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Honeysuckle (Lonicera japonica Thunb.) is a popular landscape plant. This study was
to explore leaf photosynthetic characterization with emphasis on the coordination
between photosystem II (PSII) and photosystem I (PSI) in tetraploid and its autodiploid
honeysuckle (TH and DH) upon salt stress (300 mM NaCl). Leaf photosynthetic rate and
carboxylation efficiency in DH and TH were significantly decreased under salt stress,
and the decrease was greater in DH. PSII photoinhibition was induced in DH under salt
stress, as the maximum quantum yield of PSII (Fv/Fm) was significantly decreased. PSII
photoinhibition declined electron flow to PSI, but did not prevent PSI photoinhibition,
as the maximal photochemical capacity of PSI (�MR/MR0) was significantly decreased
by salt stress. According to the significant decrease in PSI oxidation amplitude in the
first 1 s red illumination, PSI photoinhibition was more severe than PSII photoinhibition.
As a result, PSII and PSI coordination was destroyed. Comparatively, salt-induced
photoinhibition did not occur in TH, as no significant change was observed in Fv/Fm
and �MR/MR0. Consequently, PSII and PSI coordination was not significantly affected
by salt stress. In conclusion, TH maintained normal coordination between PSII and PSI
by preventing photoinhibition and exhibited higher leaf photosynthetic activity than DH
under salt stress. Compared with DH, lower leaf ionic toxicity due to greater root Na+

extrusion and restriction of Na+ transport to leaf might be responsible for maintaining
higher leaf photosynthetic capacity in TH under salt stress.

Keywords: honeysuckle, Na+, photosystem, photosynthetic electron transport, polyploidy

Introduction

Salinity is one of the main abiotic stresses which reduce plant growth and development. Salt stress
can damage biological macromolecules and interfere with metabolisms in plant cells by inducing
osmotic stress and ionic toxicity (Munns and Tester, 2008). Photosynthesis closely correlates with

Abbreviations: CE, carboxylation efficiency; Ci, intercellular CO2 concentration; DH, diploid honeysuckle; ETo/ABS,
quantum yield for electron transport; Fv/Fm, the maximal quantum yield of PSII; gs, stomatal conductance; MDA, mal-
ondialdehyde; �MR/MR0, the maximal photochemical capacity of PSI; NMT, non-invasive micro-test technique; NPQ,
non-photochemical quenching; OEC, oxygen-evolving complex; Pn, Photosynthetic rate; PSI, photosystem I; PSII, photo-
system II; �PSII, actual photochemical efficiency of PSII; ROS, reactive oxygen species; Rubisco, ribulose-1,5-bisphosphate
carboxylase/oxygenase; TH, tetraploid honeysuckle; Wk, variable fluorescence intensity at K step.
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plant growth and is sensitive to salt stress, and photosynthetic
capacity is an important criterion for diagnosing plant adapt-
ability to salinity (Kalaji and Pietkiewicz, 1993; Kalaji et al.,
2011).

