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Abstract This study examined topographic influence on

spatial and temporal variability in the normalized differ-

ence vegetation index (NDVI) derived from the Satellite

Pour l’Observation de la Terre-Vegetation at the regional

and landscape scales in the Jiaodong Peninsula. The gen-

eralized additive models were used to quantify the spatial

variation of NDVI attributable to local terrain and topo-

graphically related variables including altitude, exposure to

incoming solar radiation, topographic wetness index, dis-

tance to the nearest stream and distance from the coast.

NDVI distribution shows significant dependence on

topography. The variables explained 38.3 % of variance in

NDVI at the peninsula, and 30–45.3 % of variance in

NDVI at the woodland, cropland, and grassland land-

scapes. At the Jiaodong Peninsula scale, NDVI is influ-

enced primarily by distance from the coast. However,

topographic wetness index has the most explanatory power

for NDVI at the woodland, cropland, and grassland land-

scapes. Through a statistical nonparametric correlation

analysis (Spearman’s r), the study indicates that spatial

distribution of NDVI changes during the period 1998–2009

and future change trend of persistence determined by Hurst

exponent is closely associated with topography and

topography-based attribution. These results highlight the

importance of topographic changes at landscape and

regional scales as an important control factor on NDVI

patterns.

Keywords Topography � Spatial variation � Temporal

variation � NDVI

Introduction

Vegetation cover is thought to have considerable impacts

on all of the processes in terms of land and atmosphere. It

affects local and regional climate (e.g., Arora 2002; Dou-

ville et al. 2000), and hydrologic balance of the land sur-

face (e.g., Eugster et al. 2000), stores carbon stocks

(Cernusca et al. 1998), reduces erosion, and partially or

totally controls some natural hazards such as slides, rock-

falls, debris flow and floods (e.g., Berger and Rey 2004;

Brang et al. 2001). Therefore, it is of great importance to

analyze spatial and temporal patterns of vegetation for

natural environmental threat evaluation. The knowledge of

the spatial and temporal variability in vegetation cover is

also useful for modeling biogeochemical cycles and cli-

mate feedbacks.

Vegetation patterns are inherently influenced by the

environmental heterogeneity. In particular, topographic

heterogeneity imposes environmental constraints on vege-

tation development by producing complex substrates with

variable structure, hydrology, and chemistry (Bledsoe and

Shear 2000). Considerable studies have attempted to relate

topography to vegetation type and composition (e.g.,

Franklin et al. 2000; Pfeffer et al. 2003; Abbate et al. 2006;

Reed et al. 2009; White and Hood 2004), the abundance
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and distribution of species (e.g., Morzaria-Luna et al. 2004;

Meentemeyer et al. 2001), vegetation diversity (Tilman 1982;

Keddy 1990; Poulos and Camp 2010) and vegetation green-

ness (White et al. 2005; Deng et al. 2007), even across dif-

ferent spatial scales. However, there are few studies on what

extent topographic attributions control normalized difference

vegetation index (NDVI) and the potential dependence of

vegetation fluctuation over time on topography.

With much improvement in resolution, dependability

and accessibility of digital elevation models (DEM), digital

terrain analysis techniques become popular to improve the

efficiency of vegetation pattern estimate and modeling. For

such efforts, it is crucial to quantify topography impact on

vegetation and identify which topographic environments

support the highest vegetation cover. Additionally, such

quantitative information is beneficial for landscape man-

agement improvement and guidance for potential re-veg-

etation efforts.

NDVI provides information about vegetation commu-

nities (Reed et al. 1994), correlates closely with green leaf

biomass and green leaf area index (Boone et al. 2000; Chen

and Brutsaert 1998), and can be considered a surrogate for

vegetation production due to its robust relationship with

vegetation biomass (Svoray and Karnieli 2011). In recent

decades, despite many other vegetation indices, NDVI is

still gaining more and more attention and confidence for

vegetation pattern evaluation (e.g., Ceccato et al. 2001;

Chuvieco et al. 2002; Serrano et al. 2000), and also con-

tinues to play an important role in the future studies of

ecosystem dynamics. In particular, NDVI data derived by

satellite such as the advanced very high resolution radi-

ometer (NOAA-AVHRR), the moderate resolution imaging

spectroradiometer (TERRA-MODIS) and SPOT-VGT have

been widely used to evaluate vegetation distribution and

dominant species, classify land cover, predict primary

production and detect plant stress at different spatial scales.

