai and Yellow seas
could be attributed to its high consumption volume and phys-
icochemical properties. The logKoc values can be used to
estimate the sorption of hydrophobic pollutants on natural
sediments. Among target compounds, dicofol has a relatively
low logKoc value (Table 1), suggesting its weak partitioning in
sediment. However, it has the lowest Henry’s law constant or
the largest water solubility (Table 1), which could lead to
relatively high dicofol concentrations in seawater due to stron-
ger net deposition during air-seawater gas exchange or greater
input of dicofol via riverine transport. Thus, the relatively high
concentrations of dicofol in sediment samples resulted from
its low Henry’s law constant or high water solubility rather
than its logKoc. This explanation is supported by the results
from our recent study on CUPs in the air and seawater of the
Bohai and Yellow seas. Dicofol was found to have low con-
centrations in the air but relative enrichment in seawater
compared with other CUPs with higher Henry’s law constant
or lower water solubility (Zhong et al. 2014).

Endosulfan has been agriculturally used in China since
1994. It has been listed in Annex A of the Stockholm
Convention inMay 2011 (UNEP 2013), and new registrations
of endosulfan-based products in China are prohibited since
July 2011 (MOA 2011). The total usage of endosulfan on
cotton, wheat, tea, tobacco, and apples in China was estimated
to be 25,700 tons between 1994 and 2004 within the regions
of Hebei, Shandong, and Jiangsu provinces, and the coasts of
Bohai and Yellow seas were the regions of most intensive
endosulfan usage (Jia et al. 2009). Technical grade endosulfan
contains two isomers, known as α-endosulfan and β-
endosulfan. The α-/β-endosulfan isomer ratio ranges from

2.0 to 2.3 depending on the technical mixture (Herrmann
2002). Endosulfan is subject to degradation in aquatic systems
and the main metabolite in sediments is endosulfan sulfate
(Weber et al. 2010). In this study, endosulfan sulfate
accounted for 60±22 % of total endosulfans (sum of α-
endosulfan, β-endosulfan, and endosulfan sulfate)
(Table S2), indicating a significant degradation of endosulfan
in the sediments of Bohai and Yellow seas.

α-Endosulfan, β-endosulfan, and endosulfan sulfate in our
study had maximum levels of around 20 pg/g dw (Table S2),
which were lower than the reported levels of these compounds
in the surface sediments collected in 2006 in the Bohai Sea (30
to 700 pg/g dw) (Hu et al. 2009). Lin et al. (2012) analyzed
endosulfan in surface sediments from the coast of East China
Sea in 2007 and found that both endosulfan isomers were
detected only in few sediment samples (Lin et al. 2012).
Comparison of endosulfan concentrations in coastal sediment
samples from different areas in the world is given in Table 2.
Endosulfan concentrations in our study are at similar levels as
those for the Persian Gulf, Gulf of Oman, and coast of
Campeche, Mexico (de Mora et al. 2005; Carvalho et al.
2009a), but lower than those observed in sediments from the
Portuguese coast, three estuaries of the Cantabrian Coast,
Spain (Carvalho et al. 2009b; Gomez et al. 2011), as well as
the Daliao River Estuary, and Yangtze River Estuary, China
(Tan et al. 2009; Liu et al. 2003).

In this study, concentration ranges for both endosulfan
isomers were comparable (Table 2), but the ratios of α-/β-
endosulfan spanned wide ranging from 0.0086 to 23 with
60 % of the values lower than the ratios for technical mixtures
(2.0–2.3). Previously reported α-/β-isomer ratios (0.3 to 1.8)
for Bohai Sea surface sediments in 2006 were also lower than
those for technical mixtures, but the ratios were within a
smaller range (Hu et al. 2009). Estimated Koc values of the

Table 2 The range of endosulfans’ concentrations (in pg/g dw) in marine sediments of different areas in the world

Sampling areas Sampling
year

α-Endosulfan β-Endosulfan Endosulfan
sulfate

Reference

Bohai and Yellow Seas 2010 <0.0082 to 22 <0.0066 to 17 0.0081 to 18 This study

Bohai Sea 2006 <30 to 730 <30 to 400 <30 to 560 Hu et al. (2009)

East China Sea 2007 Detected in few samplesa Detected in few samplesa No data Lin et al. (2012)

Coast of Persian Gulf and Gulf
of Oman

2000 and 2001 <0.2 to 16 <0.95 to 29 <1.3 to 11 de Mora et al. (2005)

Coast of Campeche, Mexico 2000 <0.55 <0.65 to 7.2 No data Carvalho et al. (2009a)

Coast of Portugal 2007 and 2008 680 to 5,900 No data No data Carvalho et al. (2009b)

