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Recently, water extraction based on the indices method has been documented in many studies using various remote
sensing data sources. Among them, Landsat satellites data have certain advantages in spatial resolution and cost. After
the successful launch of Landsat 8, the Operational Land Imager (OLI) data from the satellite are getting more and more
attention because of its new improvements. In this study, we used the OLI imagery data source to study the water extrac-
tion performance based on the Normalized Difference Vegetation Index, Normalized Difference Water Index, Modified
Normalized Water Index (MNDWI), and Automated Water Extraction Index (AWEI) and compared the results with the
Thematic Mapper (TM) imagery data. Two test sites in Tianjin City of north China were selected as the study area to
verify the applicability of OLI data and demonstrate its advantages over TM data. We found that the results of surface
water extraction based on OLI data are slightly better than that based on TM in the two test sites, especially in the city
site. The AWEI and MNDWI indices performs better than the other two indices, and the thresholds of water indices
show more stability when using the OLI data. So, it is suitable to combine OLI imagery with other Landsat sensor data
to study water changes for long periods of time.

Keywords: water extraction; operational land imager (OLI) data; threshold stability; water indices

1. Introduction

Water is an important feature of the Earth’s dynamic
system that is essential to human health, society, and
environment. Studies on examining water extraction or
changes have been a key area of research in land use/
cover (1). Remote sensing offers an efficient and reliable
means to identify the properties, distribution, and
changes of water bodies (2). A variety of remote sensing
data, including Landsat, Systeme Probatoire d’Observa-
tion dela Terre (SPOT), Moderate-resolution Imaging
Spectroradiometer (MODIS), have been used in water
assessment, erosion, constituent concentrations, and out-
line extraction (3–5). Compared to other remote sensing
data, Landsat imageries are widely used in surface water
and other environment fields due to their advantages in
spatial resolution and cost (6).

The methods used to extract surface water features
using remote sensing data can be categorized into four
types: thematic classification, linear immixing, single-
band threshold, and two-band spectral indices (1). Liu
and Zhang extracted water information using four differ-
ent methods based on Landsat 5 Thematic Mapper (TM)
imageries of Wu Lake in China, concluding that the
spectral band relation model was perfect (7). Spectral
indices have been widely used to extract water bodies in
recent years. After the Normalized Difference Vegetation
Index (NDVI) was introduced (8), many similar indices

have been proposed. The Normalized Difference Water
Index (NDWI) (9), which used the green and NIR bands,
was proposed by McFeeters in 1996. McFeeters also
proposed that the threshold 0 could distinguish the water
from the background using NDWI (9). Xu (10, 11) noted
that the threshold 0 was not an appropriate distinguishing
feature and proposed the Modified Normalized Differ-
ence Water Index (MNDWI). He extracted water distri-
butions in cities based on the MNDWI index using
Landsat Enhanced Thematic Mapper Plus (ETM+) imag-
eries, finding that the MNDWI was much better than
NDWI in distinguishing water from shadow. Zhang et al.
(12) and Yang et al. (13) compared the results of the
indices and single-band threshold to find that NDWI and
MNDWI were both capable of quickly extracting water
information and obtained accurate water information
using an appropriate threshold. The Automated Water
Extraction Index (AWEI) was introduced to improve
classification accuracy in areas including shadow and
dark surfaces that other classification methods often
failed to classify correctly (1).

The presence of shadows may lessen the accuracy of
the surface water extraction, and the threshold defini-
tion to separate water from other land cover compo-
nents is uncertain (1, 11). Many studies have paid
attention to the threshold methods, such as the logical
standard threshold, arbitrary thresholds determined by
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photo-interpretation or experimental trials (11, 14–16)
and the maximum between-class variance method (the
Ostu method) (17, 18). Campos et al. (19) selected the
threshold based on the mean and standard deviation
(SD) of different NDWI and the 12 monthly images to
distinguish seasonal, permanent water, and non-water in
the Sahara–Sahel zone. Surface water body is difficult to
distinguish from shadow due to their similar spectral
reflectance, especially in mountain and city areas. Zhang
et al. (12) noted that the multi-band spectral relationship
was the best way to remove shadow in mountain areas,
while the MNDWI was the best way to remove shadow
in city areas. Considering that the MNDWI uses the
mid-infrared band (MIR), it is not available for sensor
data without the MIR band (10). Landsat 8 was launched
in 2013 with two sensors: the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS). The
number of bands and the band spectral range are differ-
ent in OLI data compared to the previous Landsat mis-
sions. The Landsat 8 satellite provides the latest images
for land science research. As most conclusions are based
on the TM or ETM+ sensors, it is necessary to verify
the availability and reliability of the new OLI Landsat
satellite data for surface water information extraction. In
our study, we analysed the extraction accuracy of surface
water body distributions in city and village environments
based on classic indices (NDVI, NDWI, MNDWI, and
AWEI) and compared the result of Landsat 8 OLI imag-
ery with that of Landsat 5 TM imagery.