Up to now, the effects of salt stress on plant photosynthesis
have been extensively studied. The decreased CO2 availability due
to the diffusion limitation of stomata is considered as the initial
negative effect of salt stress on photosynthesis (Loreto et al., 2003;
Chaves et al., 2009). Rubisco is a crucial enzyme in CO2 fixa-
tion process. Salt stress can suppress Rubisco activity by reducing
Rubisco content and activation, and lead to the decline of CO2
fixation (Feng et al., 2007; Lu et al., 2009). The inhibition on CO2
assimilation will increase accumulation of reducing equivalents
in the form of NADPH, underlie over-reduction of photosyn-
thetic electron transport chain and elevate excitation pressure in
chloroplast. If the excess excitation energy cannot be dissipated,
ROS production will be increased and then bring about pho-
toinhibition (Muller et al., 2001; Takahashi and Murata, 2008).
NPQ plays a major role in photoprotection, as it can dissipate
the excess excitation energy from light as heat and lower the
creation of ROS (Bilger and Bjorkman, 1990; Carbonera et al.,
2012; Brestic et al., 2014). PSII photoinhibition is a result of the
imbalance between PSII photodamage and the repair of such
damage (Murata et al., 2007). PSII photodamage is initiated by
the direct effect of light on the OEC, and ROS inhibit the repair
of photodamaged PSII mainly by suppressing the synthesis of D1
protein. In the existing studies, it is not consistent whether salt
stress can induce PSII photoinhibition, possibly due to the dif-
ferent plant materials and salt treatment protocols (Chen et al.,
2004; Netondo et al., 2004; Kalaji et al., 2011; Hussain et al., 2012;
Chen et al., 2013). In contrast, few studies pay attention to the
salt effects on PSI capacity in plants (Stepien and Johnson, 2009).
PSI photoinhibition is induced by ROS produced at the accep-
tor side of PSI through Mehler reaction in vivo (Sonoike, 2011).
The electron flow from PSII is essential for PSI photoinhibition,
and the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an
inhibitor of PSII primary electron acceptor oxidation, can sup-
press PSI photoinhibition and help PSI recovery after photoin-
hibition (Sonoike, 1996; Zhang et al., 2011). PSI photoinhibition
is more dangerous than PSII photoinhibition because of the dif-
ficult recovery process of PSI (Kudoh and Sonoike, 2002; Zhang
and Scheller, 2004). Therefore, rapid PSII photoinhibition under
high temperature or high light stress protects PSI from photoin-
hibition by restricting the electron flow to PSI (Herrmann et al.,
1997; Yan et al., 2013a,b; Zivcak et al., 2014). PSI photoinhibi-
tion usually arises under chilling stress with low light because of
the limited restriction on electron flow to PSI, and in particular,
rapid recovery of PSII after chilling stress is detrimental to the
recovery of PSI (Zhang et al., 2011). Thus, PSII and PSI coordina-
tion plays an important role in protecting PSI or even the whole
photosynthetic apparatus. However, it is still largely unknown
about the interaction between PSII and PSI in plants under salt
stress.

Polyploidy indicates the doubling of chromosomes of a sin-
gle species or the hybrids between two species, and polyploidy
usually can enhance plant tolerance to abiotic stresses. In con-
trast to the diploid, polyploid black locust, turnip andArabidopsis

exhibited stronger salt tolerance with less decrease in biomass and
lower accumulation of leaf Na+ under salt stress (Meng et al.,
2011; Chao et al., 2013; Wang et al., 2013). On the contrary,
Mouhaya et al. (2010) reported that tetraploid citrus accumulated
more Na+ in the leaf and showed greater decrease in PSII capac-
ity than diploid citrus. Therefore, it is not confirmed whether
polyploidy can enhance plant salt tolerance. Photosynthetic char-
acterization, especially for PSII and PSI interaction, has not been
deeply explored in polyploid plant under salt stress.

Honeysuckle, a twining semi-evergreen vine, is a popular
landscape plant with high environmental adaptability and dis-
tributed widely in temperate and tropical regions. TH has less
whole plant leaf area, higher leaf mass per unit area, thicker
epidermis, and palisade tissue as well as denser pubescence com-
pared with its diploid progenitor, and the stronger drought
tolerance in TH originates from these morphological character-
izations (Li et al., 2009). In this study, we intended to reveal
photosynthetic characterization with emphasis on PSII and PSI
coordination in tetraploid and its autodiploid honeysuckle and
discriminate their salt tolerance. Our study can deepen the
knowledge of salt tolerance mechanism in polyploid plants and
may provide a reference for cultivar selection in saline land
greening.

Materials and Methods

Plant Material and Treatment
Stem cuttings from two cultivars of honeysuckle, tetraploid
(Jiufengyihao, 36 chromosomes) and its diploid progenitor
(Damaohua, 18 chromosomes) were bought from jiujianpeng
agricultural technology limited company (Pingyi, Shandong,
China). The tetraploid cultivar was bred by treating the stem tips
of a diploid cultivar with colchicines (Li et al., 2009). The cut-
tings were planted in a nursery in November, 2013, and then
transplanted to the plastic pots filled with quartz sand in April,
2014. The plants were watered with Hoagland solution (pH 5.7)
and placed in climatic chambers (Huier, China). The photon flux
density was approximately 200 µmol m−2 s−1 (12 h per day
from 07:00 to 19:00) in the chambers. Day/night temperature
and humidity were controlled at 25/18◦C and 65% in the cham-
bers. After 60 days, healthy and uniform plants were selected for
salt treatments. NaCl was added to nutrient solution incremen-
tally by 50 mM step every day to provide final concentration of
300 mM. Nutrient solution without adding NaCl was used to cul-
tivate the control plants. The expanded leaves from the middle of
a shoot were sampled for measuring photosynthetic parameters
and MDA content. After salt stress for 15 days, roots, and leaves
were harvested, rinsed with deionized water and wiped with tis-
sues. Thereby, they were dried at 105◦C for 10 min, and then
dried at 70◦C to constant weight for measuring Na+ content.