Three estuaries in the Cantabrian
Coast, Spain

2006 200 to 600 <210 to 400 <170 Gomez et al. (2011)

Daliao River Estuary, Bohai Sea 2007 10 to 200 10 to 800 No data Tan et al. (2009)

Yangtze Estuary and nearby
coastal areas, China

2001 <30 to 1,230 <100 to 160 No data Liu et al. (2003)

In this table, samples in which endosulfans were not detectable are excluded when we summarize the range of concentrations
a Details are not given in this paper
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α- and β-isomer are the same (Table 1). However, α-
endosulfan has greater tendency of volatility from both solid
and aqueous surfaces than the β-isomer (Antonious et al.
1998). Moreover, isomeric conversion from β-endosulfan to
α-endosulfan has been demonstrated to occur in the environ-
ment (Schmidt et al. 1997; Walse et al. 2002). These are the
possible reasons that high ratios of α-/β-endosulfan were
observed. However, remobilization experiments showed that
α-endosulfan desorbed more readily from sediments than the
β-isomer (Peterson and Batley 1993) and the α-isomer is
converted more readily to endosulfan sulfate than the β-
isomer (Leonard et al. 2001; Walse et al. 2003). A combined
influence of the factors mentioned above may explain the
wide range of α-/β-endosulfan ratios.

Pentachloroanisole is a metabolite of quintozene and penta-
chlorophenol (PCP) (China Pesticide Information 2012). In our
study, detection frequency and concentrations of
pentachloroanisole were higher than those of qintozene. Much
higher concentrations of pentachloroanisole than those of
quintozene were also observed in the air and seawater samples
of the German Bight (North Sea) in our previous work (Zhong
et al. 2012b). Domestic consumption of quintozene is estimated
to be 32 tons per year (Wang et al. 2012b). Annual production
of PCP together with pentachlorophenol-Na (Na-PCP) ranged
from 1,000 to 10,000 tons during 1983 to 2003, but PCP
production was discontinued in 1995 and Na-PCP was pro-
duced until 2003 (Wang et al. 2010). The much higher concen-
trations of pentachloroanisole compared with quintozene pos-
sibly resulted from the significant degradation of quintozene
and additional pentachloroanisole contribution from the degra-
dation of PCP.

Chlorpyrifos had the second highest concentrations in the
sediments of Bohai and Yellow seas and this is possibly
attributed to its relatively high consumption volume in recent
years. The domestic market demand of chlorpyrifos was
18,000 tons in 2008 (http://www.ccpia.com.cn/, China Crop
Protection Industry Association). Trifluralin is expected to be
prone to accumulation in sediments, since it has a relatively
high logKoc value of 4.2. However, high Henry’s law constant
(Table 1) might result in its low partitioning in seawater during
air-water gas exchange, thereby going against its enrichment
in sediment. Dacthal had low detection frequency in sedi-
ments of Bohai and Yellow seas, whereas it was one of the
most abundant CUPs in the air of the Centre Region (France)
and North America (Kuang et al. 2003; Peck and Hornbuckle
2005; Brun et al. 2008; Yusa et al. 2010). This result is
consistent with the fact that dacthal has not been registered
in China (China Pesticide Information 2012).

Spatial distributions

Spatial distributions of compounds with high detection fre-
quencies (>60 %), namely dicofol, α-endosulfan, trifluralin,

chlorpyrifos, pentachloroanisole, and endosulfan sulfate, are
discussed below. Generally, the highest mean concentrations
appeared at near-shore sampling sites (Table S2). For instance,
the highest mean concentrations of α-endosulfan, endosulfan
sulfate, trifluralin, and chlorpyrifos were found in Laizhou
Bay, whereas pentachloroanisole and dicofol had the highest
mean concentrations in Jiaozhou Bay. Sampling sites with
high concentrations were generally at/close to estuaries.
Relatively high-contaminated near-shore sites of Laizhou
Bay were DJWE where high levels of chlorpyrifos, dicofol,
α-endosulfan, trifluralin, and pentachloroanisole were detect-
ed and YKE where high levels of trifluralin, chlorpyrifos, and
dicofol were detected (Fig. 2). Similarly, the highest chlorpyr-
ifos levels occurred close to the Baisha River and Haibo River
estuaries (JZ-A1 and JZ-E1) and the highest dicofol levels
were found close to Licun River and Haibo River estuaries
(JZ-A3 and JZ-E1) in Jiaozhou Bay (Fig. 2). For the offshore
sampling sites, mean concentrations of most compounds at the
Bohai Sea were higher than those at the Yellow Sea.

