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Abstract The novel composites based on reduced

graphene oxide/methylene blue/gold nanoparticles (rGO/

MB/AuNPs) were synthesized by a green and easy method.

This synthesis was realized through a one-step green

reduction of graphene oxide and chloroauric acid by

ascorbic acid, with MB as the assistant reductant and

formed AuNPs as the self-catalyst. Except for electroactive

substance, MB, which was firmly coated onto the surface

of rGO through p–p stacking non-covalent interactions,

also serves as the anchor for AuNPs in situ growth due to

the electrostatic attraction between positively charged MB

and negatively charged chloroauric ions. The characteris-

tics of rGO/MB/AuNPs composites were investigated by

various optical and electrical methods. These composites

exhibit excellent electrochemical properties and promising

prospects for practical application in electrochemical

analysis.

Introduction

Graphene (GN) is a monolayer of sp2-hybridized carbon

atoms packed into a dense honeycomb crystal structure. It

has attracted considerable attention from a variety of

experimental and theoretical communities and has been a

sought-after area of research in materials science and other

subjects rapidly, since it was successfully prepared through

mechanical cleavage from graphite by Geim and his co-

workers [1]. Because of its unique structure, GN possesses

a series of outstanding properties, such as excellent elec-

trical and thermal conductivity [2, 3], unique optical

properties [4], large specific surface area [5], excellent

biocompatibility [6, 7], high mechanical strength, and good

transparency [8]. These excellent properties endow GN

with the tremendous potential for application in touch

screens, capacitors, spintronic devices, fuel cells, batteries,

sensors, transparent conductive films, high-frequency cir-

cuits, toxic material removal, and flexible electronics [9].

In the field of electrochemical sensors, GN is a beneficial

material that has been extensively used as electrodes
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modifier because of its super electrochemical properties.

Electrodes modified with GN have already been used to

detect b-nicotinamide adenine dinucleotide [10], glucose

[11], DNA, and ethanol [12], as well as to the selective

detection of dopamine (DA) [13]. Thus far, several meth-

ods have been developed to produce GN; these include

mechanical cleavage, the epitaxial growth of GN on a

substrate, bottom-up fabrication, and the chemical deriva-

tion of GN from graphene oxide (GO) [1, 14–17]. Despite

these progresses, the method for producing single sheet GN

is limited, because it involves laborious mechanical peeling

of graphite layers and subsequent electrode attachment

with electron beam lithography; these constraints severely

limit the study and application of GN [18]. Chemical or

thermal conversion from GO is the most suitable method

for the low-cost and large-scale production of GN due to

the easy preparation of GO from natural graphite by the

modified Hummers’ method [19]. GN derived from the

chemical or thermal conversion of GO is also called

reduced graphene oxide (rGO). Despite its wide use in

various fields, GN possesses zero band gap and inertness to

reaction which seriously limits its competitive strength in

the field of semiconductors and sensors [9]. In other words,

rGO requires decoration with other functional materials to

improve its properties. To explore new properties and

applications of rGO, researchers have been devoting sub-

stantial effort toward designing and constructing compos-

ites derived from rGO with superior properties. A lot of

functional nanocomposites derived from rGO have been

developed and applied in catalysts [8, 20, 21], sensors [12,

22], electronics and optoelectronics [23–25], and electro-

chemical energy storage [5, 26–28]. These functional

nanomaterials could be fabricated by the functionalization

of rGO on the basal plane or by the bottom-up self-

assembly through direct chemical synthesis [29]. Among

these methods, decoration with metal nanoparticles and

chemical modification with other functional molecules are

the most efficient ways to improve the properties of rGO;

such techniques enhance rGO by forming a new property

profile.

