Applying geostatistics to determine the soil quality improvement by Jerusalem artichoke in coastal saline zone

Xiao-Hua Long	extsuperscript{a,1}, Jie Zhao	extsuperscript{a,1}, Zhao-Pu Liu	extsuperscript{a}, Zed Rengel	extsuperscript{b}, Ling Liu	extsuperscript{a,∗}, Hong-Bo Shao	extsuperscript{c,∗∗}, Ya Tao	extsuperscript{a}

	extsuperscript{a} College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
	extsuperscript{b} Soil Science and Plant Nutrition, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
	extsuperscript{c} Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China

A R T I C L E I N F O
Article history:
Received 13 February 2014
Received in revised form 24 April 2014
Accepted 23 June 2014
Available online 15 July 2014

Keywords:
Jerusalem artichoke
Geostatistics
Spatial heterogeneity
Coastal eco-restoration
Morphological characteristics

A B S T R A C T
The plant growth characteristics are spatially variable due to inherent variability in soil properties and other parameters of the landscape. In the study, the plot size in the field was 670 m in length (south–north direction), and 70 m in width. The stem height and diameter were measured in October, and tuber yield was evaluated in December 2012. The salt content of 0–5, 5–10 and 10–20 cm depth of soil was measured. The morphological characteristics and normal distribution test were analyzed by descriptive statistics using Matlab. The collaborative kriging interpolation and the distribution of spatial heterogeneity of related parameters were analyzed using GS+ software. Soil salt content increased with increasing soil depth. At the same soil depth, the salt content was higher in the north than the south part. The root fresh weights, tuber number, stem height and diameter of Jerusalem artichoke were relatively larger in the north than the south. The distributions of tuber fresh weight and tuber number in space were similar. The Pearson correlation coefficient between tuber fresh weight and tuber number was up to 0.70. Jerusalem artichoke’s morphological characteristics were directly related to soil salt content. Inherent variability of position and soil properties could strongly influence the morphological characteristics of Jerusalem artichoke.

1. Introduction

Jerusalem artichoke, which originated in the north-central U.S., is a perennial grown as an annual. Distributed throughout the world, Jerusalem artichoke has showed a wide ecological adaptability. Unlike most crops that store carbon as starch (a polymer of glucose), in the Jerusalem artichoke carbon is stored as inulin (a fructose polymer). Both above- and belowground parts of Jerusalem artichoke are utilizable for various applications, for instance, the tops for biomass and animal feed and the tubers as a feedstock for food and nonfood chemical industry.

Jerusalem artichoke produces large amounts of biomass, is fast growing, needs relatively few inputs in terms of pesticides, fertilizers and water, and can be grown on marginal land. It is therefore a potentially useful crop for the production of biofuel, and in particular bioethanol (Chittendon, 1951; Huxley et al., 1992; Yan et al., 2012; Krivorotova and Sereikaite, 2014). Based on the theory of Maas and Hoffman (Maas and Hoffman, 1977), Jerusalem artichoke is a moderately salt-tolerant crop according to rate of decrease of dry tuber matter and shoot biomass in saline soils in a greenhouse (Newton). Salt tolerance of Jerusalem artichoke cultivars was evaluated by seawater irrigation in north China plain, which proved cultivar difference in salt adaptability (Long et al., 2010).

Geostatistics has been developed for use in mineral exploration in the 1950s. So far, it has been widely used in quantitative description of natural variables of spatial or spatiotemporal domain, including spatial variability and structural analysis, spatial prediction, space simulation and so on. Geostatistical simulation is a helpful tool allowing reproduction of spatial variability of data and providing measures of spatial uncertainty through multiple...
equally probable realizations (Tercan and Sohrabian, 2013). In spatial variability and structural analysis, microbial processes in soil have been investigated for several decades (Parkin, 1993). Some N-cycling processes can be mapped using geostatistical analyses to exhibit spatial patterns (Yanai et al., 2003; Grundmann, 1990; Philippot et al., 2009; Enwall et al., 2010; Guo et al., 2014). Geostatistical methods create mathematical models of spatial correlation structures (Ishak and Srivastava, 1989; Goovaerts, 1997) with a variogram as the quantitative measure of spatial correlation. In spatial prediction, geostatistical methods (Zamani et al., 2013; Buczko et al., 2001; Abushammala et al., 2012) were used to investigate the spatial distribution patterns of Cd and Pb in pike (Esox lucius) (Raat, 1988; Diana et al., 1977). In space simulation, input statistics such as mean, histogram, variogram and correlation coefficient for the quality variables are reproduced well, and independent component simulation can be used in for multivariate data (Tercan and Sohrabian, 2013).