2. Study area and data source

2.1. Test sites

The two test sites are the subsets of the imagery cover-
ing Tianjin city, which is located on the Bohai bay of
northern China (Figure 1). The sites are specially
selected so that the sub-scenes contain complex surface
features, including shadow, built-up area and other dark
features as background to the water. The first test site
with area of 701 ha in Hexi district, Tianjin city, is
located in the urban center with parks and reservoirs and
is characterized by the presence of the vegetation, built-
up area, and building shadows. The other test site with
area of 2218 ha is located in Nanyang Pier Village. The
water feature types of this test site include river (the
Chaobai River) and some ponds. The land cover types
of the second test site include water bodies (ponds and
river), vegetation (grassland and farmland), and rural res-
idential land. There is seldom shadow in the village site
since its topography is predominantly flat and the tall
buildings are rare.

2.2. Image data

The Landsat imageries, including TM images of Landsat
5 and OLI images of Landsat 8, were chosen for this
study. Landsat 5 TM sensor contains seven bands: blue,

green, red, NIR, TIR, and two TIR bands (Table 1).
Compared with TM data, the OLI sensor has two new
bands: a deep blue band (b1) for coastal and aerosol
observation and a shortwave infrared (SWIR) band for
cirrus detection. In addition, the spectral range of OLI
sensor has been refined, particularly for the NIR band,
which is reduced to 0.845–0.885 μm when compared to
Landsat TM/ETM+ (0.775–0.900 μm). This change
avoids the effect of water vapor absorption at 0.825 μm
and helps to obtain accurate surface reflectance (20).

The available data are two image scenes (P122, R33)
of Landsat8 OLI (29 September 2013) and Landsat5 TM
(30 August 2009), which are obtained from the United
States Geological Survey (USGS) Earth Resources
Observation and Science Data Centre (EROS) (http://
eros.usgs.gov/). The images were selected at the same
season and similar dates to eliminate sun illumination
differences, and differences in vegetation and soil
conditions (21). All the Landsat imageries used are of
product-type L1T with a spatial resolution of 30 meters.
The acquired imageries are all free of snow, ice, or
clouds.

2.3. Reference data

The surface water bodies can be easily visually distin-
guished from non-water using high-resolution imageries
provided by Google Earth®. So, we digitized manually
the boundary of water bodies from Google Earth® as the
reference data (Figures 2 and 3). And, the reference data
were used to assess the extraction accuracy of the differ-
ent water indices based on OLI and TM images.

In this study, the high-resolution imageries, as shown
in Table 2, were acquired close to the dates when the
OLI and TM imageries were obtained to decrease the
bias resulting from the temporal variation. For the city
site, we selected the image acquired on 5 March 2012 as
the reference data for OLI imagery because the only
image in 2013 was covered with frozen water bodies. In
2009, we found that the features in city site changed a
lot from September to November, from the Google
Earth®, so we selected the image acquired on 5 May
2009 as the reference data for TM imagery.

3. Methods

3.1. Data pre-processing

For imagery analysis and visualization purpose, ENVI
5.1 software was applied in this study. The two obtained
Landsat imageries were already geo-referenced at the
Universal Transverse Mercator projection system (zone:
50° N, datum: WGS–84) and resampled to 30 m with
cubic convolution. The L1T data products provide geo-
metric accuracy by incorporating ground control points
while employing a digital elevation model for topo-
graphic accuracy. The imagery pre-processing included
radiance calibration and atmosphere correction. The
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Digital numbers (DNs) of the image are converted to
Top-of-Atmosphere reflectance using the radiance
calibration module in ENVI 5.1 (22). Atmospheric
correction was applied to all images using the Fast
Line-of-Sight Atmospheric Analysis of Spectral Hyper-
cube (FLAASH) module in ENVI 5.1. The Equation (1)
is as follows (23).

