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Abstract: A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing 

bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane 

ammonium-selective electrode as a transducer is described. The system is based on the 

inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the 

ammonium consumption rates with the ammonium-selective membrane electrode. The AOB 

cells are immobilized on polyethersulfone membranes packed in a holder, while the 

membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the 

ammonia oxidation‒allylthiourea and thioacetamide‒have been tested. The IC50 values 

defined as the concentration of an inhibitor causing a 50% reduction in the ammonia 

oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and 

thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed 

and high sensitivity for measuring toxicity in water. 
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1. Introduction 

The detection of toxicity in water caused by pollutants is of great importance for aquatic ecosystems 

and human health. Bioassays are one of the most useful technologies for environmental monitoring due 

to their high sensitivity, good reproducibility, and easy adaptation for online measurements [1–3]. 

Various toxicity bioassays based on measuring the physiological responses of fish, invertebrates, 

plants, algae and microorganisms have been developed [4–6]. In particular, bacterial bioassays have 

attracted much attention because bacteria offer enormous species diversity, rapid growth rates, low 

cost and easy maintenance as compared to other higher organisms [7]. 

Ammonia-oxidizing bacteria (AOB) play an important role in the removal of ammonia for 

wastewater treatment [8]. They are considered to be extremely susceptible to a wide range of 

pollutants (i.e., inhibitors) including sulfur, aromatic, and halogenated compounds even at low 

concentrations [9]. Therefore, AOB are well accepted target microorganisms and can be used for 
detecting ammonia oxidation inhibitors in wastewater. AOB are chemoautotrophic and can obtain 

energy for growth from the oxidation of ammonia shown as follows [10]:  

 (1) 

The toxicity of an inhibitor can be assessed by measuring the ammonia oxidation activity. 

Monitoring of oxygen consumption by microbial sensors composed of immobilized AOB cells and an 

oxygen electrode allows a rapid and accurate estimation of the inhibition effect on the ammonia 

oxidation [11,12]. However, it is necessary to distinguish the oxygen uptake by the heterotrophic 

substrate oxidation and endogenous respiration from that by the ammonia oxidation [7]. By measuring 

the nitrite formation rates with the colorimetric methods using cell suspensions, the inhibitor toxicity 

can also be evaluated [13–15]. However, the analysis procedures are always complex and  

time-consuming [16]. Furthermore, the reagents used are harmful to human health and may 

contaminate the environment. Therefore, new methods for convenient detection of ammonia oxidation 

activity of AOB are highly required. 

Polymeric membrane ion-selective electrodes (ISEs) offer advantages of excellent selectivity, low cost, 

ease of use, and high reliability, and have been successfully used for analysis of water quality [17,18]. In 

this work, we employ Nitrosomonas europaea (N. europaea) as an AOB model and an  

ammonium-selective membrane electrode as a transducer for measuring the inhibition effect of a 

toxicant on the AOB ammonia oxidation activity. Unlike the conventional biosensing scheme in which 

a bioreceptor is usually immobilized on the surface of an electrode or optrode, the proposed system 

allows the molecular recognition and transduction processes to be done individually. The AOB cells 

are immobilized on polyether sulfone membranes packed upstream in a holder, while the membrane 

electrode is placed downstream in the flow cell. The flow biosensing mode simplifies the sensor 

construction and permits one to execute the individual unit operations under optimum conditions rather 

than to operate them concurrently under compromised conditions [19]. 

AOB

3 2 2 22NH +3O 2HNO +2H O
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2. Experimental Section  

2.1. Materials 

N. europaea (NBRC 14298) was purchased from the NITE Biological Resource Center, Chiba, 

Japan. The ammonium ionophore (nonactin), potassium tetrakis(4-chlorophenyl)borate (KTClPB),  

2-nitrophenyloctyl ether (o-NPOE), high molecular weight poly(vinyl chloride) (PVC),  

N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) and Trizma base were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). All chemicals and reagents were of selectophore or analytical 

reagents grade. Aqueous solution were prepared with freshly deionzed water (18.2 MΩ cm specific 

resistance) obtained with a Pall Cascada laboratory water system.  