Measurements of Gas Exchange and
Chlorophyll Fluorescence Parameters
Gas exchange and modulated chlorophyll fluorescence
parameters were simultaneously detected by using an open
photosynthetic system (LI-6400XTR, Li-Cor, Lincoln, NE,

Frontiers in Plant Science | www.frontiersin.org 2 April 2015 | Volume 6 | Article 227

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Yan et al. Salt tolerance in polyploid honeysuckle

USA) equipped with a fluorescence leaf chamber (6400-40 LCF,
Li-Cor).

The leaves were dark-adapted for 30 min before the measure-
ments. The minimal fluorescence level in the dark adapted state
was measured using a modulated pulse (<0.05 µmol m−2 s−1

for 1.8 s). Maximal fluorescence was measured after applying a
saturating actinic light pulse of 8000 µmol m−2 s−1 for 0.7 s.
Subsequently, actinic light intensity was altered to 1000 µmol
m−2 s−1 in leaf cuvette and then maintained for about 30 min.
The temperature, CO2 concentration and relative humidity were,
respectively, set at 25◦C, 400 µmol mol−1 and 65% in the leaf
cuvette. Pn, gs and Ci were simultaneously recorded. In addition,
steady-state fluorescence yield was also recorded. Then, a saturat-
ing actinic light pulse of 8000 µmol m−2 s−1 for 0.7 s was used
to produce maximum fluorescence yield by temporarily inhibit-
ing PSII photochemistry, and the minimum fluorescence in the
steady state was determined during a brief interruption of actinic
light irradiation in the presence of far-red light (λ = 740 nm).
At last, �PSII and NPQ were calculated (Maxwell and Johnson,
2000).

For the measurement of CE, photon flux density and tempera-
ture were set at 1000 µmol m−2 s−1 and 25◦C in the leaf cuvette.
Pn was measured under CO2 concentrations in a sequence of
700, 500, 400, 300, 200, 150, 100, and 50 µmol mol−1. The leaves
were kept under each level of CO2 concentration for 4 min to let
leaves reach steady-state photosynthesis, and Pn and Ci were then
recorded. The correlation curve of Pn related to Ci was estab-
lished, and CE was calculated from the linear portion of Pn-Ci
curve.

Measurement of Chlorophyll a Fluorescence
and Modulated 820 nm Reflection Transients
The measurements were made by using a multifunctional plant
efficiency analyzer (MPEA, Hansatech, UK), and the operat-
ing mechanism of this instrument has been elucidated in detail
(Strasser et al., 2010; Kalaji et al., 2012). The leaves were adapted
in dark for 30 min before the measurement (Kalaji et al., 2014b).
Thereafter, the leaves were orderly illuminated with 1 s red
light (627 nm, 5000 µmol photons m−2 s−1), 10 s far red light
(735 nm, 200 µmol photons m−2 s−1) and 2 s red light (627 nm,
5000 µmol photons m−2 s−1). Chlorophyll a fluorescence and
modulated 820 nm reflection were simultaneously recorded dur-
ing the illumination. Monitoring modulated reflection change
near 820 nm is a very convenient way to follow the redox state
of PSI. The relative value of the maximal difference of 820 nm
reflection during the last 2 s red illumination was used to indicate
�MR/MR0 (Schansker et al., 2003). MR0 is the value of 820 nm
reflection at 0.7 ms (the first reliable MR measurement). �MR is
the value of the maximal difference of 820 nm reflection at the
last 2 s red light illumination.

Chlorophyll a fluorescence transients were quantified accord-
ing to JIP test by using the following original data: (1) fluo-
rescence intensity at 20 µs (Fo, when all reaction centers of
PSII are open); (2) the maximum fluorescence intensity (Fm,
when all reaction centers of PSII are closed) and (3) fluores-
cence intensities at 300 µs (Fk, K step) and 2 ms (FJ, J step).
Using these original data, some parameters can be calculated

for quantifying PSII behavior (Strasser et al., 2010). Fv/Fm, Wk
and ETo/ABS was, respectively, calculated as: Fv/Fm = (Fm −
Fo)/Fm, Wk = (Fk − Fo)/(FJ − Fo) and ETo/ABS = (Fm −
FJ)/Fm.