The objective of this study is to quantify the relative

contributions of each topographic and topographically

related attribution to spatial patterns of NDVI in the Jia-

odong Peninsula using newly available statistical tech-

niques, generalized additive models (GAMs), and to better

understand the impact of the major forces of topography on

the temporal variation of NDVI.

Study area

Jiaodong Peninsula is located within 35�350N and 38�230N
latitude, and 119�300E and 122�420E longitude, neighbor-

ing the Yellow Sea and Bohai Sea, with a total extension of

30,085 km2 (Fig. 1). The peninsula has a rocky coastline

with cliffs, bays, and islands. The total length of coastal

lines is 2,528 km. Elevations range from sea level at the

coast to 1,133 m on Laoshan Peak. The area of moun-

tainous regions is 18,622 km2, accounting for 62 % of the

total. Most of rivers having their headwaters in the central

Jiaodong Peninsula belong to monsoon rain originating

from mountain torrents. These rivers run south and north,

respectively, until they flow into the sea.

Jiaodong Peninsula is characterized by a warm tem-

perate, wet monsoon climate with wet hot summers and dry

cold winters. Annual precipitation ranges from 650 to

850 mm, with a maximum in summer (June–August).

Southern peninsula receives 800 mm of annual precipita-

tion, and annual precipitation is about 600 mm in the

northwestern parts of the peninsula. Annual mean maxi-

mum temperature is about 25 �C, and annual mean mini-

mum temperature between -3 and -1 �C.

According to 1-km spatial resolution land use/land cover

data (2005) for Jiaodong Peninsula (Fig. 1c), which is

available at http://www.resdc.cn/first.asp, the peninsula

consists of 56.9 % croplands, 14.8 % grasslands, 11.6 %

costal protection forests and small forests, and 16.8 % the

rest. The remaining regions are covered by villages

(6.5 %), cities (4.3 %), roads and channels (2.6 %), small

lakes and ponds (3.1 %) and unused land (0.3 %).

Data and methods

Data

The NDVI data used in this study were S10 (10-day syn-

thesis) products of SPOT-VGT (VGT-S10) from April

1998 to December 2009. VGT-S10 is 1-km spatial reso-

lution maximum-value composite products deriving from

VEGETATION instrument onboard the SPOT 4 and SPOT

5 satellite platforms. These products provide data in the

four spectral bands. The spectral bands are blue

(0.43–0.47 lm), red (0.61–0.68 lm), near infrared (NIR

0.78–0.89 lm), and shortwave infrared (SWIR 1.58–

1.75 lm). SPOT-VGT data were pre-processed including

atmospheric correction for ozone, aerosols and water

vapor, the geometrical and radiometrical correction, and

masking procedures to improve data quality.

Altitude (ALT), slope (S), aspect (AS), annual mean

incident solar radiation (ISR), topographic wetness index

(TWI), distance to the nearest coast (DC), and distance to

the nearest stream (DS) were used as independent predic-

tors to explain variation in NDVI. These variables were

selected because they are widely regarded to exert a stable

control on vegetation (e.g., Dargie 1984; Franklin 1995;

White et al. 2005; Deng et al. 2007). In addition, popula-

tion density (PD) and distance to the urban site (DUS)

were also used. The 90-m cell size Shuttle Radar Topog-

raphy Mission (SRTM) from Consultative Group for
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International Agriculture Research Consortium for Spatial

Information (CGIAR-CSI, available at http://srtm.csi.

cgiar.org/) was used to produce ALT, S, and AS using

ArcGIS 9.3. For reasons of spatial coherence, SRTM DEM

were resampled to 1-km spatial resolution and co-regis-

tered to the NDVI data using a nearest neighbor resampling

algorithm. ISR for each cell of SRTM in the study area was

estimated using MiraMon GIS (Pons 1998). The program

takes into account of site latitude, ALT, orientation,

shading effects, daily shifts in solar angle (hourly) and

solar incidence angle for each cell, Earth–Sun distance

(monthly) and the atmospheric extinction effect. TWI

developed by Beven and Kirkby (1979) was used to

characterize the influence of topographic variation on the

spatial variation of soil water content. It is calculated as:

TWI ¼ ln ðAs=tan bÞ

where As is the local upslope area draining through a

certain point per unit contour length and b is the local

slope. As was calculated in ArcInfo using slope and aspect

to estimate how many upstream pixels drained into a

candidate pixel. DC was estimated using the coastline

layer of the digital line graphs (DLGs) available at the

1:250,000 scale generated by National Geomatics Center

of China in 2002 for Jiaodong Peninsula. The DS variable

was calculated for perennial streams and lakes based on

the hydrography layer of DLGs. The DUS was generated

using the urban location layer of DLGs. Population den-

sity gridded data at 1-km resolution come from China

sharing infrastructure of earth system science.