2.2. Electrode Preparation  

The ammonium-sensitive membrane contained 1.0 wt% nonactin, 0.3 wt% KTClPB, 32.9 wt% 

PVC and 65.8 wt% o-NPOE [20]. The membrane was obtained by casting a solution of ~125 mg of 

membrane components dissolved in 2.0 mL tetrahydrofuran (THF) into a glass ring of 2.0 cm diameter 

fixed on a glass plate and letting the solvent evaporate overnight. For each electrode, a disk of 6 mm 

diameter was punched from the membrane and glued to a plasticized PVC tube (i.d. 4 mm, o.d. 6 mm) 

with THF. The internal filling solution was 10
−2

 M NH4Cl and the electrode was conditioned in 10
−2

 M 

NH4Cl for 1 day. When not used, the electrode was placed in the conditioning solution. 

2.3. Cultivation and Immobilization of N. europaea  

N. europaea cells were cultured in a growth medium (pH 7.8) consisting of 18.90 mM (NH4)2SO4, 

3.67 mM KH2PO4, 5.95 mM NaHCO3, 400 μM MgSO4·7H2O, 30 μM CaCl2·2H2O, 180 μM  

Fe-EDTA, and 50 mM HEPES. The cells were shaken in the dark at 28 °C. When the bacteria were 

grown to the late logarithmic phase, the cells were collected by vacuum filtering with a 

polyethersulfone membrane (diameter: 25 mm, pore size: 0.2 μm, Pall Corporation, Ann Arbor, MI, 

USA). After the cells were adsorbed on the membrane, another polyether sulfone membrane was 

placed over the cells to make a sandwich form. Then the sandwich form was fixed with an O-ring on a 

25 mm membrane holder (Pall Corporation, Ann Arbor, MI, USA). When not in use, the cells were 

stored at 4 °C in the growth medium. 

2.4. Apparatus  

Figure 1 shows the schematic diagram of the flow monitoring system. The propulsion of the 

solution was accomplished with a peristaltic pump (IFIS-D, Xi’an Remex Analyse Instrument Co., 

Ltd., Xi’an, Shaanxi, China). The membrane holder with immobilized cells was placed between the 

pump and the flow cell. The detection chamber was constructed in-house from a single block of 

Perspex. An ammonium-sensitive working electrode (i.d. 4 mm, o.d. 6 mm) and an Ag/AgCl reference 

electrode were imbedded into the cell body with a distance of 10 mm. The whole  

flow-through system was assembled using Teflon tubing of a 0.8 mm internal diameter. Potentiometric 

measurements were performed with a Model PXSJ-216 digital ion analyzer (Shanghai Instruments 
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Factory, Shanghai, China) in the galvanic cell: Ag/AgCl/sample solution/ISE membrane/inner filling 

solution/AgCl/Ag.  

Figure 1. Schematic diagram of the flow monitoring system: (1) sample solution;  

(2) peristaltic pump; (3) membrane holder; (4) flow cell; (5) ammonium-selective 

electrode; (6) reference electrode; (7) ion analyzer; (8) waste. 

 

2.5. Procedures  

For the control test, the peristaltic pump delivered the buffer solution (Tris-HCl buffer, 0.05 M,  

pH 8.0) containing 10
−4

 M NH4Cl at a flow rate of 1.62 mL min
−1

. When a stable potential baseline 

was obtained, the flow was stopped for the ammonia oxidation by the AOB cells immobilized in the 

membrane holder. After 30 min, the pump was started and a negative potential peak induced by the 

decrease in the ammonium concentration was recorded when the buffer solution passed through the 

ammonium-selective electrode in the flow cell. For inhibitor measurements, varying amounts of 

inhibitors were added to the buffer solution and delivered through the system. The additions of the 

inhibitors decreased the ammonia oxidation activity of the AOB cells, thus causing relatively smaller 

peak signals as compared to that of the control test.  

2.6. Nitrite Assays Using Cell Suspensions  

Cells were collected by centrifugation and washed with the Tris-HCl buffer several times to remove 

nitrite. Experiments were performed in 50 mM Tris-HCl buffer in batch reactors. Buffer solutions 

containing N. europaea, 10
−4

 M NH4Cl and varying concentrations of inhibitors were incubated for  

30 min at 30 °C. The batch reactor without an inhibitor was run for the control. The concentrations of 

nitrite were measured by the colorimetric method using N-(1-naphthyl)ethylenediamine dihydrochloride 

and sulfanilic acid. 

