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A data-interpolating empirical orthogonal function (DINEOF) method was applied to 8
day composited satellite-derived chlorophyll-a (chl-a) images to produce a long-term,
cloud-free chl-a data set over the Bohai Sea and Yellow Sea from 1997 to 2010. In this
study, two additional procedures, a depth subdivision scheme and a new process of
outlier detection and removal, improved the overall performance of this interpolating
technique. The whole chl-a data set was divided into three subsets according to 20 and
50 m isobaths and the DINEOF reconstruction was performed on each subset. This
subdivision scheme can significantly improve the accuracy of reconstruction, but is
achieved with loss of computational efficiency due to the increased number of itera-
tions required for reconstruction of the three subsets. A simple and new outlier
detection method based on standardized residuals theory was developed to eliminate
the spurious values (outliers) from the chl-a data set. The accuracy of the DINEOF
reconstruction was significantly improved by the application of the outlier detection
and removal process.

1. Introduction

Extensive space and time coverage of satellite images has made them indispensable to the
study of oceanographic dynamics of marine ecosystems (Borzelli et al. 1999; Vantrepotte
and Mélin 2011; Swardika, Tanaka, and Ishida 2012). Most satellite remote-sensing
products are retrieved using spectral data from the visible and infrared bands, e.g. sea-
surface temperature (SST) and sea-surface chlorophyll-a (chl-a) concentration. These
satellite data sets commonly present with large-scale missing data due to cloud coverage
or malfunctions in the satellite sensors. The extent of missing data can be higher than 95%
or indeed completely missing over the study area. Incomplete satellite data sets signifi-
cantly restrict their use in studying physical and biological ocean processes at both global
ocean and regional scales. For example, a completed data set is necessary for much
statistical analysis (e.g. cluster analysis and empirical orthogonal function (EOF) analysis)
and use in forcing physical models.

Several methods have been used in the reconstruction of missing data from marine
satellite images. Spline interpolation (Everson et al. 1997) and optimal interpolation (OI)
(He et al. 2003; Hoer and She 2007) have been used to recover missing data and
reconstruct SST and sea level anomaly (SLA) data sets (Fieguth et al. 1998). Beckers
and Rixen (2003) and Alvera-Azcarate et al. (2005) described a technique for filling
missing data based on the EOF algorithm, called the data-interpolating EOF (DINEOF).
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Compared to other interpolating methods, the DINEOF method is a self-consistent,
parameter-free technique for reconstruction of gappy data, is computationally efficient,
and presents the advantage of not requiring a priori information (Beckers and Rixen 2003;
Alvera-Azcarate et al. 2005).

The cloud-gap filling techniques for ocean colour data sets are less developed than
those for SST, perhaps because satellite chl-a data have become easily available only
comparatively recently and the accuracy of chl-a retrieval is poor relative to SST and
some other parameters. In recent years, several studies have attempted to reconstruct
incomplete chl-a data using various methods, for example kriging (Saulquin, Gohin, and
Garrello 2011) and other OI methods (Pukhtyar, Stanichny, and Timchenko 2009).
Recently, the DINEOF method has been efficiently applied to reconstruct the missing
data in chl-a data sets. For example, Alvera-Azcarate et al. (2007) used a multivariate
approach based on the DINEOF method to reconstruct missing data in chl-a, SST, and
sea-surface wind data. Sorjamaa et al. (2010) presented an improved version of the
DINEOF method with an EOF pruning method and this modification can improve the
accuracy of reconstruction while being computationally efficient. These limited previous
studies indicated that the application of the DINEOF method in ocean colour data set
reconstruction needs more testing and modification in order to yield more accurate results.

This study significantly improves the application of the DINEOF method. We present
an application of the DINEOF method to reconstruct missing data in a long-term satellite
chl-a data set over the Bohai and Yellow Seas (Figure 1). The study area is a shallow
continental shelf with typical case II waters where inaccuracies in interpreting chl-a
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Figure 1. Bathymetric and geographic map of the study area.
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products may be significant due to dissolved and suspended matter and atmospheric
correction problems (Ruddick, Ovidio, and Rijkeboer 2000; Sun, Guo, and Wang
2010). These problems induce unacceptable errors (regarded as outliers) in the chl-a
data set, making this area a perfect test site to evaluate the stability of the DINEOF
method. In applying this method, we present here two additional procedures to improve
the accuracy of the DINEOF method. First, we propose a modification of the ordinary
DINEOF method, which involves a subdivision scheme using 20 and 50 m isobaths and
second, a new outlier detection and removal method based on standardized residuals
theory was performed and evaluated.