Fig. 1 Study area showing a DEM, b spatial distribution of annual NDVI, c land use types: 1 croplands, 2 forests, 3 grassland, 4 water body,

5 cities, 6 villages, 7 roads, channels, and industrial and mining lands, 8 unused land
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Methods

Inter-annual changes of NDVI dynamics from 1998 to 2009

were analyzed by a linear regression. The slope of the

regression was used to quantify the change of NDVI over time.

Future persistence of the change trend in NDVI over the study

period was determined by Hurst exponent (H) developed by

Hurst (1951), which provides a robust measurement of long

memory in time series. The values of H ranging from 0 to 1 can

be classified into three categories: 0 \ H \ 0.5, H = 0.5 and

0.5\ H \ 1. If H is less than 0.5, the time series of NDVI is an

anti-persistent series, meaning future anti-trend variation of the

time series. If H is equal to 0.5, the time series of NDVI is

random without consistency. If H is greater than 0.5, the time

series of NDVI is a persistent series, meaning the future same

change trend of the time series. Nonparametric correlation

analysis was employed to examine the effect of topography on

temporal variation of NDVI dynamics at the peninsula.

GAMs (e.g., Hastie and Tibshirani 1987; Guisan and

Zimmermann 2000) provide a flexible nonparametric

means that can deal with non-normal data and non-linear

relationship between the response and the set of predictor

variables. GAMs are the extensions of linear regression

models that use the data to automatically estimate the

appropriate functional relationship for each predictor

(Guisan et al. 2002). In a GAM, a link function is utilized

to establish a relationship between the mean of the

response variable and a smooth function of the predictor

variable(s). A GAM can be expressed as follows:

gðEðyiÞÞ ¼ b0 þ s1ðx1iÞ þ s2ðx2iÞ þ � � � þ spðxpiÞ

where sp is smooth function, and xp is a predictor variable,

and g is a link function that associates the linear predictor

with the expected value of the response variable.

To understand any spatial patterns of NDVI response to

land use, data analysis consisted of the investigation of the

NDVI–topography relationships based on a stratification of

the study area into major land use categories, i.e., cropland,

grassland and woodland. Variation in explained deviance

when each predictor variable was eliminated from the

model was used to estimate the relative contribution of

predictor variables.

The data were split randomly into two groups, where

70 % of the data were used to calibrate the model, while

the left out 30 % were used to test the fitted model (Guisan

and Zimmermann 2000). The mean absolute error (MAE)

and the root mean square error (rRMSE) relative to the

absolute observed value were used to evaluate the fitted

GAM performance.

Results

Temporal variation of NDVI dynamics

The trends determined by a linear regression to all the pixels

indicate a high spatial heterogeneity in annual NDVI varia-

tion during the period 1998–2008 (Fig. 2). About 9.4 % of

Jiaodong Peninsula experiences moderate and significant

decreasing trends (\0.005 a-1) of NDVI. They mainly occur

in the coast areas, especially the cities probably due to the

intensifying urbanization since the late 1990s. NDVI pixels

with upward trends cover more than 84 % of the peninsula.

Furthermore, about 34.6 % of the pixels have a distinct

increasing trend ([0.01 a-1), which occur in the central

peninsula where crop is the dominant vegetation type.

Hurst exponent of annual NDVI time series shows dis-

tinct increase from the coast to the inland Jiaodong

Fig. 2 Spatial distribution of

NDVI change trend and Hurst

exponent at the Jiaodong

Peninsula from 1998 to 2009
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Peninsula (Fig. 2). Most of the peninsula has high persis-

tence of NDVI trends in the future with H greater than 0.5.

Moreover, the central peninsula with the dominant vege-

tation of crop experiences a higher persistence ([0.8) of

NDVI trends after the study period. H with the value less

than 0.5 covering only 2 % of the peninsula mainly occurs

in the coastal regions with the significant decrease trend of

NDVI. This indicates anti-trends of future NDVI variation.