In order to fully utilize saline soil soils, we hereby propose to grow Helianthus tuberosus in saline soil, which could be of particular importance in countries with scarce arable land and fresh water resources, such as China. This study was aimed at evaluating the spatial differences in growth of Jerusalem artichoke in saline soil by using geostatistics. An understanding of the range and spatial variability of Jerusalem artichoke morphological characters in saline soil is a prerequisite for characterizing the plant–soil interactions before effective utilization of saline soils in growing Jerusalem artichoke for various biorefinery applications.

2. Materials and methods

2.1. Site description and sample collection

The field experiment was carried out at Dafeng Agricultural Research Station in Jiangsu Province (32.59°N, 120.50°E), 4 km away from the Yellow Sea of China in 2012. Plot size was 670 m in length and 70 m in width. The average salt contents at depths 0–20, 20–40 and 40–60 cm were 1.5, 3.3 and 5.6 g/kg, respectively. The soil was ploughed in winter using a conventional mould board plough and was then tilled twice more prior to sowing tubers. The Jerusalem artichoke (cv Nanyu No. 1) was planted in March. Plant row spacing was inter-row (60 cm) and intra-row distance between plants (50 cm).

The experimental area was divided into 23 m × 23 m grid (Fig. 1) generating 78 sampling points (three replicate samples of plants and soil were taken in each cell) for analyzing spatial heterogeneity of Jerusalem artichoke morphological properties in October when the growth of the aerial part reached maximum. The soil salt content of 0–5, 5–10 and 10–20 cm depth of soil was measured by conventional chemical analysis methods (Lu, 1999). The stem height was measured by a metre ruler, whereas stem diameter was measured by vernier callipers; the tuber numbers were counted. The root biomass of 20 m² (5 m in length and 4 m in width) was washed, air-dried and weighed. The tuber production was evaluated in December (final harvest). Tubers were washed, air-dried and weighed.

2.2. Statistical analysis and graphing

Statistical analyses were conducted using Matlab 7.0. Graphs were plotted using Matlab 7.0 and GS+.

3. Results

3.1. Jerusalem artichoke morphological characteristics

3.1.1. Descriptive statistical analysis

The descriptive statistics (mean, median, maximum, minimum, standard deviation, variance, range, skewness, kurtosis) of Jerusalem artichoke morphological characters (stem height, stem diameter, tuber fresh weight, tuber number, and root fresh weight) were shown in Table 1. Skewness reflects the symmetry of distribution; the values less than 0 mean the most data are lower than the mean. For a standardized normal distribution, the value of skewness is zero (Antonio et al., 2013; Brovelli et al., 2011). In the present study, the skewness values were near zero (Table 1). Kurtosis describes the distribution shape (Antonio et al., 2013). The value of normal distribution was about 3. In the present study, the kurtosis values were all near 3, indicating normal distribution of the morphological parameters of Jerusalem artichoke (Table 1).

3.1.2. Boxplot and parameter estimation

The boxplot is a simple and flexible graphical tool in exploratory data analysis (Tukey, 1977). Boxplot entails the measurements of maximum, 75th percentile, medium, 25th percentile and minimum (Abuzaid et al., 2012). Its main applications were to identify extreme values and outliers in a univariate data set. The range between 75th and 25th percentile represents a confidence interval (Abuzaid et al., 2012).

Regarding morphological traits of Jerusalem artichoke, there were several outliers (one in graph a – stem height, and two in graph c – root fresh weight). The confidence intervals of the means are presented in Table 2.