Over the past decades, nanoparticles, especially noble

metal nanoparticles, have been widely applied to the fab-

rication of rGO-based functional nanomaterials. Gold

nanoparticles (AuNPs) possess a series of excellent prop-

erties, such as large surface-to-volume ratio, outstanding

electrical properties, high surface reaction activity, and

strong adsorption ability, and these are helpful in improv-

ing rGO properties. Due to these fantastic properties,

AuNPs have been extensively used as rGO decorators [19,

30, 31]. To date, most composites that combine rGO with

AuNPs were synthesized through co-reduction of the pre-

cursors, chloroauric acid (HAuCl4) and GO, by chemical

reductants, such as sodium borohydride (NaBH4) and

hydrazine (N2H4) [32–34]. Although this method is popu-

lar, its primary disadvantage is the use of highly toxic

reductants (NaBH4, N2H4) [35]. This problem has promp-

ted researchers to explore new and green reductants to

realize the co-reduction of the precursors, instead of

NaBH4 or N2H4 [35, 36]. The use of environment-friendly

ethylene glycol and ascorbic acid (AA) as green reductants

for GO and noble metal precursors has been reported as an

alternative method [36, 37]. AA was chosen as the main

reductant in the current work. Nevertheless, AA as the

single reductant cannot reduce GO adequately in an easy

synthesis process. As a result, electro-conductivity would

dramatically decrease under failure to the thorough

reduction of GO.

Another efficient way of fabricating rGO-based func-

tional composites is chemically modifying rGO by using

other functional molecules. Methylene blue (MB,

Scheme 1) is a typical cationic organic dye full of p
electrons. It is a well-established electron mediator that has

been frequently used in chemical and biochemical sensors

[38–42]. As reported, the p–p stacking interactions

between aromatic compounds (such as MB) and rGO

essentially lead to a stable adsorption of aromatic com-

pounds onto the surface of rGO. The MB adsorbed on the

surface of rGO enables it to bear a positive charge,

avoiding the aggregation of rGO and increasing its dis-

persity [43]. Furthermore, positively charged MB on the

rGO surface can attract AuCl4
- through the electrostatic

attraction, and this MB serves as the anchor for AuNPs

in situ growth.

In this study, novel rGO/MB/AuNPs composites were

synthesized through a green and easy method, in which GO

and HAuCl4 were subjected to simultaneous green reduc-

tion using AA as the main and MB the auxiliary reductant

and the formed AuNPs as the self-catalyst. MB served as the

anchor for AuNPs in situ growth given the electrostatic

attraction between MB and AuCl4
-. The adsorption of MB

onto rGO prevents the aggregation of the composites,

thereby increasing their dispersity. The composites were

characterized by various optical and electrical methods,

including X-ray photoelectron spectroscopy (XPS), X-ray

diffraction spectroscopy (XRD), scanning electron micros-

copy (SEM), transmission electron microscopy (TEM),

cyclic voltammetry (CV), and so on. Each component of the

Scheme 1 MB structure

J Mater Sci (2014) 49:4796–4806 4797

123

Author's personal copy



proposed composites plays its unique role in the synthesis

process. Essentially, AA was the main reductant. MB was

the assistant reductant and electroactive substance, as well

as the anchor for AuNPs in situ growth. AuNPs can facili-

tate electron transfer and as the self-catalyst to catalyze the

reduction of GO by AA. The composites exhibit an excel-

lent response to the oxidation of uric acid (UA), DA, and

AA. They also present promising prospects for practical

application in electrochemical analysis.

Experimental

Reagents and apparatus

GO (1 to 5 lm diameter, 0.8 to 1.2 nm thickness, and

greater than 99 % purity) was purchased from Nanjing

JCNano technology Co., Ltd., China. MB, HAuCl4, and

AA were supplied by Sinopharm Chemical Reagent Co.,

Ltd. All other chemicals are analytical reagents used

without further purification. Deionized water (18.2 MX cm

specific resistance) obtained from Pall Cascada laboratory

water system was used throughout.