Topographic influence on temporal variation of NDVI

dynamics

As Table 1 shown, there is low (r \ 0.38) but very sig-

nificant (p \ 0.001) correlation between nearly all tested

topographic and topographically related variables and

magnitude and persistence of NDVI change trends in the

peninsula, cropland, grassland and woodland landscapes,

respectively. In spite of the very limited explanatory power

(\15 %) for the NDVI variability trend due to the other

factors affecting vegetation variation such as climate,

vegetation type and soil, the temporal variability explained

by the topography is persistent and significant.

Topographic controls on spatial patterns of NDVI

GAM fits based on R2 values were higher when the two

human impact terms were included (Table 2). An overall

assessment of the regression statistics presented in Table 2

suggests that the performance of all models is less suc-

cessful with R2 values for the training data ranging from

0.3 to 0.45. Furthermore, the accuracy of models based on

test data is lower than that of models based on training

data. The magnitude of the differences between the

observation and prediction by GAMs ranged from 3.5 to

5.4 %. The RSMEs were between 6.9 and 12.5 %.

Topographical and topographically related variables

clearly affect spatial distribution of NDVI at the regional

and landscape scales. The models fitted using these vari-

ables explained the variation of NDVI in the total study

area, cropland, grassland, and woodland landscapes

(Table 3). For the total study area, 38.3 % of variation in

NDVI patterns was explained. In the cropland and grass-

land landscapes, deviance explained by topographic vari-

ables remained \35 %. The variables captured 45.3 % of

variation in woodland NDVI. When adding two anthropic

factors (PD and DUS) to the models, explained deviance

increases by [5 % especially for the total study area

(10.4 % increase), suggesting human management and

disturbance such as urbanization, agricultural activity, and

grass/shrub planting and cutting may have badly affected

the spatial variation of NDVI.

The final set of predictor variables in the fitted GAMs

and their importance differs considerably. Although a

significant portion of the variance in the data was explained

by ALT, ISR and DS, their importance is low (Table 3).

These simple topographical and topographically related

variables integrate a variety of environmental controls on

NDVI such as rainfall gradients, water flow, and radiant

energy. DC explained the highest amount of spatial vari-

ation of NDVI in the total study area. TWI consistently

contributed the most explanatory power to the spatial

variation in NDVI in woodland, cropland, and grassland

landscapes. Topographically mediated redistribution of

rainfall is responsible for moisture limitations affecting

plant greenness.

Table 1 The correlation

coefficient between topographic

and topography-based variables

with Hurst exponent and linear

trend slope of NDVI change

during 1998–2009, respectively

All the coefficients but the bold

values are at a significance level

of p \ 0.001

Jiaodong

Peninsula

Corp landscape Meadow landscape Forest landscape

Hurst

exponent

Slope Hurst

exponent

Slope Hurst

exponent

Slope Hurst

exponent

Slope

Altitude 0.278 0.376 0.224 0.311 0.239 0.211 0.266 0.295

Slope 0.127 0.183 0.073 0.122 0.084 0.058 0.075 0.047

Topographic wetness

index

0.022 0.004 0.007 0.011 0.056 -0.054 0.059 -0.026

Distance to the nearest

stream

-0.018 0.055 0.016 0.079 -0.046 0.008 -0.042 0.037

Distance to the coast 0.251 0.255 0.202 0.153 0.313 0.291 0.287 0.28

Table 2 Explanatory variance (only using training data) and pre-

dictive accuracy (using independent test data) of the fitted models for

NDVI in the total study area, cropland, grassland and woodland

Explanatory

variance

Predictive accuracy

R2 9 100 R2 9 100 MAE

(%)

rRSME

(%)

All the

peninsula

38.3 38.6 5.54 12.22

Croplands 30.3 27.5 3.7 7.25

Meadow 35 27.9 3.39 7.13

Forest 45.4 39.3 3.51 6.9

MAE Mean absolute error, rRMSE relative root mean square error
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Figures 3 and 4 show the response curves of each topo-

graphic and topographically related variables to NDVI in

the total area, cropland, grassland and woodland land-

scapes. NDVI in the different land use units varied signif-

icantly according to local topography and topographically

mediated conditions. The relationships between NDVI and

topographically related variables were not consistent in the

different landscapes. However, it was common that NDVI

in the coast area increased with distance from the coast. In

addition to distance from the coast, annual mean ISR, TWI

and DS were found to be suitable for evaluating NDVI

distribution.

Discussion

Although the variability in climate factors such as tem-

perature and precipitation was an important driver of

vegetation dynamics, topography was gradually considered

a control factor on vegetation dynamics (Fu et al. 2009).

