过氧化麦角甾醇分子的密度泛函理论研究

焉炳飞^{1,2},朱亚南¹,方圣涛²,李文佐¹

(1. 山东省烟台大学化学化工学院, 山东 烟台 264005; 2. 中国科学院烟台海岸带研究所, 山东 烟台 264003)

要: 采用密度泛函理论(DFT)方法, 在 B3LYP/6-311+G(2d, p)水平上对过氧化麦角甾醇进行了计算研究。 摘 优化得到了过氧化麦角甾醇分子的结构,给出了分子的键长、键角、二面角等参数,并对其进行了 'HNMR 光 谱、IR 光谱、UV-Vis 光谱理论模拟和自然电荷分析。自然电荷计算表明,羟基 O 和 H 原子很可能是关键的活 性中心。理论计算结果与实验值符合的很好。

关 键 词:过氧化麦角甾醇;电子结构;光谱;密度泛函

中图分类号: 0 641 文献标识码: A 文章编号: 1671-0460(2015)04-0726-03

DOI:10.13840/j.cnki.cn21-1457/tq.2015.04.021

Density Functional Theory Study on Ergosterol Peroxide

YAN Bing-fei^{1,2}, ZHU Ya-nan¹, FANG Sheng-tao², LI Wen-zuo¹

(1. School of Chemistry and Chemical Engineering, Yantai University, Shandong Yantai 264005, China; 2. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Yantai 264003, China)

Abstract: With density functional theory (DFT) of B3LYP method in the level of 6-311+G(2d, p) basis set, ergosterol peroxide was theoretically calculated. The geometric parameters such as molecular bond lengths, bond angles, and dihedral angles, were calculated, ¹HNMR spectrum, IR spectroscopy, and UV-Vis spectroscopy were theoretically simulated. Natural charge calculation results show that hydroxy O and H atoms are likely to be the key active center. The calculated results are in agreement with their corresponding experimental values.

Key words: Ergosterol peroxide; Electronic structure; Spectrum; DFT

过氧化麦角甾醇(分子式为 C28H44O3)广泛存在于 食药用真菌中, 是近年来从食药用真菌中发现的一 个热点活性分子, 该化合物具有促进肿瘤细胞凋亡 [1], 抗炎[2], 抗菌[3], 抗氧化[4]等广泛药理作用。在芬 兰,腐生真菌纤孔属的斜形纤孔菌 (Inonotus obilquus Pilat) 和辐射状纤孔菌 (I. radiatus Karst) 在民间被广泛用于治疗疾病[5],研究证明过氧化麦 角甾醇是其有效成分之一。

近年来,对过氧化麦角甾醇分子的实验研究较 多[1-6]。我们从一株海绵共附生真菌的次级代谢产物 中也分离得到了大量的过氧化麦角甾醇。目前对于 分子结构的确定常用的方法包括核磁共振(NMR)、 红外光谱(IR) 以及紫外光谱(UV-Vis)等, 但是核磁 共振谱图中化学位移谱峰的归属往往是十分困难 的,而且在红外光谱中,即使是简单分子的谱图中 也含有基频、合频、泛频, 此外, 实验无法从根本 上解释过氧化麦角甾醇分子的药用活性。这时理论 计算方法的引入对解决谱峰的归属问题起到了很好 的作用,理论计算也可以很好的预测药物分子的活 性。

因此,对药物分子进行电子结构和光谱性质进 行研究具有很重要的意义。目前对过氧化麦角甾醇 电子结构和光谱性质的理论研究尚未见报道。我们 选择过氧化麦角甾醇为研究对象,采用 Density Functional Theory (DFT) 的 B3LYP(Becke 's three-parameter hybrid functional with the non-local correlation of Lee-Yang-Parr)方法计算了其基态结 构, 采用 Gauge-Including Atomic Orbital (GIAO)方法 和 Time-Dependent DFT 方法计算了过氧化麦角甾 醇的光谱性质。