2. Data and methods

2.1. Satellite chlorophyll data set

The satellite-derived sea-surface chlorophyll-a (chl-a) concentration data set for this study
comprises 8 day composite Level-3 global standard mapped images (SMIs) derived from
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These satellite images were
obtained from the Ocean Biology Processing Group (OBPG) of the Goddard Space
Flight Center (GSFC) (http://oceancolor.gsfc.nasa.gov/) in compressed hierarchical data
format (HDF). The basic algorithm described by O’Reilly et al. (1998) and O’Reilly et al.
(2000) was used to calculate the sea-surface chl-a concentrations and the reprocessing
version is R2010. The time span of the data set is from September 1997 to December
2010 and the geographic area covers 117–127° N and 31–41° E (Figure 1). The initial size
of this data set is 120 × 120 pixels and 609 images, with a resolution of 9 km × 9 km.
Some of these images present extreme examples of missing data (more than 95%) and
some of the pixels with less than 5% good data in temporal dimension were eliminated.
Finally, a derived, hereafter termed the ‘original’ data set with 562 images and 7441
spatial pixels (covering about 94% of the sea area), was kept for the analysis. Since the
satellite chl-a values spanned three orders of magnitude and chl-a retrievals are often
log-normally distributed (Campbell 1995), raw chl-a data were log10-transformed prior to
reconstruction and analysis in order to homogenize the variance and yield a nearly normal
data distribution.

2.2. Algorithm of the DINEOF method

The DINEOF method is a self-consistent method for the reconstruction of missing data in
oceanographic data sets. The DINEOF method was applied as follows in this study.

(1) The original data set was stored in the initial matrix with m × n dimensions, where
m is the number of pixels and n the number of images; this matrix contains both
existing and missing data. First, 3% of the existing data in the matrix were
randomly selected and initially set aside (deemed as missing in the initial matrix)
for progressive cross-validation. The mean temporal spatial value was then
subtracted from the matrix and the missing data (including cross-validation
data) set to zero.

(2) For reconstruction of the missing data, The EOF decomposition was computed by
the singular value decomposition (SVD) method, and the spatial EOFs (U),
singular values matrix (S) and temporal EOFs (V) were obtained. The missing
data can be reconstructed by the truncated EOFs:
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Xi; j ¼
Xk

p¼1
SpðUpÞiðVT

PÞ; (1)

where Xi,j are the missing data; i,j are the spatial and temporal indices of the
missing data; Up and Vp are the pth column of the spatial and temporal EOFs,
respectively; Sp is the pth singular value; and k is the number of EOFs mode used
for reconstruction.

(3) The first SVD decomposition was performed on original data set, and a new
matrix was reconstructed by the existing data with original values and the missing
data calculated by Equation (1) with k = 1, then the next decomposition per-
formed on the new reconstructed matrix and the missing data were recalculated.
This process was iterated until the predefined convergence criterion was reached,
when the root mean square error (RMSE) at the cross-validation points was
stabilized (the relative difference between previous and current iterations is
smaller than the threshold value of 1.0 × 10−5).

(4) The number of reconstructed EOFs (k) is increased with k = 2, 3 … kmax, and
procedure (3) is repeated. The optimal number of EOFs (kmax) is retained when
the minimum RMSE is obtained.

(5) Once the optimal number of EOFs is determined, the entire process is restarted
including the 3% cross-validation data we set aside before. Finally, a cloud-free
data set was constructed with values for the missing data are computed by
truncated EOFs, and values for the existing data are kept for original values.

This is a general description of how the ordinary DINEOF method works. For a more
detailed description, see Beckers and Rixen (2003) and Alvera-Azcarate et al. (2005).

2.3. Outlier detection

After the DINEOF procedure, the whole data set (include existing data points and missing
data points) can be reconstructed using the truncated EOFs according to Equation (1).
These truncated EOFs contain useful information on the variability, which can be used to
detect outliers. The outliers can be detected within the DINEOF reconstruction as being
those pixels for which the difference (the residuals) between the reconstructed and original
values of the existing points is larger than statistically expected. To diagnose these
statistical outliers based on the residuals (ri) from all existing data points, we introduced
the standardized residual (ri/s