L ¼ A
q

1� Sqe
þ B

qe
1� Sqe

þ Le (1)

where L is the pixel spectral radiance, ρ is the pixel sur-
face reflectance, ρe is the radiance backscattered by the
atmosphere, the parameters A, B, S, and La are calculated
by the ENVI software.

Besides, the spectral radiance can be calculated by
the raw quantized calibrated pixel values (Qcal) as shown
in Equation (2).

L ¼ M Qcal þ A (2)

where M is the band-specific multiplicative rescaling fac-
tor and A is the band-specific additive rescaling factor. M
and A can be found in the OLI metadata file

3.2. Spectral curves of typical features

Considering the changes in the band range of OLI sen-
sor, it is essential to draw spectral curves of the typical
features. Five features are considered: water bodies,

Figure 1. Location of test sites: (I) village site; (II) city site.

Table 1. The differences in band range and resolution between the OLI sensor and TM sensor.

OLI TM/ETM+

No. Band Range (μm) Resolution (m) No. Band Range (μm) Resolution (m)

1 Deep blue 0.433–0.453 30 1 Blue 0.450–0.515 30
2 Blue 0.450–0.515 30 2 Green 0.525–0.605 30
3 Green 0.525–0.600 30 3 Red 0.630–0.690 30
4 Red 0.630–0.680 30 4 NIR 0.775–0.900 30
5 NIR 0.845–0.885 30 5 MIR 1.550–1.750 30
6 SWIR1 1.560–1.660 30 6 TIRS 10.40–12.50 60
7 SWIR2 2.100–2.300 30 7 MIR 2.080–2.350 30
8 Pan 0.500–0.680 15 8 (ETM+) Pan 0.520–0.900 15
9 Cirrus 1.360–1.390 30

34 K. ZHAI et al.



built-up land, vegetation, bare land, and shadow. In order
to draw the curves, we selected feature samples by pixel
manually using multiple spectral bands and pan band.

As shown in Figure 4, the changes of OLI spectral
curves are similar to that of TM. For different features,

the difference in visible bands is not obvious so that it is
hard to distinguish different features, i.e. the values of
shadow and bare land are close to that of the surface
water in green band. There is an obvious difference in
other bands for OLI, i.e. the NIR band and SWIR bands.
The difference of spectral reflectance value for different
features in the NIR band is distinct when compared with
TM, such as built-up/bare land, and water/shadow.

3.3. Water extraction indices

NDVI (8), as shown in Equation (3), is based on the fact
that the reflectance of the vegetation in the NIR band is
higher than that in the Red band. Thus, the vegetation

Figure 2. The reference data of water bodies for (a) OLI and (b) TM imagery of the city site from Google Earth®.

Figure 3. The reference data of water bodies for (a) OLI and (b) TM imagery of the village site from Google Earth®.

Table 2. The dates of the referenced images from Google
Earth®.

Test site

Date

For OLI For TM

City 2012.03.11 2009.05.05
Village 2011.08.20. 2011.08.20
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can be easily distinguished from the background. Gener-
ally, the water body can be extracted when NDVI < 0
(12).

NDVI ¼ qNIR � qred
qNIR þ qred

(3)

The different reflectance values in the NIR band and
green bands demonstrate the principle of the NDWI, as
shown in Equation (4). As the water reflectance value is
higher in the NIR band than in the green band, a nega-
tive value is more clearly compared with other features
(3,12,19).

NDWI ¼ qgreen � q NIR

qgreen þ qNIR
(4)

In the infrared band, the water reflectance value is
commonly close to zero, especially in the mid-infrared
band (Landsat TM/ETM+ sensors). This provides the
basis of the MNDWI index (11,12). As shown in
Equation (5), for the Landsat 8 OLI sensor, the mid-
infrared band in TM within the range of 1.550–
1.750 μm corresponds to the SWIR band within the
range of 1.560–1.660 μm.