Parameter estimation was aimed at using the sample data to deduce population distribution. It could be divided into point estimates and interval estimation. Maximum likelihood method was the most widely used method in parameter estimation (Siddiqui and Abidob, 2013). By using Matlab 7.0, we calculated the con-
Table 1
Descriptive statistics of Jerusalem artichoke morphological characters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stem height (m)</th>
<th>Stem diameter (cm)</th>
<th>Tuber fresh weight (g)</th>
<th>Tuber number</th>
<th>Root fresh weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.85</td>
<td>2.91</td>
<td>722</td>
<td>31</td>
<td>91.80</td>
</tr>
<tr>
<td>Median</td>
<td>2.84</td>
<td>2.93</td>
<td>691</td>
<td>31</td>
<td>90.22</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.38</td>
<td>3.36</td>
<td>1457</td>
<td>49</td>
<td>137.59</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.45</td>
<td>2.38</td>
<td>356</td>
<td>16</td>
<td>48.81</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>0.17</td>
<td>0.22</td>
<td>205</td>
<td>7.79</td>
<td>21.56</td>
</tr>
<tr>
<td>Variance</td>
<td>0.03</td>
<td>0.04</td>
<td>41,920</td>
<td>60.81</td>
<td>464.84</td>
</tr>
<tr>
<td>Range</td>
<td>0.92</td>
<td>0.98</td>
<td>1102</td>
<td>32.33</td>
<td>88.78</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.24</td>
<td>-0.17</td>
<td>0.78</td>
<td>0.28</td>
<td>0.20</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3.18</td>
<td>2.60</td>
<td>4.26</td>
<td>2.41</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Table 2
Parameter estimation of Jerusalem artichoke morphological characteristics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stem height (m)</th>
<th>Stem diameter (cm)</th>
<th>Tuber fresh weight (g)</th>
<th>Tuber number</th>
<th>Root fresh weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.85</td>
<td>2.91</td>
<td>722</td>
<td>31</td>
<td>92</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.17</td>
<td>0.22</td>
<td>205</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Confidence interval of the</td>
<td>2.82−2.89</td>
<td>2.87−2.95</td>
<td>683−760</td>
<td>29−32</td>
<td>88−96</td>
</tr>
<tr>
<td>Confidence interval of SD</td>
<td>0.15−0.20</td>
<td>0.19−0.25</td>
<td>181−236</td>
<td>7−9</td>
<td>19−25</td>
</tr>
</tbody>
</table>

Confidence intervals of population means and standard deviation (at $\sigma = 0.1$) of Jerusalem artichoke morphological characteristics (Table 2).

3.1.3. Normal distribution test
Normal distribution of the sample data is a prerequisite to use GS+ software. In Matlab 7.0, using normal probability plot was a method to judge whether sample data were normally distributed. If sample data were normally distributed, the plot would be a straight line rather than a curve. In the present study, all parameters (stem height, stem diameter, tuber fresh weight, tuber number and root fresh weight) all generated straight lines, indicating normal distribution.

3.1.4. Spatial distribution
The spatial distribution of Jerusalem artichoke morphological characteristics (root fresh weight, tuber number, stem height and stem diameter) differed in the north–south direction, with the larger plants in the north than the south, but with no trends in the east–west direction (Fig. 4). For the fresh tuber weight, there were no trends in spatial distribution.

3.2. Soil salt content of soil

3.2.1. Normal distribution test
Before log transformation, the kurtosis in the 0–5 cm soil layer was 8.7, but after log processing the value dropped to about 3 (Table 3). Therefore, the log-transformed data were used in the GS+ analysis. However, for the 5–10 cm and 10–20 cm soil layers, the original non-transformed data were analyzed.

3.2.2. Spatial distribution
The soil salt content increased with the increasing soil depth. At the same soil layer, the north part had higher soil salt content than the south part, with no significant difference in the east–west direction (Fig. 5).