3. Results and Discussion 

3.1. Optimization of the Flow Biosensing System  

The influence of the concentration of the Tris buffer was studied in the range of 0.03–0.20 M and 

the results are shown in Figure 2(a). It can be seen that higher buffer concentrations result in lower 

potential peak heights, which is probably due to the higher ion background in the buffer solution. 

Although decreasing the buffer concentration improves the sensitivity, it may cause larger noises in 
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potential signals. To achieve a higher sensitivity and a lower level of noise, 0.05 M was selected as the 

buffer concentration. 

Figure 2. Effects of (a) buffer concentration, (b) temperature, (c) sample pH, and (d) flow 

rate on the potential response. Unless stated otherwise, experiments were performed under 

the following conditions: NH4Cl, 10
−4

 M; no inhibitor; buffer solution, 0.05 M Tris-HCl of 

pH 8.0; temperature, 30 °C; flow rate, 1.62 mL min
−1

; cell amount, 1.7 × 10
9
. Each error 

bar represents one standard deviation for three measurements. 

 

Temperature and sample pH are key factors for most enzymatic reactions. The effect of temperature 

on the sensor response was investigated (Figure 2(b)). The results show that the potential response 

increases with increasing temperature up to 30 °C, which is due to the increase in the enzymatic 

activity in the cells. Experiments also show that the response decreases with further increase in 

temperature probably due to the damage to the AOB cells. Therefore, 30 °C was employed as the 

operational temperature for subsequent experiments. The effect of sample pH on the sensor response 

was examined over the range of 7.0–9.0 in 0.05 M Tris-HCl buffer. As shown in Figure 2(c), the 

maximum potential peak height was observed at pH 8.0, indicating that N. europaea cells have the 

highest metabolic activity at this pH value. Therefore, pH 8.0 was used for further experiments. 

The influence of flow rate was studied in the range of 0.86–2.30 mL min
−1

. Figure 2(d) shows that 

lower flow rates may result in lower potential peak heights, which is probably due to the dispersion of 

the sample when flowing between the membranes with immobilized N. europaea cells and the flow 

cell with the membrane electrode. In addition, lower flow rates could prolong analytical time, and may 

cause peak broadening. However, on the other hand, at flow rates higher than 1.62 mL min
−1

, the 

sensor response decreased, which may be due to the sample dilution effect caused by vigorous mixing 

in the flow. Therefore, the flow rate of 1.62 mL min
−1

 was chosen for the present system. 
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Experiments were performed to investigate the relationship between the sensor response and the 

amount of the immobilized cells. As shown in Figure 3(a), for the control test, the potential peak 

height increases with increasing the cell amount due to an increase in the catalytic activity of the cells, 

and could reach a plateau when 1.7 × 10
9
 cells are immobilized. However, the amount of immobilized 

cells may also affect the inhibition sensitivity of the biosensor. As shown in Figure 3(b), for measuring 

0.3 μM thioacetamide, lower cell amounts could give higher sensitivities. Considering a compromise 

between high inhibition sensitivity and large peak height, the amount of the immobilized N.europaea 

cells was chosen as 1.0 × 10
9
 cells for subsequent experiments. 

Figure 3. (a) Effect of the amount of immobilized cells on the potential response. (b) The 

inhibition sensitivities of different amounts of immobilized cells to 0.3 μM thioacetamide. 

The other conditions are given as in Figure 2. Each error bar represents one standard 

deviation for three measurements.  

 

3.2. Inhibitory Effects of Toxicants  

For the catalytic mechanism of N. europaea, ammonia is initially oxidized to hydroxylamine by the 

ammonia monooxygenase (AMO). AMO contains copper in its active site, so copper chelating agents 

such as allylthiourea and thioacetamide are specific inhibitors for the ammonia oxidation [21]. The 

presence of an inhibitor could decrease the ammonia oxidation rate (AOR). Thus, the inhibitory effect 

can be evaluated by comparing the inhibited AOR with that of the control. The inhibition effects of 

various concentrations of allylthiourea (0.05–0.5 μM) and thioacetamide (0.05–1.5 μM) were 

investigated. The inhibition percentages can be calculated using Equation (2): 