MNDWI ¼ qgreen � qswir1
qgreen þ qswir1

(5)

AWEI was created to maximize the reparability of
water and non-water pixels through the differentiation
and addition of bands and the application of different
coefficients. Therefore, two equations based on Landsat
5 TM were proposed to effectively eliminate non-water
pixels and extract surface water bodies with improved
accuracy. The AWEInsh, as shown in Equation (6), is

suited for situations where shadows are not major
problems, while the AWEIsh, as shown in Equation
(7), is intended to effectively eliminate shadows or
other dark surfaces. The coefficients are empirical
results determined based on reflectance patterns
observed across the data-set of pure pixels for various
land cover types. The coefficient choices also aimed to
stabilize the threshold to distinguish water from non-
water by forcing non-water pixels below 0 and water
pixels above 0 (1).

AWEInsh ¼ qgreen þ qblue � 0:25� 1:5� ðqnir þ qswir1Þ
� 0:25� qswir2

(6)

AWEIsh ¼ 4� ( qgreen � qswir1 ) � (0.25� qnir þ 2.75
� qswir2Þ

(7)

3.4. Threshold selection

The threshold values applied to distinguish water from
non-water were unstable and varied with scene and loca-
tion (24), the sample points method was used to select
the thresholds in this study. First, drawing the spectral
curves of typical feature based on the imageries of
NDVI, NDWI, and MNDWI; second, calculating the
data range of feature samples based on different indices
to select the endpoint values (or values closing to the
endpoints) or the logical values, i.e. water > 0 (9, 11);
third, comparing the result imageries of each alternative
visually to find the better one.

Figure 4. The wave spectrum for the typical features obtained from (a) OLI and (b) TM imagery.
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As for the AWEI, according to Reference (1), we
choose the AWEInsh for the village water, and both
AWEIsh and AWEInsh for the city site in this study.
Because the village site satisfied the condition that shad-
ows were not a major problem, and the city site satisfied
the condition that both high albedo surfaces and shadow/
dark surfaces were found. The value 0 was used to be
the alternative threshold for AWEI imagery.

3.5. Accuracy estimation

We calculated the confusion matrix between referenced
water bodies and extraction results using the water indi-
ces to evaluate the accuracy. Table 3 shows the principle
of the confusion matrix.

In Table 3, a is the number of correct prediction that
an instance is negative, b is the number of incorrect pre-
dictions that an instance is positive, c is the number of
incorrect of prediction that an instance negative, and d is
the number of corrections that an instance is positive
(25). The accuracy indices include the overall accuracy,
kappa coefficient, the product accuracy, and the user
accuracy. In this study, the overall accuracy and kappa
coefficient are used to evaluate the results.

4. Results

4.1. Optimal threshold and extraction results

The mean of five typical features based on NDVI,
NDWI, and MNDWI obtained from OLI and TM imag-
ery was shown in Figure 5. The comparison shows that
the mean of water bodies is positive in both MNDWI
and NDWI. Conversely, the mean of water features in
NDVI is below 0. Therefore, the 0 was to be the divid-
ing point. Figure 6 shows the data range of each feature
samples based on the imagery of NDVI, NDWI, and
MNDWI, respectively. It shows the ability of three indi-
ces in correctly classifying the features with mean values
in OLI and TM. It clearly appears that the data range of

water at different sensors exhibits large overlapping part
when compared to other features. For the OLI, the data
range of water has overlap with shadow, especially the
range of water in MNDWI; it merges slightly with sha-
dow when compared with other indices (Figure 6(a)–(c)).
Except for MNDWI, the overlap between water, built-up
lands, and shadow in TM makes it hard to distinguish
water from other features (Figure 6(d)–(f)).

According to the above-mentioned methods to
choose the threshold value, we got the optimal thresh-
olds for each index (Table 4), and the extraction results
of four indices were presented in Figures 7 and 8. For
the village site, the value 0 is the most general threshold
based on both OLI and TM sensor. For the city site, the
threshold of NDVI is negative while others are positive.
The thresholds of NDVI, NDWI, and MNDWI are –0.1,
0.05, and 0.2, respectively, in OLI. The thresholds of
NDWI and MNDWI in TM are 0.15 and 0.31 which are
bigger than that in OLI.

Compared with OLI, it is relatively difficult to
choose appropriate alternative thresholds for TM. For
example, the NDVI value of the city site is easy to
misclassify water bodies with shadow and built-up area
because they overlap with each other (Figure 6).
According to the results, the threshold 0 of AWEI can
achieve a better result than that of NDVI and NDWI
(Figures 7 and 8). The threshold based on the OLI is
more stable, especially using MNDWI, which has little
intersection between shadow and other features
(Figure 6).