Measurements of Na+ Content and Na+
Translocation Factor
The extraction of Na+ was performed according to Song et al.
(2011). Deionized H2O (25 ml) was added to 0.1 g dried plant
powder and boiled for 2 h. The supernatant was diluted 50 times
with deionized H2O for measuring Na+ content by using an
atomic absorption spectrophotometer (TAS-990, China). Na+
translocation factor was calculated as the ratio of Na+ concen-
tration between leaves and roots.

Measurement of Root Na+ Flux
Net Na+ flux was measured using NMT (NMT system BIO-
IM, Younger, USA). The concentration gradients of the target
ions were measured by moving the ion-selective microelectrode
between two positions close to the plant material in a pre-set
excursion (20 µm for excised roots in the present experiment).
The ion fluxes were calculated based on the Fick’s law of diffusion.

Prepulled and silanized glass micropipettes (Xuyue Sci. and
Tech., China) were firstly filled with a backfilling solution
(100 mM NaCl) to a length of approximately 1 cm from the
tip. Then the micropipettes were front filled with selective liq-
uid ion-exchange cocktails (LIXs: Na, Sigma 71178). An Ag/AgCl
wire electrode holder (Xuyue Sci. and Tech., China) was then
inserted in the back of the electrode to make electrical con-
tact with the electrolyte solution. DRIREF-2 (World Precision
Instruments) was used as the reference electrode. Ion-selective
electrodes were firstly calibrated before flux measurement using
the following solutions: 5, 2, 0.5 mM Na+. Only electrodes with
Nernstian slopes >50 mV/decade were used. Ion flux was calcu-
lated by Fick’s law of diffusion: J = –D(dc/dx) where J represents
the ion flux in the x direction, dc/dx is the ion concentration gra-
dient, and D is the ion diffusion constant in a particular medium.
Data and image acquisition, preliminary processing, control of
the three-dimensional electrode positioner, and stepper-motor-
controlled fine focus of the microscope stage were performed
with IM-Flux software.

Newly developed root segments (5 cm from apex) were sam-
pled, rinsed with deionized water and immediately incubated in
the measuring solution to equilibrate for 30min. Thereafter, roots
were transferred to the measuring chamber containing 15 ml
fresh measuring solution. Na+ measuring solutions were as fol-
lows: 0.1 mM KCl, 0.1 mM CaCl2, 0.1 mM MgCl2, 2 mM NaCl,
0.3 mM MES, pH 6.0 (adjusted with choline and HCl). After
the roots were immobilized on the bottom, ion flux measure-
ments were started. Ion flux measurements were started from the
apex and went along the root axis until 3000 µm at interval of
500 µm. The measured root positions could be visualized and
defined under the NMT microscope (Figure 1A). As shown in
Figure 1B, Na+ efflux along the root axes was increased by salt
stress, and according to these data, the average value of Na+ efflux
was calculated and shown in Table 1.
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FIGURE 1 | The non-invasive ion-selective electrode closed to the root
(A) and net Na+ fluxes in roots of tetraploid (closed symbols) and
diploid (open symbols) honeysuckle exposed to 0 (circles) and 300 mM
(triangles) NaCl (B). Na+ fluxes were measured along root axes (0–3000 µm
from the apex) at interval of 500 µm. Each point is the mean of five individual
plants.

Measurement of MDA Content
Leaf tissues (0.5 g) were ground under liquid nitrogen and then
homogenized in 5 ml of 50 mM potassium phosphate buffer (pH
7.8). After centrifugation at 4◦C and 13000 × g for 10 min, the
supernatant was prepared for the assay of MDA content (Yan
et al., 2010).

Statistical Analysis
One-way ANOVA was carried out by using SPSS 16.0 (SPSS Inc.,
Chicago, IL, USA) for all sets of data. The values presented are
the means of measurements with five replicate plants, and com-
parisons of means were determined through LSD test. Difference
was considered significant at P < 0.05.