SEM images were taken with a Hitachi S-4800 micro-

scope (Japan), and TEM images were obtained on JEM-

1400/S TEM system (JEOL). Energy dispersive X-ray

spectroscopy (EDS) was obtained using a HORIBA EX-350

energy dispersive spectrometer (Japan). XPS measurements

were carried out on a Kratos Amicus spectrometer. XRD

was performed using an X-ray diffractometer (XRD-7000,

Shimadzu Corporation). Fourier transformation infrared

(FTIR) spectra were recorded with a Nicolet iS 10 infrared

spectrometer. UV–Vis spectra were obtained using a DU

800 ultraviolet and visible spectrophotometer. All the

electrochemical experiments were performed on a CHI

660D Electrochemical Work Station. A conventional three-

electrode system consisting of a modified glassy carbon

(GC) working electrode, a platinum foil auxiliary electrode,

and a silver chloride (Ag/AgCl) reference electrode was

employed. All the potentials in this paper were considered

with respect to the Ag/AgCl reference electrode.

Synthesis of rGO/MB/AuNPs composites

GO (20 mg) was dispersed in 30 mL deionized water with

ultrasonication for 1 h. After 4 mL MB (1 mmol L-1) was

added to the suspension, the mixture was stirred for

10 min. Then, 0.5 mL HAuCl4 (20 mmol L-1) was added

and stirred for another 10 min. Finally, 2 mL AA

(100 mmol L-1) was added, and the mixture was kept at

100 �C for 1 h with magnetic stirring. The mixed suspen-

sion was filtered and thoroughly washed with deionized

water. At last, the target rGO/MB/AuNPs composites were

obtained after the residues were dried in a vacuum drying

chamber. Similar procedures were used to prepare rGO and

rGO/MB composites. ICP-MS measurement exhibits the

content ratio of Au in the rGO/MB/AuNPs composites is

7.2 % (8.5 % theoretically).

Fabrication of rGO/MB/AuNPs composites modified

electrode

rGO/MB/AuNPs powder (2.5 mg) was dispersed in 5 mL

ethanol to obtain the suspension (0.5 mg mL-1). The rGO/

MB/AuNPs powder easily dispersed in ethanol with

ultrasonication for 10 min. Before use, the GC electrode

was mechanically polished over a microcloth with 0.05-lm

alumina slurry, rinsed, and then ultrasonicated with

deionized water. rGO/MB/AuNPs suspensions (3 lL) were

dropped on the surface of GC electrode and dried with an

infrared lamp to obtain the rGO/MB/AuNPs composites

modified GC (rGO/MB/AuNPs/GC) electrode. Similarly,

rGO modified GC (rGO/GC) and rGO/MB composites

modified GC (rGO/MB/GC) electrodes were prepared.

Electrochemical procedure

The rGO/MB/AuNPs composites were electrochemically

characterized by CV and differential pulse voltammetry

(DPV) techniques. The rGO/MB/AuNPs/GC electrode was

placed in a voltammetric cell with 10 ml electrolyte solu-

tion during the electrochemical measurements. The CV

experiments were carried out in 0.5 mol L-1 sulfuric acid

(H2SO4) solution at the potential range of -0.2 to 1.0 V

and the scan rate of 100 mV s-1. The bare GC, rGO/GC,

and rGO/MB/GC electrodes were treated under the same

conditions. The response of rGO/MB/AuNPs/GC electrode

to the oxidation of UA, DA, and AA was investigated by

DPV (from -0.6 to 0.8 V) in phosphate buffer solution

(PBS, pH 7.4).

Results and discussion

To investigate their structure and properties, the rGO/MB/

AuNPs composites were characterized by Fourier trans-

formation infrared spectroscopy (FTIR), UV–Vis spec-

troscopy (UV–Vis), XPS, XRD, SEM, TEM, and

electrochemical methods. The potential application of

rGO/MB/AuNPs composites in electrochemical analysis

was also investigated by the DPV techniques.

FTIR spectrum of the rGO/MB/AuNPs composites

FTIR spectroscopy was conducted to investigate the

reduction and functionalization of GO during the synthesis

4798 J Mater Sci (2014) 49:4796–4806
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process (Fig. 1). The FTIR spectrum of GO (Fig. 1a)