 (2) 

where AOR and AORi are the ammonia consumption rates before and after exposure to an inhibitor, 

respectively. The concentration of ammonia can be converted from that of ammonium, while the latter 

can be measured by the membrane ISE according to the Nernst equation. For simplicity, the 

relationship between the inhibition percentage and the potential response can be described as follows:  

 (3) 

i
AOR-AOR

inhibition % = 
AOR

100%

2.303 2.303

2.303
inhibition % 

10 10
= 100%

1 10

iF E RT F E RT

F E RT
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where ΔE and ΔEi are the potential peak heights before and after addition of the inhibitor, and R, T, and F 

are the universal gas constant, the absolute temperature and the Faraday constant, respectively. 

Figure 4 shows the inhibition effects of allylthiourea at different concentrations. It can be seen that 

the peak height decreases with increase in the allylthiourea concentration. The concentration of a toxic 

compound causing a 50% reduction in the ammonia oxidation activity from that in the control defined 

as IC50 is a useful parameter to evaluate the toxicity. The inhibition on the ammonia oxidation by an 

inhibitor can be expressed as follows [22]:  

  (4) 

where Ki and C are inhibition constant and the concentration of an inhibitor, respectively. Ki and IC50 

can be obtained by plotting ln(AORi/AOR) versus inhibitor concentration C. The IC50 values obtained 

with the biosensor are 0.17 and 0.46 μM for allylthiourea and thioacetamide, respectively. 

Figure 4. Potential responses of allylthiourea at different concentrations of  

0.05, 0.1, 0.2, 0.3 and 0.5 μM. Inset shows the inhibition curve of allylthiourea (relative 

activity% = 100%–inhibition%). The amount of immobilized cells was 1.0 × 10
9
. The other 

conditions are given as in Figure 2. Each error bar represents one standard deviation for 

three measurements. 

 

It should be noted that some substances coexisting in potable water and environmental samples 

might interfere with the inhibition measurements. For example, copper ions can form complexes  

with allylthiourea and thioacetamide and thus decrease their inhibition percentages; ammonium ions at 

relatively high concentrations might cause a high substrate background and make the system insensitive to 

the inhibitors. 

3.3. Characteristics of the Flow Biosensor  

The flow biosensor can be used for measurements of allylthiourea in the range of 0.05–0.5 μM and 

of thioacetamide in the range of 0.05–1.5 μM with the corresponding detection limits (3σ) of 0.02 μM 

and 0.04 μM. The precision of the system was checked with repetitive measurements of 0.1 μM of 

AOR  = AOR exp(-K )
i i

C
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each inhibitor. The relative standard deviations are 4.0% and 4.4% for allylthiourea and thioacetamide, 

respectively (n = 4). Reversibility of the sensor was evaluated by measuring the inhibition effect of 

thioacetamide at a concentration of 0.1 μM. Between each measurement, the immobilized cells were 

washed with the Tris buffer solution and the growth media, respectively. As shown in Figure 5, the 

signal changes are fully reversible and the electrode can be repeatedly used for detection of toxicants.  

To evaluate the accuracy of the biosensor, the colorimetric nitrite formation assay using cell suspensions 

of N. europaea was carried out. The inhibition percentages can be calculated as follows [13]:  

 (5) 

As shown in Figure 6, the results obtained by the proposed biosensing flow system agree well with 

those obtained by the colorimetric method. 

Figure 5. Reversibility test of the biosensor using 0.1 μM thioacetamide as the inhibitor.  

 

Figure 6. Inhibitory curves of thioacetamide at different concentrations obtained by the  

present biosensor (■) and the colorimetric nitrite formation assay (●) (relative activity% = 

100%-inhibition%). Each error bar represents one standard deviation for three measurements. 

 

4. Conclusions 

A microbial flow biosensor using a polymeric membrane ammonium-selective electrode as a transducer 

has been developed for detecting ammonia oxidation inhibitors. Unlike the conventional biosensing 

-

2 sample

-

2 control

NO
inhibition% = (1- ) 100%

NO
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scheme, the proposed system allows the molecular recognition and transduction processes to be done 

individually, making the analytical procedures simple and convenient. The IC50 values have been 

measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The present 

sensor offers advantages of simplicity, rapidity and high sensitivity for measuring toxicity in water. 
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