4. Discussion

4.1. Morphology
Previous studies reported that the typical height range of different Jerusalem artichoke cultivars differed significantly. The reported ranges were 102–186 cm (Swanton, 1986), 119–164 cm (Hay and Offer, 1992) and 115–275 cm (Kiehn and Chubey, 1993). There is also variation within a particular cultivar. The present study revealed the height range 245–338 cm range with the normal distribution (Fig. 3). The stem diameter increased as plants grew, reaching 2.4–3.4 cm in mature stems. Root weights reported in the existing literature represent only approximations of the total root mass because root collection is exceedingly difficult. In the study presented here, we use geostatistics to determine the spatial distribution of root fresh weight in the studied area (Fig. 3d). Though many studies reported root dry weight differing among the clones within each classification (range 6.1–19.5 g plant$^{-1}$), we showed in this study the difference in root dry weight based on the spatial distribution. The location of singular point in Fig. 2(a) which was the biggest number of stem height was in the middle of the land, and the location of two singular points in Fig. 2(c) were in the marginality of the land.

4.2. Soil salt content
Numerous studies have focused on the relationship between land use and groundwater contamination (Lake et al., 2003; McLay et al., 2001; Vinten and Dunn, 2001). McLay et al. (2001) pointed out the fact that spatial pattern of land use or topsoil properties are not really suitable for predicting groundwater nitrate concentrations. We found that the soil salt content of topsoil in the south part than the soil salt content of topsoil in north half part. Because there was a slope from the south towards the north, the north was flooded while the south was less affected even after many rainy days. This slope also resulted in the soil salt content of topsoil being higher than in subsoil.

4.3. Pearson correlation coefficients
We calculated the Pearson correlation coefficient (r) between Jerusalem artichoke morphological characteristics and soil salt content of different soil layers (Table 4) to find the relationship between two parameters (Liu et al., 2013). Only six r-values were negative, and the remaining 22 were positive. The interval distribution of Pearson correlation coefficient was shown in Table 5. Extremely strong positive correlation was in the range of 0.8–1.0. Strong positive correlation was in the range of 0.6–0.8. Medium positive correlation was in the range of 0.4–0.6. Weak positive correlation was in the range of 0.2–0.4. Extremely weak positive correlation was in the range of 0.0–0.2. Negative correlation was
less than 0.0. Its difference grew as the absolute value of Pearson correlation coefficient neared 0 and its similarity grew as the absolute value of Pearson correlation coefficient neared 1. Negative represented negative correlation while positive represented positive correlation. None r-value represented extremely strong positive correlation. Three r-values represented strong positive correlation (soil salt content of 5–10 cm vs 0–5 cm soil layer, soil salt content of 5–10 cm vs 10–20 cm soil layer, and tuber number vs tuber fresh weight). One r-value represented medium positive correlation (soil salt content of 0–5 cm soil layer vs soil salt content of 10–20 cm soil layer). Four r-values represented weak positive correlation (tuber number vs soil salt content of 0–5 cm soil layer, tuber number vs soil salt content of 5–10 cm soil layer, tuber fresh weight vs stem diameter, tuber number vs stem diam-
Six r-values represented negative correlation (stem height vs soil salt content of 0–5 cm soil layer, stem height vs soil salt content of 5–10 cm soil layer, tuber fresh weight vs soil salt content of 10–20 cm soil layer, tuber fresh weight vs root fresh weight, tuber fresh weight vs stem height, root fresh weight vs soil salt content of 10–20 cm soil layer). And the remaining 14 were extremely weak positive correlation.

The Pearson correlation coefficient (r) between soil salt content of 5–10 cm and 0–5 cm soil layer, soil salt content of 5–10 cm and 10–20 cm soil layer, tuber number and tuber fresh weight were...
Table 4
Pearson correlation coefficients between Jerusalem artichoke morphological characteristics and soil salt content of different soil layer.