Results

Effects of Salt Stress on Biomass, Na+ and
MDA Content and Root Na+ Flux
Leaf and root dry weight per plant were significantly decreased,
respectively, by 24.24 and 33.67% in TH and by 54.17 and 53.49%
in DH after salt stress, and the decrease was greater in DH
(Table 1). Salt stress significantly increased leaf and root Na+
content by 86.88 and 77.29% in TH, and the greater increase
with 275.54 and 164.29% was found in DH. Root Na+ efflux
was elevated by 10.27 fold in DH after salt stress, and the greater

increase with 29.72 fold was found in TH. Na+ translocation
factor was significantly increased by 44.33% in DH after salt
stress, but no significant change was noted in TH, suggesting
that Na+ transport to the leaf was restricted in TH. The extent
of lipid peroxidation represented by MDA content reflects the
state and integrity of membranes in plant cells (Blokhina et al.,
2003; Yazici et al., 2007). Leaf MDA content was not significantly
affected in TH after salt stress, whereas the significant increase
was observed in DH.

Effects of Salt Stress on Gas Exchange and
Chlorophyll Fluorescence Parameters
Pn, gs and �PSII were significantly decreased in the leaves of
TH and DH under salt stress, and the decrease was greater in
DH than TH (Figures 2A,B,E). Under salt stress, Ci was low-
ered in the leaves of TH, but Ci in the leaves of DH was not
significantly changed and even remarkably elevated at day 15
(Figure 2C). Under salt stress, CE in the leaves of DH was sig-
nificantly decreased at day 3, whereas the significant decrease in
CE was not recorded in the leaves of TH until day 11, and the
decrease was lower than that in DH (Figure 2D). NPQ in the
leaves of TH and DH was significantly increased by salt stress
(Figure 2F).

Effects of Salt Stress on Chlorophyll a
Fluorescence and Modulated 820 nm
Reflection Transients
Salt stress did not obviously affect chlorophyll a fluorescence
transients and 820 nm reflection transients in the leaves of TH
(Figures 3A,B). Chlorophyll a fluorescence was declined under
salt stress in the leaves of DH, indicating PSII capacity was neg-
atively affected (Figure 3C). The 820 nm reflection signals are
presented by MR/MR0 ratio, where MR0 is the value at the onset
of actinic illumination (at 0.7 ms). Decrease in MR/MR0 from
MR0 to the minimal value (MRmin, at about 29 ms) reflects PSI
oxidation process, and the oxidation amplitude in the first 1 s
red illumination was expressed as MR0 − MRmin. The minimal
value of MR is a transitory steady state with equal oxidation and
re-reduction rate of PSI. Subsequently, increase inMR/MR0 indi-
cates PSI re-reduction driven by the electron flow from PSII.
Thus, 820 nm reflection transient in the first 1 s red illumination
was influenced by both PSII and PSI capacity and could reflect

TABLE 1 | Leaf and root dry weight per plant, leaf and root Na+ content, Na+ translocation factor and mean of root Na+ flux in TH and DH exposed to 0
and 300 mM NaCl.

Parameters TH (0 mM) TH (300 mM) DH (0 mM) DH (300 mM)

Leaf DW(g/plant) 3.30 ± 0.24a 2.50 ± 0.11b 2.64 ± 0.17b 1.21 ± 0.21c

Root DW(g/plant) 0.98 ± 0.08a 0.65 ± 0.04b 0.86 ± 0.09ab 0.40 ± 0.04c

Leaf Na+ content(mg g−1 DW) 8.69 ± 0.88c 16.24 ± 1.06b 8.79 ± 0.76c 33.01 ± 1.76a

Leaf MDA content(mg g−1 DW) 0.68 ± 0.06b 0.69 ± 0.05b 0.70 ± 0.03b 1.17 ± 0.07a

Root Na+ content(mg g−1 DW) 14.75 ± 3.02c 26.15 ± 3.04b 13.16 ± 0.93c 34.78 ± 2.68a

Na+ translocation factor 1.91 ± 0.25b 2.28 ± 0.19b 2.03 ± 0.32b 2.93 ± 0.25a

Mean of root Na+ efflux (pmol cm−2 s−1) 75.36 ± 10.37c 2315.27 ± 242.62a 185.32 ± 56.23c 1605.03 ± 289.27b