Table 3. The principle of the confusion matrix.

Predicted

Negative Positive

Actual Negative a b
Positive c d

Figure 5. The mean of three water indices for five typical features obtained from OLI and TM imagery: (a) NDVI; (b) NDWI; (c)
MNDWI.
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4.2. Comparison of indices

Based on the city water results obtained from OLI and
TM imageries, AWEI was the best index to distinguish
shadow and water, followed by MNDWI (Table 5). In
particular, the kappa coefficient for AWEI result based
on OLI data is up to 0.68 with an overall accuracy of
97.61%. However, the shadow created by the high build-
ings of the city is easily confused with water bodies,
which reduced the extraction accuracy of surface water
bodies in urban environment.

For the rural water bodies, MNDWI and AWEI
extraction results are better than NDVI at preserving the
completeness of the water bodies, especially for river
and pond areas (Figure 8). The MNDWI is slightly better
than AWEI, and the kappa coefficients are 0.90 and
0.89, respectively. Also, NDVI extraction results
obtained from OLI imagery show better accuracy in vil-
lage environment.

4.3. Comparison of OLI and TM

We compared the extraction results of surface water
bodies obtained from the OLI and TM sensor imageries.

For village situation, the river water is extracted perfectly
by both OLI and TM (Figure 9), but the OLI data are
slightly better at extracting small water bodies compared
to TM. Details of accuracy assessment including overall
accuracy and kappa coefficient are shown in Table 6.
According to the confusion matrix, the OLI kappa coeffi-
cient is 0.89, and that of TM is 0.90. For city water, it is
difficult to distinguish shadows completely from water
bodies based on OLI and TM images. Some water
bodies are excluded by eliminating shadow resulting
from the edge effects (Figure 9). The kappa coefficients
for OLI and TM are 0.68 and 0.63, respectively.

Figure 6. The variation ranges in each index value obtained from TM imagery: (a) NDVI, (b) NDWI, (c) MNDWI obtaining from
OLI imagery, (d) NDVI, (e) NDWI, (f) MNDWI.

Table 4. The optimal thresholds chosen for each index based
on OLI and TM imagery.

Optimal threshold

OLI TM

City Village City Village

NDVI –0.10 0 −0.09 0.20
NDWI 0.05 0 0.15 0
MNDWI 0.20 0.07 0.31 0
AWEI 0 0 0 0
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Therefore, in the urban situation, the extraction results
based on the OLI data are much better than that of TM.

5. Discussion

Landsat8 OLI sensor has greatly improved center wave-
length and wavelength range compared to previous
Landsat missions, especially in the non-visible light
bands (20). The OLI data are better than the TM/ETM+

data in the visible band, especially for the NIR band
(20), which has an effect on NDVI and NDWI. The
thresholds of NDVI and NDWI are more stable in OLI
than that in TM as shown in Figure 6. The results of the
two test sites as shown in Figure 7 and 8, the indices of
NDVI and NDWI in OLI are better than that in TM,
especially in the village site. The optimal index was dif-
ferent for the same test sites based on OLI and TM
imageries. Both OLI and TM failed to distinguish fine

Figure 7. The optimal results maps from each index for the city site based on OLI imagery: (b) NDVI, (c) NDWI, (d) MNDWI,
and (e) AWEI; and based on TM imagery: (g) NDVI, (h) NDWI, (i) MNDWI, and (j) AWEI. The other two figures show false color
images for the city site: (a) OLI and (f) TM.

Figure 8. The optimal results maps from each index for the village site based on OLI imagery: (b) NDVI, (c) NDWI, (d) MNDWI,
and (e) AWEI; and based on TM imagery: (g) NDVI, (h) NDWI, (i) MNDWI, and (j) AWEI. The other two figures show false color
images for the village site: (a) OLI and (f) TM.
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water with minority pixels resulting from the mixed
pixels.

The optimal thresholds for the water indices vary
depending on the proportions of sub-pixel water/non-
water components (24). Because of instability, it is
difficult to decide which value should be used in classifi-
cation trees. According to our results, AWEI has a stable

threshold of 0 that can achieve a better result than other
indices. For other three indices, the threshold based on
the OLI is more stable, especially using MNDWI, which
has little intersection between shadow and other features
(Figure 6). The data range of water indices based on the
TM imagery has a larger intersection with shadow, built-
up area, and other features. Thus, it is hard to choose the

Table 5. The accuracy evaluation results of water body extraction using different indices based on OLI and TM imageries.