<table>
<thead>
<tr>
<th>Pearson correlation coefficient</th>
<th>Soil salt content of 0–5 cm soil layer</th>
<th>Soil salt content of 5–10 cm soil layer</th>
<th>Soil salt content of 10–20 cm soil layer</th>
<th>Stem diameter</th>
<th>Tuber fresh weight</th>
<th>Tuber number</th>
<th>Root fresh weight</th>
<th>Stem height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil salt content of 0–5 cm soil layer</td>
<td>1</td>
<td>0.784</td>
<td>0.022</td>
<td>0.059</td>
<td>0.204</td>
<td>0.109</td>
<td>−0.003</td>
<td></td>
</tr>
<tr>
<td>Soil salt content of 5–10 cm soil layer</td>
<td>0.784</td>
<td>1</td>
<td>0.059</td>
<td>0.065</td>
<td>0.278</td>
<td>0.131</td>
<td>−0.069</td>
<td></td>
</tr>
<tr>
<td>Soil salt content of 10–20 cm soil layer</td>
<td>0.0445</td>
<td>0.612</td>
<td>1</td>
<td>−0.091</td>
<td>0.180</td>
<td>−0.062</td>
<td>0.073</td>
<td></td>
</tr>
<tr>
<td>Stem diameter</td>
<td>0.022</td>
<td>0.059</td>
<td>0.001</td>
<td>0.282</td>
<td>0.317</td>
<td>0.128</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>Tuber fresh weight</td>
<td>0.059</td>
<td>0.065</td>
<td>−0.091</td>
<td>0.282</td>
<td>1</td>
<td>0.696</td>
<td>−0.040</td>
<td></td>
</tr>
<tr>
<td>Tuber number</td>
<td>0.204</td>
<td>0.278</td>
<td>0.180</td>
<td>0.317</td>
<td>0.696</td>
<td>1</td>
<td>0.058</td>
<td></td>
</tr>
<tr>
<td>Root fresh weight</td>
<td>0.109</td>
<td>0.131</td>
<td>−0.062</td>
<td>0.1276</td>
<td>−0.040</td>
<td>0.058</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Stem height</td>
<td>−0.003</td>
<td>−0.069</td>
<td>0.073</td>
<td>−0.235</td>
<td>0.008</td>
<td>0.180</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Interval distribution of r (Pearson correlation coefficient).

| The range of Pearson correlation coefficient | 0.8–1.0 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | 0.0–0.2 | <0.0 |
| The number of r values in the range | 0 | 3 | 4 | 14 | 6 | |
0.784, 0.612, 0.696. This indicated that in topsoil, the neighbouring soil would interfere each other. Tuber fresh weight was influenced by tuber number, in other words, in 69.6% cases, tuber fresh weight increased as tuber number grew. The Pearson correlation coefficient \(r \) between stem height and soil salt content of 0–5 cm soil layer, stem height and soil salt content of 5–10 cm soil layer, tuber fresh weight and soil salt content of 10–20 cm soil layer, tuber fresh weight and root fresh weight, tuber fresh weight and stem height, root fresh weight and soil salt content of 10–20 cm soil layer were \(-0.003, -0.069, -0.091, -0.040, -0.235, -0.062\). This indicated that if one parameter grew the other one parameter would reduce.

5. Conclusion

This study combined geostatistics and advanced statistical analytical tool to determine the spatial distribution characteristics and the relative importance of factors controlling the spatial variation of Jerusalem artichoke’s morphological characteristics. The results show that, soil salt content increased with increasing soil depth. At the same soil layer, soil salt content was greater in the north part of the experimental area compared with the south part. The root fresh weight, tuber number, stem height and stem diameter of Jerusalem artichoke varied in the north–south direction, with greater values in the north than the south. The distribution of tuber fresh weight and tuber number in space was similar. No data revealed strong or medium correlation between Jerusalem artichoke morphological characteristics and soil salt content in different soil layers. Jerusalem artichoke morphological characteristics were related to soil salt content which is in proportion to soil salinity. Inherent spatial variability in soil and environmental parameters can strongly influence morphological characteristics of Jerusalem artichoke.

Acknowledgements

The authors are grateful for the financial support of National Natural Science Foundation of China (No. 31201692; 41171216), Jiangsu Agricultural Science and Technology Independent Innovation Fund Project (Nos. CX(12)1005-1 and CX(12)1005-3), the National Key Projects of Scientific, Technical Support Programs funded by the Ministry of Science and Technology of China (No. 2011BAD13B09) and the CASSAFEA International Partnership Program for Creative Research Teams.

References