shows the broad peak at 3398 cm-1 which is assigned to

the O–H stretching vibration. The other characteristic

absorption peaks at 1727, 1219, and 1052 cm-1 which

correspond to the stretching of C=O (carbonyl), C–OH, and

C–O (alkoxy) bonds, respectively, are also observed [35,

44]. All these peaks serve as the evidence for the existence

of oxygen-containing groups on GO. The FTIR spectrum

of MB (Fig. 1b) exhibits its typical symmetric C–N stretch

at 1398 cm-1, symmetric –CH3 deformation at 1354 cm-1,

and absorption peak at 661 cm-1 [41]. As to the FTIR

spectrum of rGO/MB/AuNPs composites (Fig. 1c), the

characteristic absorption peaks of oxygen-containing

groups at 1727 cm-1 (m C = O), 1219 cm-1 (m C–OH)

almost disappear, and the peak at 1052 cm-1 (m C–O)

significantly decreases, indicating that GO is reduced to

rGO. Moreover, all the characteristic absorption peaks of

MB can be observed on the FTIR spectrum of the rGO/

MB/AuNPs composites. These results indicate that GO can

be reduced to rGO and be coated with MB onto its surface

with this proposed method.

UV–Vis spectrum of the rGO/MB/AuNPs composites

Figure 2 shows the UV–Vis spectrum of the rGO/MB/

AuNPs composites. Figure 2a shows that MB has its own

typical UV–Vis absorbance at 660 nm. Figure 2b shows

the UV–Vis spectrum of GO with its typical absorbance

peak at 223 nm which is similar to the reported values [32].

Compared to GO, the absorbance peak of rGO shifts to

about 261 nm (Fig. 2c), indicating that GO can be reduced

to rGO [19]. As to rGO/MB (Fig. 2d), a new peak appears

at about 675 nm, indicating the coating of MB onto the

rGO surface. Figure 2e shows the UV–Vis spectrum of

rGO/MB/AuNPs composites, which includes all the

absorbance peaks of rGO/MB. However, when compared

with rGO/MB, the rGO/MB/AuNPs exhibit a broad peak

between 500 and 600 nm; this result can be explained the

existence of AuNPs. The inset in Fig. 2 is the digital

images of GO (b), rGO (c), rGO/MB (d), and rGO/MB/

AuNPs (e) dispersion. Compared with the brown color GO,

the three other samples are black which is the color of rGO,

further confirming that GO can be reduced to rGO under

the proposed scheme. All the above-mentioned phenomena

suggest the successful synthesis of the rGO/MB/AuNPs

composites.

SEM images and EDS pattern of the rGO/MB/AuNPs

composites

To describe the morphology of the as-synthesized rGO/

MB/AuNPs composites, SEM was employed. Figure 3

illustrates the typical SEM photographs of rGO (Fig. 3a),

rGO/MB (Fig. 3b), and rGO/MB/AuNPs (Fig. 3c), as well

as the EDS pattern of the rGO/MB/AuNPs composites

(Fig. 3d). Figure 3a shows large flakes of rGO with slightly

scrolled edges form. Due to their partial aggregation, rGO

flakes fold together. However, the morphology of rGO/MB

shows significant differences. The morphology of rGO/MB

is more fragmentized considerably rougher than that of

rGO. This result can be attributed to the adsorption of MB

onto the rGO surface. The morphology of rGO/MB/AuNPs

is similar to that of rGO/MB, except for the uniformly

distributed AuNPs on the surface of composites. The EDS

pattern (Fig. 3d) indicates that C, O, F, Na, Al, Au, and Cl

Fig. 1 FTIR spectra of GO (a), MB (b), and rGO/MB/AuNPs

composites (c)

Fig. 2 UV–Vis spectra of MB (a), GO (b), rGO (c), rGO/MB (d),

and rGO/MB/AuNPs composites (e). Inset: corresponding digital

photographs
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are the major elements in the rGO/MB/AuNPs composites.

C, O, and Cl may come from rGO and MB, while Al, Na,

and F may be attributed to base aluminum foil. The pre-

sence of Au in the pattern indicates the existence of

AuNPs. Distinctly, MB molecules and AuNPs are attached

onto the rGO surface.