0), proposed by Rousseeuw and Leroy (1987). The pre-
liminary scale estimator s0 was calculated based on the objective function, multiplied by a
finite sample correction factor dependent on m and p:

s0 ¼ 1:4826 1þ 5

m� p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðr2i Þ;

q
(2)

where m is the number of existing data points and p is the number of estimators. With this
scale estimator, the standardized residuals ri/s

0 were computed and used to determine a
weight wi for the ith existing data point as follows:

wi ¼ 1; if ri
s0

�� �� � 2:5
0; otherwise

:

�
(3)
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The procedure was repeated for the n points remaining after the outliers had been
eliminated, but the second scale estimator (s*) was defined as follows (Walczak and
Massart 1995):

s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Xn

i¼1

rzi
n� p

�
:

s
(4)

Each of the n remaining points was evaluated again according to Equation (3) to perform
the robust diagnosis of outliers.

2.4. Validation of reconstructed accuracy

In order to validate the accuracy of each reconstruction, several parameters were calcu-
lated, including the Pearson correlation coefficient (r), signal to noise ratio (SNR), RMSE,
and mean absolute difference (MAD). After each reconstruction, the accuracy of the
reconstruction was evaluated using these four statistical parameters calculated from the
original values and the corresponding reconstructed values for the existing data points.

The SNR is defined as the ratio of standard deviation of the reconstructed values and
the standard deviation of the errors (difference between original values and reconstructed
values) for the existing data points.

The RMSE and MAD are defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ½S � I �2

n

s
; MAD ¼

P
S � Ij j
n

; (5)

where S indicates the original chl-a value, I indicates the reconstructed chl-a value, and n
is the number of samples.

2.5. Normality test

Skewness and kurtosis were used as a measurement of normality of chl-a data. The
coefficients of skewness (sk) and kurtosis (ku) are defined as follows (Mardia 1970;
Groeneveld and Meeden 1984):

sk ¼
PN

i¼1 ðxi � �xÞ3
ðN � 1Þs3 ; ku ¼

PN
i¼1 ðxi � �xÞ4
ðN � 1Þs4 ; (6)

where xi is the ith observation, �x is the mean, s is the standard deviation, and N is the
number of observations.

Skewness is a measure of the asymmetry of a distribution with zero for a standard
normal distribution; kurtosis is a measure of whether the data are peaked or flat relative to
a normal distribution, with the kurtosis for a standard normal distribution being three.
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3. Results

3.1. chl-a data set description

After elimination of pixels and images with extremely high missing data coverage
(>95%), we established a new chl-a data set with 7441 spatial pixels and 562 temporal
images (hereafter called the ‘original data set’) – the average data coverage of this original
data set is 50.2%. Figure 2 shows the mean percentage data coverage of the original chl-a
data set over the Bohai and Yellow Seas. Data coverage is 30–90% over most of the
domain, with the highest values in the northern area. Some of the coastal areas
(depth < 20 m) display an extremely high missing data coverage, probably due to failure
of atmospheric calibration and higher chl-a retrieved algorithm error in coastal waters
(IOCCG 2000; O’Reilly et al. 2000).

To test the improvement of the DINEOF method achieved by subdivision, the whole
chl-a data set was divided into three subsets corresponding to water depths of 0–20,
20–50, and >50 m, respectively. We selected this subdivision scheme because the chl-a
variability of this study area exhibits significantly different spatial and temporal patterns
with water depth (Shi and Wang 2012; Yamaguchi et al. 2012). Table 1 shows the
characteristics of the whole chl-a data set and three chl-a subsets (the chl-a value is
log10-transformed). It clearly shows that after log10-transformation, all four data sets are
near to normally distributed; average chl-a values (average) and kurtosis are higher in
shallow waters than in deep, whereas the standard deviation is lower in shallow waters
than in deep. Even though we are not explicitly dividing the standard deviation by the
average values, the standard deviation has already shown apparent high values in areas of
low average chl-a values. These characteristics indicate that shallow waters present high
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Figure 2. Mean percentage data coverage of the original chl-a data set. White denotes land and
black denotes no data, and the solid line denotes bathymetry of 20 and 50 m, respectively.
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average chl-a values and low chl-a variability, and deep waters present low average chl-a
value and high chl-a variability. So our subdivision can also efficiently test the relation-
ship between data-distributing features and the accuracy of DINEOF reconstruction. In the
following section, the DINEOF reconstruction was performed on the whole area, 0–20 m
area, 20–50 m area, and >50 m area individually, to test the improvement in DINEOF
reconstructed accuracy from this depth subdivision scheme.