DW indicates dry weight. Data in the table indicate the mean of five replicates (±SD). Within each row, means followed by the same letters are not significantly different at
P < 0.05.
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FIGURE 2 | Pn (A), gs (B), Ci (C), CE (D), �PSII (E) and NPQ (F) in the leaves of tetraploid (closed symbols) and diploid (open symbols) honeysuckle
exposed to 0 (circles) and 300 mM (triangles) NaCl. Data in the figure indicate the mean of five replicates (±SD).

their coordination. The 820 nm reflection transient was obviously
changed in the leaves of DH under salt stress, indicating the nega-
tive effects on PSII and PSI coordination. PSI oxidation amplitude
was significantly decreased in the leaves of DH under salt stress,
whereas no significant change occurred in the leaves of TH (The
inserted panels of Figures 3B,D).

Effects of Salt Stress on Fv/Fm, Wk,
ETo/ABS, and �MR/MR0
Under salt stress, Fv/Fm,Wk, ETo/ABS, and�MR/MR0 were not
significantly affected in the leaves of TH (Figure 4). Significant
decrease in Fv/Fm, ETo/ABS, and �MR/MR0 was found in
the leaves of DH after 7 days of salt stress (Figures 4A,C,D),
indicating the occurrence of PSII and PSI photoinhibition.

Increase in Wk with an elevated K step around 300 µs in
chlorophyll a fluorescence transient is a specific indicator of
injury on OEC (Strasser, 1997; Kalaji et al., 2014a). Insignificant
change in Wk and no obvious K step indicated that OEC was
not damaged in the leaves of DH and TH under salt stress
(Figures 3A,C and 4B).

Discussion

Plant photosynthesis and growth are commonly constrained in
saline environment, and salt-tolerant plants can better adapt to
salinity with less decrease in biomass and photosynthetic capacity
(Kalaji and Nalborczyk, 1991; Stepien and Johnson, 2009;
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FIGURE 3 | Relative chlorophyll a fluorescence (F/Fm) and relative
modulated 820 nm reflection (MR/MR0) during the first 1 s red
illumination in the leaves of tetraploid (A,B) and diploid (C,D)
honeysuckle exposed to 0 (closed symbols) and 300 mM (open symbols)
NaCl at day 7 (circles), 11 (triangles), and 15 (squares). F is chlorophyll a
fluorescence intensity during the 1 s of red illumination and Fm is the maximal

fluorescence intensity. MR0 is the value at the onset of actinic illumination (at
0.7 ms) and MR is the reflection signal during the 1 s of red illumination. MRmin

is the minimal value of MR/MR0 at about 29 ms. T1, T2, T3, T4, T5, and T6,
respectively, indicate the treatments with 0 and 300 mM NaCl for 7, 11, and
15 days. Data in the figure indicate the mean of five replicates. Different letters
on error bars indicate significant difference at P < 0.05.

FIGURE 4 | Fv/Fm (A), Wk (B), ETo/ABS (C) and �MR/MR0 (D) in the leaves of tetraploid (closed symbols) and diploid (open symbols) honeysuckle
exposed to 0 (circles) and 300 mM (triangles) NaCl. Data in the figure indicate the mean of five replicates (±SD).
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Chao et al., 2013; Aparicio et al., 2014). In this study, stronger
salt tolerance was defined in TH, because TH maintained higher
photosynthetic capacity and accumulated greater biomass than
DH under salt stress (Table 1; Figure 2).