TEM images of the rGO/MB/AuNPs composites

The TEM images provide further evidence for the suc-

cessful attachment of MB and AuNPs onto rGO. Figure 4

shows the TEM photographs of rGO, rGO/MB, and rGO/

MB/AuNPs composites. Figure 4a illustrates that the sur-

face of the pure rGO is corrugated and partially curly, and

that its transparency is very high. However, the surface of

rGO/MB (Fig. 4b) is considerably rougher. It looks like

that there is a thin membrane-like substance forms on the

surface of rGO. This is caused by the coating of MB onto

the rGO surface. The morphology of the rGO/MB/AuNPs

(Fig. 4c) is also highly similar to that of rGO/MB—a

finding that corresponds to that of SEM. Furthermore,

numerous uniform nanoparticles can be observed on the

surface of rGO/MB/AuNPs composites. Figure 4d shows

the high magnification TEM image of the as-prepared rGO/

MB/AuNPs composites. Most of the AuNPs have a diam-

eter within 30–60 nm. The TEM results suggest the suc-

cessful synthesis of the rGO/MB/AuNPs composites.

XPS spectrum of the rGO/MB/AuNPs composites

To further confirm the immobilization of MB and AuNPs

into the composites and investigate the unique role of each

component, XPS was conducted. Figure 5a, b, and c pre-

sents the N 1s, S 2p, and Au 4f XPS spectra of rGO/MB/

AuNPs composites, respectively. The appearance of the N,

S, and Au peaks in rGO/MB/AuNPs composites can be

regarded as the powerful evidence for the successful syn-

thesis of target rGO/MB/AuNPs composites. The XPS

spectrum of the rGO/MB/AuNPs composites (Fig. 5c)

displays a doublet for Au due to Au 4f7/2 and Au 4f5/2

spin–orbit coupling. The positions of the most important

pair of peaks (BEs of 83.9 and 87.6 eV) are related to Au0

[19]. However, the other pairs (BEs of 85.6 and 88.9 eV)

are related to the Au?1 which is the stable gold oxide state

[45]. The existence of Au?1 may be caused by the inade-

quate reduction of HAuCl4. On the basis of relative peak

areas, the respective atomic percentages were estimated as

89.4 % for Au0, and 8.1 % for Au?1. And these results

Fig. 3 SEM images of rGO (a), rGO/MB (b), rGO/MB/AuNPs composites (c), and EDS pattern of rGO/MB/AuNPs composites (d)
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indicate that the gold atoms in the clusters are present

largely as Au0. These results correspond with the EDS

pattern exhibited in Fig. 3 and can be the powerful evi-

dence for the existence of AuNPs. The degree of GO

reduction significantly influences its electro-conductivity.

According to the literature [11], the degree of GO reduc-

tion can be characterized by the C/O ratio of GO-based

composites. Figure 5d shows the C 1s and O 1s XPS

spectra of the GO, rGO, rGO/MB, and rGO/MB/AuNPs

composites. C 1s and O 1s peaks with different C/O ratios

are present in all the samples. The C/O ratios of GO, rGO,

rGO/MB, and rGO/MB/AuNPs composites are 64/34,

57/24, 70/22, and 80/18, respectively. When GO is reduced

to rGO, the C/O ratio increases from 64/34 to 57/24,

indicating the partial reduction of GO by AA in the pro-

posed scheme. As can be seen, the C/O ratio of rGO/MB is

substantially larger than that of rGO. The change may be

attributed to the auxiliary reduction of MB given its

reducibility. However, the C/O ratio of the rGO/MB/

AuNPs composites is the largest among the four samples

implying the most excellent electro-conductivity. The

catalysis of AuNPs to the reduction of GO adequately

explains this phenomenon [36].

XRD pattern of the rGO/MB/AuNPs composites

XRD is a powerful and effective method for the investi-

gation of the interlayer changes and crystalline properties

of as-synthesized carbon material. Figure 6 shows the

XRD patterns of GO (Fig. 6a), rGO (Fig. 6b), rGO/MB

(Fig. 6c), and rGO/MB/AuNPs composites (Fig. 6d). The

distance between two layers of rGO is an important

parameter that provides structural information of functional

rGO materials [46]. As can be seen from Fig. 6a, GO

exhibits a feature diffraction peak at about 2h = 10.9�
(001) which is similar to the reported values [46, 47].