3.2. DINEOF reconstruction

The ordinary DINEOF reconstruction was directly performed on each data set (<20 m
area, 20–50 m area, >50 m area, and whole area), respectively, predefined in Section 3.1.
After individual DINEOF reconstruction, the reconstructed fields of the three subsets were
merged into the entire data set (S-DINEOF) for comparison with the result of the single
whole data set reconstruction (O-DINEOF). SNR, r, RMSE, and MAD from the recon-
structed and original values for the existing points were employed as a measurement of
reconstructed accuracy.

Figure 3 shows the cross-validation RMSE for the reconstruction of the four chl-a
data sets and Table 2 summarizes the four validation parameters of the O-DINEOF and
S-DINEOF methods; note that the reconstructed results of the three subsets are also shown
in Table 2. The O-DINEOF method obtained 48 EOFs as the optimal number for DINEOF
reconstruction (cross-validation RMSE = 0.1094), and the individual subset data recon-
struction obtained 30 (cross-validation RMSE = 0.0821), 44 (cross-validation
RMSE = 0.0997), and 52 (cross-validation RMSE = 0.1068) EOFs as the optimal number
in the 0–20, 20–50, and >50 m data sets, respectively. From the four reconstructions, the
total computation time of the three subsets reconstruction was relatively marginally higher
(by about 12%) than the single whole data set reconstruction. This may be due to more
total iterative times in the three subsets reconstruction (1359) than in the whole data set
reconstruction (859). The accuracy of each reconstruction (Table 2) shows that SNR and
r present a significant improvement in reconstructed accuracy with the subdivision
scheme, and both individual and total errors (RMSE = 0.0721, MAD = 0.0520) for the
three subsets reconstruction were all lower than the errors (RMSE = 0.0814,
MAD = 0.0591) of the whole data set reconstruction. This result indicates that the
depth subdivision scheme can significantly improve the accuracy of ordinary DINEOF
reconstruction, but with less computational efficiency due to more total iterations in the S-
DINEOF method.

The parameters SNR and r are more suitable parameters than RMSE and MAD for
comparison of reconstructed accuracy with different data number and data amplitude.
Table 2 shows that SNR and r were higher in the >50 m area than in other areas,
associated with the data distribution property of each subset described in Section 3.1,

Table 1. Characteristics of the whole data set and three subsets.

Data set
Average
depth (m)

Matrix
dimensions

Data
coverage (%) Average

Standard
deviation Skewness Kurtosis

Whole area 46.7 7441 × 562 50.2 0.27 0.31 −0.2952 2.7388
<20 m 12.6 1447 × 562 37.0 0.59 0.14 0.5205 7.5913
20–50 m 28.6 2752 × 562 55.2 0.39 0.22 −0.2720 4.4942
>50 m 68.1 3242 × 562 51.8 0.05 0.27 0.1925 3.1932
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which provides proof that the DINEOF method can obtain a better reconstructed accuracy
for data sets with higher variability and gradient than for homogeneous data sets.

3.3. Outlier detection in DINEOF reconstruction

The ordinary DINEOF reconstruction was first applied to the original chl-a data set over
the whole area. We then applied outlier detection and the removal programme introduced
in Section 2.3, and made an evaluation of its improvement in the accuracy of DINEOF
reconstruction.

Figure 4 shows original chl-a values and the truncated EOFs reconstructed values for
12–19 August 2000 over the existing data points. As will be seen in the detailed rectangle
(Figure 4, bottom panels), there are some ‘hot spot’ pixels (denoted as outliers) whose
values deviate markedly from their surrounding observations in the original image
(Figure 4(a)), but the reconstructed pixels (Figure 4(b)) show reasonable values over
the corresponding data points.

Table 2. Reconstructed results using O-DINEOF and S-DINEOF methods, including subset
reconstruction.