1 计算方法

密度泛函理论是研究分子结构和性质的有效 方法[7-11]。本文应用密度泛函理论的 B3LYP 方法对 过氧化麦角甾醇进行全参数优化, 优化时采用 6-311+G(2d, p)基组。在优化构型的基础上用相同的 方法进行简正振动分析,同时进行自然键轨道(NBO) 分析并计算前线分子轨道能。在优化好的构型上计 算 NMR 化学位移和电子吸收光谱, 计算时分别采 用 GIAO 和 TD-DFT 方法。在计算 NMR 化学位移时

烟台大学青年学术骨干专项基金资助项目; 烟台大学大学生科技创新基金项目(130514); 烟台大学研究生科技创新基金资助。

稿日期: 2014-11-05

以四甲基硅烷(TMS)定标,用相同计算方法处理 TMS。溶液中的相关计算采用 PCM (polarized continuum model)模型,选用的溶剂是氯仿。所有计 算采用 Gaussian09 程序^[12]。

2 结果与讨论

2.1 过氧化麦角甾醇分子几何构型

过氧化麦角甾醇的分子结构及原子编号见图 1。B3LYP/6-311+G(2d, p)计算所得过氧化麦角甾醇分子的主要结构参数列于表 1。计算结果表明,过氧化麦角甾醇分子属于 C1 点群。

表 1 在 B3LYP/6-311+G(2d, p)水平上计算的过氧化 麦角甾醇分子中的键长,键角及二面角 Table 1 The B3LYP/6-311+G(2d, p) calculated bond lengths, bond angles and dihedral angles of ergosterol peroxide