Photosynthetic rate, gs and Ci in TH concomitantly declined
under salt stress, suggesting the stomatal limitation on photosyn-
thesis (Figures 2A–C; Farquhar and Sharkey, 1982). The declined
gs can serve as a protective way against salt-induced osmotic
stress by reducing water loss from transpiration, but increases
the stomatal limitation of photosynthesis (Chaves et al., 2009).
TH has stronger osmotic adjusting ability than DH due to the
morphological and anatomical characterizations (Li et al., 2009),
and therefore, TH maintained higher leaf gs under salt stress,
which helped to alleviate stomatal limitation on photosynthesis.
The salt-induced change in Ci was not coincident with Pn and
gs in DH (Figures 2A–C), suggesting that stomatal limitation did
not play a major role in the decrease of Pn. CE positively corre-
lates with Rubisco activity (Voncaemmerer and Farquhar, 1981).
The declined CE indicated CO2 fixation was depressed, and
the greater inhibition on CO2 fixation in DH possibly resulted
in more severe oxidative stress on photosystem (Figure 2D).
Allakhverdiev et al. (2002) reported that salt stress induced PSII
photoinhibition in Synechocystis by inhibiting the repair of pho-
todamaged PSII not by directly accelerating photodamage on
OEC. In this study, PSII photoinhibition without injury on OEC
in DH also implied the negative effects of salt stress on PSII repair
(Figures 4A,B). As the traditional viewpoint, PSII is more sus-
ceptible to abiotic stresses than PSI, and PSII photoinhibition
can protect PSI against photoinhibition by reducing the electron
transport to PSI, however, PSI photoinhibition is more liable to
occur just under chilling stress with low light due to the less
inhibition on electron flow from PSII (Scheller and Haldrup,
2005). PSII photoinhibition reduced the electron flow to PSI in
DH (Figure 4C), and consistently, the declined �PSII suggested
that the actual photosynthetic electron transport from PSII was
lowered after photosynthesis starting (Figure 2E). However, the
inhibition on electron flow was not enough to protect PSI from
photoinhibition (Figure 4D). Due to PSI photoinhibition, elec-
trons could not be effectively driven to the acceptor side of PSI,
and PSI oxidation would be shortened in the first 1 s red illumina-
tion. On the contrary, the declined electron flow from PSII could
delay PSI re-reduction and prolong PSI oxidation. On the basis of
the significant decrease in PSI oxidative amplitude (Inserted pan-
els in Figures 3B,D), we can deduce that PSI photoinhibition was
more severe than PSII photoinhibition in DH upon salt stress. As
a result, the coordination between PSI and PSII was destroyed.
In contrast, PSI and PSII photoinhibition in TH did not occur
under salt stress in spite of the remarkable decrease in CO2 fixa-
tion (Figure 4D), because the increased NPQ helped to dissipate

the excess excitation energy and potentially limit ROS production
(Figure 2F). In consequence, the normal coordination between
PSI and PSII was maintained in TH under salt stress. Similarly,
normal PSI and PSII capacity was maintained in the halophyte
Thellungiella under salt stress at 500 mMNaCl, but the effects on
photosynthetic CO2 fixation and NPQ were not significant, indi-
cating that its photosystemmight not be endangered by the excess
excitation energy (Stepien and Johnson, 2009). In agreement with
the occurrence of photoinhibition, the extent of leaf lipid perox-
idation in DH was significantly elevated by salt stress (Table 1),
confirming the oxidative damage of ROS. Comparatively, no sig-
nificant change was observed in leaf lipid peroxidation in TH
after salt stress (Table 1), and this result was in accordance with
the insignificant oxidative effects on photosystem.

Na+ is the primary toxic component for plants upon salt
stress (Munns and Tester, 2008). Na+ can inhibit CO2 fixation
by inducing negative effects on Rubisco, lead to the increase
of ROS generation and irreversibly inactivate PSII and PSI
(Allakhverdiev et al., 2000; Murata et al., 2007; Oukarroum et al.,
2015). Thus, salt sensitive plant varieties tend to accumulate more
Na+ in the leaf under salt stress and exhibit severe toxic symp-
toms (Chen et al., 2013; Aparicio et al., 2014). As an underlying
reason for the higher salt tolerance, TH accumulated less Na+ in
the leaf in contrast to DH under salt stress (Table 1). Consistently,
salt-induced decrease in CO2 fixation was lower in the leaves of
TH (Figure 2D), and as a result, PSII and PSI photoinhibition was
not induced in line with no significant changes in lipid peroxida-
tion (Table 1; Figure 4). It has been proposed that the divergence
between salt tolerant and salt sensitive plants originates in the
control of uptake and internal Na+ transport (Bojorquez-Quintal
et al., 2014; Maathuis et al., 2014). Accordingly, we revealed that
the lower leaf Na+ concentration in TH depended on the greater
elevation of root Na+ extrusion and restriction of Na+ transport
from root to leaf (Table 1).

Conclusion

TH maintained normal PSII and PSI coordination by preventing
photoinhibition and exhibited higher leaf photosynthetic activity
than DH under salt stress. The higher leaf photosynthetic activ-
ity which contributed to biomass accumulation in TH might be
ascribed to the lower ionic toxicity of Na+.
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