SNR r RMSE MAD

O-DINEOF 3.7226 0.9658 0.0814 0.0591
S-DINEOF 4.2363 0.9733 0.0721 0.0520
<20 m 2.1636 0.9091 0.0602 0.0440
20–50 m 2.9396 0.9470 0.0720 0.0520
>50 m 3.4424 0.9604 0.0755 0.0546
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Figure 3. RMSE obtained by cross-validation for the reconstruction of the four chl-a data sets. The
marker (*) indicates the convergence point and the text shows the optimal number of EOFs and
corresponding cross-validation RMSE.
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Figure 5 shows a comparison of DINEOF reconstructed chl-a values and original
chl-a values over all existing data points (Figure 5(a)), and the reasonable data points
(Figure 5(b)) and ‘outlier’ points (Figure 5(c)) in the original data set. The result of
DINEOF reconstruction showed a well-reconstructed accuracy (r = 0.97, p < 0.0001) as
shown in Table 2. There are a total of 2,099,466 data points (all existing data points) in
the original data set and 107,201 points are detected as outliers (accounting for 5.1%).
That is to say, 94.9% of the reconstructed values are the same as the original values.
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Figure 4. Snapshot comparison of (a) original chl-a values and (b) truncated EOFs reconstructed
values over the existing data points. The four bottom panels show the detail in the respective
rectangles; the circles represent more outlier details.
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Figure 5. Scatter plot comparisons of DINEOF reconstructed chl-a values based on truncated
EOFs and original chl-a values: (a) all existing data points, (b) ‘reasonable’ points, and (c) ‘outlier’
points. The black solid line denotes the 1:1 ratio, and the colour scale indicates the relative density
function (unit: number of points per bin).
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After outlier detection, the ‘outlier’ data points were eliminated and we performed
another DINEOF reconstruction on the remaining reasonable data set (D-DINEOF). The
reconstructed result was then compared with the reconstructed result in the absence of
outlier detection (O-DINEOF). Considering that the outliers in the cross-validation data
set might influence the DINEOF reconstruction process and confuse the comparison
between the O-DINEOF and D-DINEOF methods, we designed a third DINEOF recon-
struction procedure (C-DINEOF) similar to O-DINEOF, but used the cross-validation data
set without outliers detected in the D-DINEOF method. The reconstructed results of the
three methods are shown in Table 3; the three reconstructed validations were calculated
from the same existing data points without outliers, and the C-DINEOF and D-DINEOF
methods used the same cross-validation data set without outliers.

Comparison between the O-DINEOF method (cross-validation RMSE = 0.1094) and
the C-DINEOF method (cross-validation RMSE = 0.0870) in Table 3 shows that cross-
validation RMSE is very sensitive to outliers in the cross-validation data set, but the
reconstructed process (number of EOFs = 48 vs 49) and accuracy (existing data valida-
tion) are similar. Comparison between O-DINEOF accuracy (SNR = 3.7226, r = 0.9658,
RMSE = 0.0629, MAD = 0.0503) and D-DINEOF accuracy (SNR = 5.4027, r = 0.9833,
RMSE = 0.0552, MAD = 0.0434) shows that outlier detection and elimination from the
original data can effectively improve the accuracy of ordinary DINEOF reconstruction.

Figure 6 shows the whole DINEOF reconstructed procedure with outlier detection (D-
DINEOF). The validation from a snapshot image of 24–31 October 1997 also shows that
the DINEOF method with outlier detection exhibits higher accuracy (SNR = 5.0511,
r = 0.9802, RMSE = 0.0541, MAD = 0.0420) than that of the ordinary DINEOF method
(SNR = 3.0947, r = 0.9464, RMSE = 0.0610, MAD = 0.0480).

4. Discussion

Because of a lack of in situ measurements, the measurement of reconstructed accuracy is
based on cross-validation and statistical description between original values and recon-
structed values. Previous studies (Shi and Wang 2012; Yamaguchi et al. 2012) showed
that most areas of the Bohai and Yellow seas are characterized by optically complex case
II coastal waters and that satellite-derived chl-a has a high level of error using global
chlorophyll-a algorithms (IOCCG 2000; Gregg and Casey 2004; Siswanto et al. 2011).
The RMSEs of the reconstructed validation in this study are much smaller in magnitude
than the chl-a algorithm ‘error’ (Tan et al. 2011), even smaller than the global algorithm
‘noise’ (RMSE = 0.22) (O’Reilly et al. 1998). Thus, the results obtained in this study
indicate that the DINEOF method is a reasonable interpolation technique for chl-a
reconstruction over this complex marine area.

Table 3. Reconstructed results using the O-DINEOF, C-DINEOF, and D-DINEOF methods.