bond angles and dinedral angles of ergosterol peroxide								
化学键	nm	键角	(°)	二面角	(°)			
C_1 - C_2	0.1531	C_1 - C_2 - C_3	113.25	C_1 - C_2 - C_3 - C_4	-52.34			
C_1 - C_6	0.1503	C_1 - C_6 - C_7	113.23	C_1 - C_2 - C_3 - O_3	-172.11			
C_1 - C_{10}	0.1568	C_1 - C_{10} - C_5	108.64	C_1 - C_6 - C_7 - C_8	-1.91			
C_1 - O_1	0.1471	C_1 - C_{10} - C_9	105.97	C_1 - O_1 - O_2 - C_8	-6.85			
C_2 - C_3	0.1534	C_1 - O_1 - O_2	111.86	C_1 - C_{10} - C_4 - C_4	53.58			
C_3 - C_4	0.1524	C_2 - C_3 - C_4	111.50	C_1 - C_{10} - C_9 - C_8	-8.36			
C_3 - O_3	0.1438	C_2 - C_3 - O_3	110.64	C_2 - C_3 - C_4 - C_5	54.49			
C_4 - C_5	0.1536	C ₃ -C ₄ -C ₅	111.05	C_3 - C_4 - C_5 - C_{10}	-57.21			
C_5 - C_{10}	0.1550	C_4 - C_5 - C_{10}	113.73	C_4 - C_5 - C_{10} - C_9	169.02			
C_{10} - C_{19}	0.1585	C_5 - C_{10} - C_{19}	109.39	C_4 - C_5 - C_{10} - C_{19}	-65.91			
C_6 - C_7	0.1332	$C_6-C_7-C_8$	113.90	C_5 - C_{10} - C_1 - C_6	179.64			
O_1 - O_2	0.1471	C7-C8-C9	111.80	C_5 - C_{10} - C_9 - C_8	-125.49			
C_7 - C_8	0.1513	C_8 - C_9 - C_{10}	109.24	C_5 - C_{10} - C_9 - C_{11}	105.85			
C_8 - C_9	0.1555	C_8 - C_9 - C_{11}	111.55	C_5 - C_{10} - C_1 - O_1	63.42			
C_8 - C_{14}	0.1545	C_8 - C_{14} - C_{13}	112.61	C_{10} - C_{1} - C_{6} - C_{7}	-59.20			
C_8 - O_2	0.1467	C_8 - O_2 - O_1	111.86	C_{10} - C_1 - O_1 - O_2	66.49			
C_9 - C_{10}	0.1585	C_9 - C_{11} - C_{12}	113.33	C_{10} - C_{9} - C_{8} - C_{7}	-48.17			
C_9 - C_{11}	0.1556	C_9 - C_8 - C_{14}	114.60	C_{10} - C_{9} - C_{8} - C_{14}	-179.34			
C_{11} - C_{12}	0.1534	C_{11} - C_{12} - C_{13}	115.45	C_{10} - C_{9} - C_{11} - C_{12}	122.14			
C_{12} - C_{13}	0.1552	C_{12} - C_{13} - C_{14}	110.78	C_{11} - C_{12} - C_{13} - C_{14}	-46.16			
C_{13} - C_{14}	0.1589	C_{12} - C_{13} - C_{18}	106.75	C_{11} - C_{12} - C_{13} - C_{17}	69.60			
C_{13} - C_{17}	0.1600	C_{13} - C_{14} - C_{15}	106.17	C_{11} - C_{12} - C_{13} - C_{18}	-164.01			
C_{13} - C_{18}	0.1541	C ₁₃ -C ₁₇ -C ₁₆	103.58	C_{12} - C_{13} - C_{14} - C_{15}	119.91			
C_{14} - C_{15}	0.1544	C_{14} - C_{15} - C_{16}	105.57	C_{12} - C_{13} - C_{17} - C_{16}	-98.96			
C_{15} - C_{16}	0.1528	C_{14} - C_{13} - C_{17}	105.48	C_{12} - C_{13} - C_{17} - C_{20}	136.47			
C_{16} - C_{17}	0.1550	C ₁₅ -C ₁₆ -C ₁₇	105.33	C_{13} - C_{14} - C_{15} - C_{16}	-23.70			
C_{17} - C_{20}	0.1562	C_{16} - C_{17} - C_{20}	112.32	C_{13} - C_{17} - C_{16} - C_{15}	-35.29			
C_{20} - C_{21}	0.1549	C_{17} - C_{20} - C_{21}	113.65	C_{13} - C_{17} - C_{20} - C_{21}	-71.60			
C_{20} - C_{22}	0.1526	C_{17} - C_{20} - C_{22}	114.77	C_{13} - C_{17} - C_{20} - C_{22}	167.15			
C_{22} - C_{23}	0.1334	C_{20} - C_{22} - C_{23}	127.17	C_{14} - C_{15} - C_{16} - C_{17}	37.28			
C_{23} - C_{24}	0.1514	C_{22} - C_{23} - C_{24}	127.64	C_{15} - C_{16} - C_{17} - C_{20}	92.65			
C_{24} - C_{25}	0.1561	C ₂₃ -C ₂₄ -C ₂₅	110.27	C_{16} - C_{17} - C_{20} - C_{21}	168.31			
C_{24} - C_{28}	0.1534	C ₂₃ -C ₂₄ -C ₂₈	113.99	C_{16} - C_{17} - C_{20} - C_{22}	47.06			
C_{25} - C_{26}	0.1536	C ₂₄ -C ₂₅ -C ₂₆	112.25	C_{17} - C_{20} - C_{22} - C_{23}	37.64			
C ₂₅ -C ₂₇	0.1535	C ₂₄ -C ₂₅ -C ₂₇	113.28	C_{20} - C_{22} - C_{23} - C_{24}	175.87			

正常的 C-C 单键的键长平均 0.154 nm, C=C 双键平均 0.134 nm, C-O 单键平均 0.143 nm, -O-O-过氧键平均 0.148 nm。计算得到的过氧化麦角甾醇分子的键长与各键长平均值相差不大,均属于正常

范围,说明计算结果较为可靠。

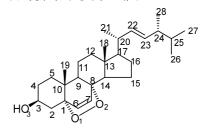


图 1 过氧化麦角甾醇分子结构和原子编号 Fig.1 Structure of ergosterol peroxide and atomic number

2.2 核磁共振光谱

GIAO 方法是目前公认的预测核磁共振化学位移较为准确的方法,已成功应用于小分子及大中分子的 NMR 化学位移预测^[7-10]。在 B3LYP/6-311+G(2d, p) 水平上采用 GIAO 方法计算的 ¹H 的化学位移列于表 2。这些化学位移值与实验值较为吻合,也进一步验证了模拟计算的可行性和准确性。