Spatial distributions of hydrophobic pollutants in sedi-
ments can significantly correlate with the distributions of
TOC due to the post-depositional sorption or co-emission
(Hung et al. 2006). Good correlations between hydrophobic
pollutants and TOC are supposed to be observed in offshore
areas and continental shelf, since these relatively homoge-
neous environmental conditions provide a TOC-dependent
post-depositional sorption environment (Lee et al. 2001;
Zhang et al. 2007).

In this work, a correlation between concentrations and
TOC was basically not observed for offshore samples
(Table S3). This result may be due to the fresh input of these
compounds. Previous studies showed good correlations be-
tween TOC and legacy organochlorines for the sediments of
Bohai and Yellow seas (Zhang et al. 2007; Hu et al. 2009).
The restriction of use of organochlorines (for examples,
DDTs, HCHs, hexachlorobenzene, and polychlorinated bi-
phenyls) would favor a post-depositional sorption-dominated
distribution of these chemicals in offshore sediments because
of a lack of fresh inputs, which could give rise to the possi-
bility of a concentration distribution inconsistent with the
TOC distribution.

A correlation between concentrations and TOC was gener-
ally not found for near-shore sampling sites too, except that
pentachloroanisole and dicofol concentrations significantly
correlated with TOC at Jiaozhou Bay (r=0.957, p=0.003 for
pentachloroanisole and r=0.883, p=0.009 for dicofol). This
result suggests spatially limited or defined sources near the
coast. For instance, Zhong et al. (2011) reported good corre-
lations between legacy OCPs and TOC for offshore sediments
of Laizhou Bay but not for adjacent estuarine and riverine
sediments, some of which especially high OCP concentrations
were detected (Zhong et al. 2011). A lack of correlation
between legacy OCPs and TOC was also observed for coastal
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East China Sea sediments, and high HCH and DDT concen-
trations, respectively, existed at the estuaries and in the near-
shore area with a significant decrease gradient seaward owing
to nonpoint sources of the coast (Lin et al. 2012).

Evaluation of ecological effects

Ecological effects of CUPs in sediment can be preliminarily
evaluated by comparing CUP concentrations in the present
study with sediment screening benchmarks. However, sedi-
ment screening benchmarks of the six frequently detected
CUPs are unavailable. Sediment screening benchmarks can
be estimated from water screening benchmarks using the
equilibrium partitioning approach by Di Toro et al. (1991):

SSB ¼ WSB � Koc � f oc=100 ð1Þ

where SSB is the sediment screening benchmark (μg/g), WSB
is the water screening benchmarks (μg/L), and foc is the TOC
content of the sediment samples (%). Marine water screening
benchmarks for chlorpyrifos, α-endosulfan, and endosulfan
sulfate are 0.0056, 0.0010, and 0.009 μg/L, respectively (EPA

Region 3 Ecological Risk Assessment, www.epa.gov).
Marine water screening benchmarks are unavailable for
dicofol, trifluralin, and pentachloroanisole, so freshwater
screening benchmarks were used instead, i.e., 19.8 μg/L for
dicofol (Texas Surface Water Quality Standards, www.tceq.
state.tx.us), 0.2 μg/L for trifluralin (EPA Region 3 Ecological
Risk Assessment, www.epa.gov), and unavailable for
pentachloroanisole. CUP concentrations in our study are
much lower than the resulting sediment screening
benchmarks for chlorpyrifos, α-endosulfan, endosulfan sul-
fate, dicofol, and trifluralin, which are at the microgram per
gram level (0.0044–1,300 μg/g).

Conclusion

Six current-use pesticides and two of their metabolites were
detected in the coastal and offshore sediments of Bohai and
Yellow seas, and lower concentrations of CUPs (except
dicofol) than legacy OCPs previously reported were found.
Dicofol had relatively high concentrations compared with the
other compounds and especially high levels were observed at
Jiaozhou Bay. The high levels of dicofol in sediments can be

Fig. 2 Distributions ofα-endosulfan, trifluralin, and pentachloroanisole in Laizhou Bay (a) and distributions of dicofol and chlorpyrifos in Laizhou Bay
(b) and Jiaozhou Bay (c)
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attributed to its high consumption amount recently, together
with its low Henry’s law constant and high solubility in water.
The occurrence and fate of dicofol in the aquatic environment
deserves further research. Concentrations of endosulfan sul-
fate were higher than its parent compounds (i.e.,α-endosulfan
and β-endosulfan). This case is expected to be continued,
since endosulfan has been listed in the Stockholm
Convention and its primary emissions are expected to de-
crease. High concentrations of the compounds generally oc-
curred at near-shore sampling sites especially at sampling sites
at/close to estuaries. It can be explained by the riverine input
nearby, since a correlation between concentrations and TOC
was not found, except for pentachloroanisole and dicofol at
Jiaozhou Bay.
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