Cross-validation
RMSE

Existing data validation (without outliers)

Method EOFs SNR r RMSE MAD

O-DINEOF 48 0.1094 3.7226 0.9658 0.0629 0.0503
C-DINEOF 49 0.0870 3.7645 0.9665 0.0634 0.0503
D-DINEOF 56 0.0766 5.4027 0.9833 0.0552 0.0434

International Journal of Remote Sensing 213

D
ow

nl
oa

de
d 

by
 [

Y
an

ta
i I

ns
tit

ut
e 

of
 C

oa
st

al
 Z

on
e 

R
es

ea
rc

h,
C

hi
ne

se
 A

ca
de

m
y 

of
 S

ci
en

ce
s]

 a
t 2

0:
42

 1
7 

Ju
ne

 2
01

4 



In this study, improvement in the ordinary DINEOF method using depth subdivision
based on 20 and 50 m isobaths was tested. Comparison between the entire data set
reconstruction and those using depth-subdivided subsets shows greatly improved accuracy
but at the cost of increased computation time. However it will be possible to parallelize
the computational load to speed up the reconstruction process substantially in future
studies. From Tables 1 and 2, the three subsets exhibit different numerical characteristics
according to water depth, with higher chl-a values and lower variability in shallow than
deep waters, as shown in previous research (Shi and Wang 2012; Yamaguchi et al. 2012).
Different reconstruction accuracy of the three subsets indicates that the DINEOF method
can obtain a better result over regions of high variability and gradients, relative to regions
of more homogeneous values, similar to the findings of Sirjacobs et al. (2011) testing
reconstruction accuracy in artificially clouded areas.

The difficulty in outlier detection in the satellite data set lies in the fact that there is no
absolutely unique definition of the outlier. The definition might vary depending on the
data set property, the research topic, and the basis of the detection algorithm (Hu, Carder,
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Figure 6. Procedure of DINEOF reconstruction with outlier detection. (a) Original images, (b)
existing data reconstructed by truncated EOFs after the first DINEOF reconstruction, (c) outlier
images with red points indicating outliers, (d) original images with outlier elimination, and (e) final
reconstructed images after the second DINEOF reconstruction based on the original data set without
outliers. The snapshot example image is from the period 24–31 October 1997.
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and Muller-Karger 2000, 2001; Park, Chae, and Park 2013). In this study, we assume that
all true chl-a properties in the data set can be summarized by the truncated EOFs obtained
from DINEOF reconstruction and that these truncated EOFs were a robust fit to the real
chl-a values, so any pixels with extreme original values that were inconsistent with the
truncated EOF reconstructed values could be defined as ‘outliers’. This definition is
determined only on a statistical basis and contains no direct information on physical
laws. For detection of these statistical outliers, we applied the standardized residuals
method proposed by Rousseeuw and Leroy (1987). In general, this study did not consider
spatially coherent structures, and only single pixels or small zones (several pixels) were
diagnosed by this method. In addition, we also made a comparison with the method of
Alvera-Azcárate et al. (2012) (data not included) using a threshold of three (82,516
outliers and only contain the EOF test). They present similar results, but our method is
simpler and less computationally demanding. The reason might be that the data sets used
here were 8 day composite images of low spatial resolution (9 km) and the study area
contains fewer pixels than in other experiments using the DINEOF method (Nechad et al.
2011; Sirjacobs et al. 2011; Alvera-Azcárate et al. 2012), which can weaken the spatially
coherent property of the chl-a data set. From visual verification of the snapshot image and
validation of the reconstruction with and without the outlier detection procedure, the
modified DINEOF method with outlier detection can significantly improve the accuracy
of reconstruction.

There are also some restrictions in regard to the modified DINEOF method: as with
the ordinary DINEOF method, the improved method cannot reconstruct coverage images
of high missing data (>95%), resulting in discontinuity in time scale; DINEOF reconstruc-
tion (especially with outlier detection) has a smoothing effect and some extreme events
accounting for little variance may not be effectively present in the reconstructed data set;
and DINEOF reconstruction with the subdivision scheme may result in an unreasonable
jumping effect at the borders of subregions. These unresolved issues will be addressed in
our future research.

5. Conclusions

The present work illustrates the successful application of the self-consistent DINEOF
method to reconstruct 13 years’ (the lifetime of the SeaWiFS sensor) satellite-derived chl-
a data sets in the Bohai and Yellow Seas. This is the first time the DINEOF method has
been applied to such a long-term chl-a data set. The depth subdivision scheme used in
DINEOF reconstruction made a significant improvement to the accuracy of the recon-
struction, but at a cost of lower computational efficiency. A new outlier detection method
based on standardized residuals theory can efficiently detect and eliminate spurious
values, and significantly improve the accuracy of DINEOF reconstruction. The examples
above show that the DINEOF method can be successfully applied to variables with very
different characteristics, but specific modification according to the property of the data set
can improve the reconstructed accuracy.
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