表 2 过氧化麦角甾醇分子 H 化学位移计算结果(括号内为实验值) Table 2 The callation 13C chemical shift of ergosterol

Table 2 The calculation 13C chemical shift of ergosterol peroxide (The experimental values are shown in parentheses)

	•	,	
原子	化学位移	原子	化学位移
H_3	4.13(3.99)	H ₂₂	6.01(5.16)
H_6	6.57(6.26)	H_{23}	5.65(5.26)
H_7	6.61(6.52)	H_{26}	1.03(0.84)
H_{18}	1.25(0.84)	H ₂₇	0.72(0.85)
H_{19}	0.88(0.90)	H_{28}	0.87(0.93)
H_{21}	1.10(1.02)		

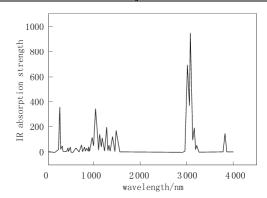


图 2 模拟过氧化麦角甾醇分子的 IR 图谱 Fig.2 Simulation IR spectrum of ergosterol peroxide

2.3 红外吸收光谱

化合物的红外光谱是其分子结构的反映,用Gaussian09 计算出的过氧化麦角甾醇分子的红外振动光谱如图 2,并利用 Gaussian View 程序对过氧化麦角甾醇的红外振动光谱进行了归属。振动频率在 3 819 cm⁻¹处为-O-H 的伸缩振动峰;在 3 193 ~ 3 167 cm⁻¹处为=C-H 的伸缩振动峰;在 3 143 ~ 3 074 cm⁻¹处为-CH₃的不对称伸缩振动峰;在 1 712 ~ 1 673 cm⁻¹处为 C=C 的伸缩振动峰;在 1 673~1 030 cm⁻¹处为

-C-O-的伸缩振动峰; 在 1 401 cm⁻¹处为=C-H 的弯曲振动峰; 在 249 cm⁻¹处为-O-H 的弯曲振动峰。

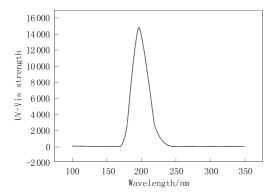


图 3 模拟过氧化麦角甾醇分子的紫外吸收光谱 Fig.3 Simulation UV absorption of ergosterol peroxide

2.4 紫外吸收光谱

采 用 TD DFT/B3LYP/6-311+G(2d,p)//DFT/B3LYP/6-311+G(2d,p)方法模拟了过氧化麦角甾醇分子的紫外吸收光谱,如图 3 所示。从图 3 可看出,

过氧化麦角甾醇分子仅在 196 nm 处显示了弱的紫外吸收峰,可归属于电子从最高占据轨道(HOMO)跃迁到最低空轨道(LUMO)。

2.5 NBO 电荷

分子的电荷分布对分子的活性有重要的影响,分析分子的电荷分布可以揭示其与其它分子的作用位点。过氧化麦角甾醇分子主要原子的电荷分布见表3。从表3可以看出O₃原子带有最大的负电荷;碳原子中C₁₈、C₁₉、C₂₁、C₂₆、C₂₇和C₂₈较大的负电荷,C₁和C₈具有较大正电荷,C₃具有少量正电荷。显然,O₃原子的存在,是造成分子体系中正负电荷分布的主要原因。说明过氧化麦角甾醇分子的活性部位是在羟基上。O₃原子具有较大负电荷,有强的亲核活性,与受体相互作用时,可作为氢键的受体,是关键的活性部位。

表 3 过氧化麦角甾醇主要原子的电荷分布 Table 3 Some atomic charge distribution in ergosterol peroxide molecule