White et al. (2005) explored the control of topographic

variables such as elevation, slope, aspect, and proximity to

moisture convergence zones on the interannual variations

of NDVI over America through a data mining technique

and elevation and slope exhibit the predominant controls

on the NDVI response to climate oscillations. Peng et al.

(2012) showed that H of NDVI change over the Tibetan

Plateau is closely associated with elevation. In Jiaodong

Peninsula, woodland, cropland, and grassland landscapes,

topography and topography-based attributes contribute

more to the spatial patterns of temporal change in NDVI

and H (Table 1). Among the topographical and topogra-

phy-based variables, the correlation between ALT and DS

with spatial patterns in slope of NDVI trends and H is

stronger than the other attributes (Table 1). The distinct

weakening trends of NDVI were mainly below 100 m of

the peninsula. In contrast, NDVI in the inland with ALT of

above 300 m shows significant increasing trend. The

increasing trends in NDVI changes gradually become more

prominent from the coast to the inland. It is interesting that

some coast areas with weakening trends in NDVI have the

values of H below 0.5, promising an anti-trend of future

NDVI variation in these regions.

It is noted that urbanization and industrialization in and

around cities increase the loss of forested and agricultural

land to urban development, and thus result in NDVI

decline. Exploitation of the coastal wet lands also leads to

the loss of vegetation cover (Liu et al. 2010). With the

implementation of environmental protection policies, pro-

tection of the mountain vegetation may to a certain extent

promote the increasing of NDVI in the inland peninsula.

Previous studies have demonstrated that GAMs are very

useful tools to predict and explain the distinct features of

biodiversity such as species presence/absence, and species

richness (e.g., Bio et al. 1998; Lehmann et al. 2002).In this

study, GAMs were used to examine the effect of topogra-

phy on spatial patterns of NDVI. The model has a

non-linearity advantage for analyzing the response of the

predictors (ALT, ISR, TWI, DC, and DS) to the response

variable (spatial patterns of NDVI). Our results identified

DC as a good predictor of mean NDVI distribution in the

Jiaodong Peninsula and three major land use categories,

i.e., cropland, grassland and woodland. Vegetation in the

coastal areas is liable to very harsh environments such as

deficiency in major nutrients, high salt spray and lack in

water. In addition, the coastal regions of the peninsula are

under threat, mainly from inappropriate firing, exploitation,

building developments and recreational activities. These

threats gradually decline with the increase in the distance

from the coast. Probably due to these urbanization process

and rapid growth of population in the coastal cities, veg-

etation green has a decrease trend in the regions in recent

decades. A considerable portion of spatial variation of

NDVI in the cropland, grassland, especially woodland

landscape can be explained by TWI because the index

describes the topographically constrained redistribution of

precipitation and is regarded a surrogate for soil water

content affecting vegetation. This agrees well with the

previous studies emphasizing the significant relationship

between the index and NDVI (e.g., Deng et al. 2007; Reed

et al. 2009). At the peninsula, woodland often has rela-

tively steep terrain which influences spatial distribution of

saturation and run-off generation zones. Therefore, the

relatively steep terrain in woodland may constrain the soil

moisture for vegetation growth. In addition to DC and

TWI, ISR, ALT and DS also contribute to NDVI

Table 3 Summary of GAM with significant predictor variables (p \ 0.001), change in explained deviance when dropping predictor variables

from the fitted model

All variables PD and DUS ALT TWI S AS ISR DS DC PD DUS

All the peninsula 48.7 38.3 1.5 2.2 – – 0.9 0.7 10.1 8.5 0.7

Croplands 36.9 30.6 2.3 4.4 – 0.4 3.1 0.9 11.4 3.5 2

Meadow 40 35 2.1 4.5 0.6 – 0.9 0.7 6.1 2.3 2.3

Forest 49.3 45.4 0.9 8.4 – – 2.7 1.3 8.5 2.9 0.7
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distribution. The variations in topographically induced

incoming radiation can result in corresponding soil mois-

ture variations (Grange and Schulze 1977). ALT and DS

affect the distribution of resources and conditions neces-

sary for plant growth, such as moisture availability or

temperature (Pabst and Spies 1998). There are many

studies on exploring the topography–vegetation relation-

ship (e.g., Franklin et al. 2000; Pfeffer et al. 2003; Abbate

et al. 2006; Reed et al. 2009; White and Hood 2004).