OLI TM

City Village City Village

Overall accuracy(%) Kappa Overall accuracy(%) Kappa Overall accuracy(%) Kappa Overall accuracy(%) Kappa

NDVI 97.07 0.61 94.78 0.86 95.88 0.37 85.94 0.59
NDWI 96.50 0.59 92.72 0.80 96.60 0.53 89.45 0.70
MNDWI 97.28 0.64 96.86 0.89 96.94 0.60 96.03 0.90
AWEI 97.61 0.68 95.34 0.88 97.10 0.63 96.83 0.89

Figure 9. The optimal result maps for the city site: (a) OLI and (b) TM; and for the village site: (c) OLI and (d) TM.

Table 6. The comparison of extraction accuracy of the surface water body between OLI and TM imagery.

OLI TM

Overall accuracy (%) Kappa Overall accuracy (%) Kappa

Village situation 96.86 0.89 96.03 0.90
City situation 97.61 0.68 97.10 0.63
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alternative threshold from the background in TM imag-
ery. In addition, different regional conditions have differ-
ent difficulties related to threshold selection. For the
village site, which is covered by simple features, the
threshold 0 is frequently selected in the water extraction
processing (Table 4). For the city site, more analysis is
needed to select the optimal threshold due to the influ-
ence of the shadow or other dark features.

According to previous research, the optimal index
depends on the environmental characteristics of the study
area including topography and shadows. Similarly, our
study demonstrates that the AWEI and MNDWI indices
performed better for distinguishing water from shadow
in the city site. In particular, AWEI can distinguish water
bodies from shadows and high albedo features better
than other indices. In the village region, MNDWI are
more appropriate to distinguish water bodies, and NDVI
shows better results based on OLI imagery.

For the city site, the fine river cannot be distin-
guished by any index because the size of the water body
is just one or two pixels, which are affected by building
shadow. Based on the Google Earth® imagery from dif-
ferent time, the urban landscape at the study site has
changed significantly since 2009, resulting in uncertainty
in the water body extraction and differences with the ref-
erenced data. These are the reasons why the kappa coef-
ficients for the city site are low. In addition, the size of
the test site also affects the extraction accuracy evalua-
tion. Because a land use classification map is lacking,
the existence of mixed pixels and the imagery date from
Google Earth® is not the same as the OLI and TM imag-
ery. Thus, the evaluation mechanism is not perfect.

Seasonal and daily variation in the angle of the sun,
atmospheric composition, and changes in the biophysical
and chemical properties of water bodies may influence
the reflectance of water (26). It is thus necessary to study
the applicability of OLI data in other environmental con-
ditions such as mountain areas and polluted water to ver-
ify the advantage of OLI in extracting water bodies. In
future work, we will pay more attention to the effect of
diverse test sites and sample sizes on extraction accuracy.
In summary, the OLI sensor data show some advantages
in water extraction in the two test sites, primarily its
stable thresholds.

6. Conclusion

This study investigated the applicability of OLI imagery
from Landsat 8 satellite to detect surface water bodies in
urban and rural situation using different water indices,
and made a comparison with TM imagery. The results
showed that the overall accuracy of water extraction
from OLI imagery for both city and village sites is
slightly better than TM, especially in the urban environ-
ment. By comparing the extraction results from different
indices under different conditions, we found that
MNDWI and AWEI indices were better than both NDVI
and NDWI for water extraction in the two test site of

this study, which were consistent with those in previous
studies (1, 7, 13). Significantly, our study showed that
the OLI data has an advantage of threshold selection for
water indices. Compared with TM imagery, it is easier to
find an appropriate threshold value and the changes of
the optimal threshold values in different situation and
using different water indices is relatively stable.

Future work will involve more tests under different
environmental conditions such as mountainous areas,
polluted water, and coastal areas. The results of this
study are valuable for developing applications of the
new sensor based on the water index model in the field
of water detection. The results also demonstrate that it is
suitable to combine OLI imagery with other Landsat
sensor data to study water changes for long periods of
time.
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