					U						
原于	电荷	原子	电荷	原子	电荷	原子	电荷	原子	电荷	原子	电荷
C_1	0.245	C ₇	-0.191	C ₁₃	-0.048	C ₁₉	-0.591	C ₂₅	-0.212	O_3	-0.764
C_2	-0.419	C_8	0.256	C_{14}	-0.221	C_{20}	-0.257	C_{26}	-0.570	O ₃ -H	0.471
C_3	0.132	C ₉	-0.233	C ₁₅	-0.383	C_{21}	-0.556	C ₂₇	-0.579	H_6	0.217
C_4	-0.395	C_{10}	-0.060	C ₁₆	-0.389	C_{22}	-0.176	C_{28}	-0.582	H_7	0.214
C_5	-0.382	C_{11}	-0.383	C ₁₇	-0.207	C_{23}	-0.183	O_1	-0.353	H_{22}	0.195
C_6	-0.194	C_{12}	-0.379	C ₁₈	-0.568	C ₂₄	-0.247	O_2	-0.336	H_{23}	0.200

3 结论

用 B3LYP/6-311+G(2d, p)方法优化了过氧化麦角甾醇分子,得到了在 B3LYP/6-311+G(2d, p) 水平下的全优化立体结构以及几何参数,并对其光谱(¹HNMR, IR, UV-Vis)进行行了理论模拟和指认,取得了与实验值基本吻合的结果。NBO 电荷分析认为, O₃原子具有较大负电荷,是造成分子体系中正负电荷分布的主要原因,有强的亲核活性,与受体相互作用时,可作为氢键的受体,是关键的活性部位。本工作为研究过氧化麦角甾醇类化合物提供了有益参考。

参考文献:

- Takei T, Yoshida M, Ohnishi-Kameyama, et al. Erogsterol peroxide, an apoptosis-including component isolated from Sarcodon aspratus (Berk)
 S. Ito[J].Bioscience Biotechnology Biochemistry, 2005, 69(1): 212–215.
- [2] Kobori M, Yoshida M, Ohnishi-Kameyama, et al. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW 264.7 macrophages and growth of HT29 colon adenocarcinoma cells[J].British Journal of Pharmacology, 2007, 150(2): 209-219.

- [3] 麻继兵,文春南,吴婷婷,等. 麦角甾醇过氧化物的抑菌活性研究 [J].食品研究与开发,2010,33(7):42-43.
- [4] Kim S W, Park SS, Min T J, et al. Ergosterol peroxide (5,8–epidi oxy5 α ,8 α -ergosta-6,22E-dien-3 β -ol) in Armillariella mellea[J].Bulle tin of Korean Chemical Society, 1999, 20(7): 819–823.
- [5] Kahlos K, Kangas L, Hiltunen R. Ergosterol peroxide, an active co mpound from Inonotus radiatus[J].Planta Medica, 1989, 55(4): 389– 390
- [6] 李斌, 高洁莹, 李娟, 等. 细叶石仙桃乙酸乙酯部位化学成分研究 [J].中药材, 2004, 20(6): 4-7.
- [7]秦文杰, 钟爱国. 河鲀毒素药理活性和热性质密度泛函研究[J].当代化工, 2013, 42(12): 1632–1635.
- [8] 陈凯浩, 钟爱国. 甲基苯丙胺光谱性质的密度泛函分析与指认[J]. 当代化工, 2014, 43(1): 29-31.
- [9] 徐鹏宇, 苏婉芬, 钟爱国. 甲卡西酮光谱性质的密度泛函模拟与指认[J].当代化工, 2014, 43(3): 334-336.
- [10] 肖翠平,程建波,王进军,等. 铁屎米酮类生物碱分子化学位移的理论研究[J].分子科学学报,2011,27(4):283-286.
- [11] 孙彩霞, 焉炳飞, 李文佐, 等. 芦竹碱分子的密度泛函理论研究[J]. 烟台大学学报(自然科学与工程版), 2014, 27(3): 173-176.
- [12] Frisch M J, Trucks GW, Schlegel H B, et al. Gaussian 09[R]. W allingford: Gaussian, Inc, 2009.