Topographic attributes such as ISR, ALT, S, TWI, and

slope aspects are significantly correlated with vegetation

changes and the individual correlations may be weak at

different regions. However, these studies focus on topo-

graphic effect on vegetation type and composition, and

species distribution and diversity. Deng et al. (2007)

evaluated the multi-scale correlation between topographic

variables and NDVI. But few studies identified which

topographic environments support the highest NDVI or

vegetation at landscape and regional scales. In comparison

to the previous studies (Franklin et al. 2000; Pfeffer et al.

2003; Abbate et al. 2006; Reed et al. 2009; White and

Hood 2004), through a data mining approach, this study

explored the relative importance of topographic and topo-

graphically related variables on NDVI and identified that

ALT and DS were the major influences on NDVI variation

in the Jiaodong Peninsula, and TWI was the most explan-

atory power to the spatial variation in NDVI in woodland,

cropland, and grassland landscapes.

Although topographic variables explained spatial vari-

ations in NDVI at the regional and landscape scales well,

other factors can still contribute to the NDVI patterns. The

relatively flat grassland and cropland landscapes may

modify the influence of topography on the water conditions

which are not represented by a DEM (Band et al. 1993).

Fig. 3 Response curves of NDVI in the total study area (a) and

woodland (b) to smooth contributing terms: altitude (ALT), slope (S),

aspect (AS), annual mean incident solar radiation (ISR), topographic

wetness index (TWI), distance from the coast (DC), and distance to

the nearest stream (DS). Dotted lines show 95 % Bayesian confidence

intervals
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Vegetation growth is sensitive to differences in fertility

(Pugnaire and Luque 2001; Elgersma and Dhillion 2002),

soil acidity (Pärtel et al. 2007), soil depth (Zelený and

Chytrý 2007) and electrolytic conductivity. Additionally,

the dominant vegetation type relates strongly to soil

moisture retention characteristics (Jager 1982). Thus, soil

attributes not accounted for in the fitted models may also

have contributed to the explanation of grassland and

cropland NDVI. Human activities such as urbanization,

grazing and cultivation could be important contributors to

the spatial variation in NDVI. It is well known that

intensive agricultural managements may result in a less

complex landscape structure and drastically reduce species

richness in the landscape (Solstad 2006). Moreover, human

population densities accounted for a significant proportion

(8.5 %) of NDVI variation in the total study area, probably

because species richness closely relates to human PD

(Duncan and Young 2000; Luck et al. 2004; Pärtel et al.

2007).

In addition, the NDVI–topography relationship may

vary or be interrupted with different spatial scales, seasonal

variability, selections of observed properties (Deng et al.

2007) and historic disturbance events for instance fire

(Reilly et al. 2006; Kokaly et al. 2007; Fox et al. 2008).

Topography often tends to play a more important role in

the NDVI patterns in coarser scales (Deng et al. 2007).

However, this cannot be further confirmed by this study

due to the relatively low resolution of NDVI and DEM.

There are different relationships and even no relationship

between topography and seasonal variations in NDVI.

Also, importance of topographic attributes on NDVI may

change across seasons. Historic disturbance events, espe-

cially fire, can have an impact on species composition and

structure (Reilly et al. 2006; Kokaly et al. 2007; Fox et al.

Fig. 4 Response curves of NDVI in the cropland (a) and grassland

(b) to smooth contributing terms: altitude (ALT), slope (S), aspect

(AS), annual mean incident solar radiation (ISR), topographic wetness

index (TWI), distance from the coast (DC), and distance to the nearest

stream (DS). Dotted lines show 95 % Bayesian confidence intervals
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2008) at micro-scales, and lead to variability in vegetation

patterns at regional even global scales.

Conclusions

Spatial patterns of NDVI over the Jiaodong Peninsula and

three landscapes can be well explained by topographic

variables including ALT, exposure to incoming solar

radiation, TWI, DS and distance from the coast. GAM is a

useful tool to quantify the relationship between NDVI and

topography. Based on this model, TWI was identified as

the most explanatory power for spatial variation in NDVI

in the woodland, cropland, and grassland landscapes. Sta-

tistical nonparametric correlation analysis shows that

topography contributes to NDVI change over time and

future persistence of change trends in the peninsula,

cropland, grassland and woodland landscapes.

This study provides important insights into regional

vegetation dynamics, and strengthens the importance of

using NDVI data integrating topographic data to study

vegetation heterogeneity across landscapes. However, the

results can likely be further enhanced by using finer reso-

lution spatial datasets. Furthering our understanding of

direct and indirect controls such as soil attributes, climate

change and human disturbance over vegetation may also

improve the predictions about NDVI distribution and future

variation.
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