According to Prague formula, the interlayer d-spacing of

GO is calculates as 0.81 nm. It is because of the presence

and interaction of oxygen-containing functional groups on

the surface of GO, can it has a so large interlayer d-spacing

Fig. 4 TEM images of rGO (a), rGO/MB (b), and rGO/MB/AuNPs composites (c, d)
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and fluffy morphology with low density [46, 47]. As to the

XRD pattern of rGO, the (001) peak of GO decreases

partially, while there appears a small GN feature diffrac-

tion peak (002) at about 2h = 22.7� corresponding to an

interlayer d-spacing of 0.39 nm. The decreases in inter-

layer d-spacing and (001) peak of GO may be caused by

the partial removal of oxygen-containing functional groups

on the GO surface during the reduction process by AA.

However, when compared to GN (002) peak, the GO (001)

peak is also very large which indicates that GO can be only

partly reduced by AA in this experimental condition. Fig-

ure 6c shows the XRD pattern of rGO/MB, which has a

much larger GN feature diffraction peak (002) and a very

small (001) peak of GO. At the same time, rGO/MB has an

even smaller interlayer d-spacing of 0.34 nm (2h = 26.0�)

than rGO. The significant decrease of GO (001) peak and

conspicuous augment of GN (001) peak with a smaller

interlayer d-spacing may be attributed to the assistant

reduction effect of MB. At last, the (001) peak of GO in the

rGO/MB/AuNPs composites almost completely disappears,

which can be explained by the catalysis of AuNPs to the

reduction of GO. Furthermore, the typical diffraction peaks

at 2h = 38.13�, 44.21�, 64.64�, 77.60�, and 81.73� corre-

sponding to the (111), (200), (220), (311), and (222) lattice

planes of the gold face-centered cubic crystal appear

attractively [48, 49]. When compared to rGO/MB, although

the interlayer d-spacing of the rGO/MB/AuNPs composites

should be decreased continually according to the discus-

sion above due to the catalysis of AuNPs, it increases to

0.36 nm (2h = 24.7�). This may caused by the insertion of

AuNPs into the interlayer of rGO which competes with the

catalysis of AuNPs. Obviously, the effect of the insertion

of AuNPs dominates the competition.

All the aforementioned results indicate that the target

rGO/MB/AuNPs composites have been successfully fabri-

cated, and that each component in the combination plays its

Fig. 5 N 1s (a), S 2p (b) XPS spectra of rGO and rGO/MB/AuNPs composites, Au 4f (c) XPS of rGO/MB and rGO/MB/AuNPs composites,

and C 1s, O 1s XPS spectra of GO, rGO, rGO/MB, and rGO/MB/AuNPs composites (d)

4802 J Mater Sci (2014) 49:4796–4806
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unique role in the synthesis process. AA plays as the major

component in the reduction of GO and AuCl4
-, while rGO

adsorbs MB and supports AuNPs. MB serves as the electro-

active substance, the anchor for AuNPs growth, and the

auxiliary reductant. AuNPs act as the self-catalyst that

facilitates the reduction of GO by AA and MB. Because of

the presence of MB and formed AuNPs, GO can be

reduced more thoroughly in the proposed synthesis

process.

Electrochemical behaviors of the rGO/MB/AuNPs

composites

To investigate the electrochemical properties of the target

rGO/MB/AuNPs composites, the CV curves of the bare

GC, rGO/GC, rGO/MB/GC, and rGO/MB/AuNPs/GC

electrodes in 0.5 mol L-1 H2SO4 solution from -0.2 to

1.0 V with a scan rate of 100 mV s-1 are presented in

Fig. 7. As expected, no any redox peak can be observed in

the CV of the bare GC electrode (Fig. 7a) within the scan

range. A pair of redox peak appears at the potential range

of 0.4–0.5 V for the rGO/GC electrode which may be

caused by the remaining oxygen-containing functional

groups on rGO surface (Fig. 7b). When compared to rGO/

GC electrode, the CV of the rGO/MB/GC electrode

(Fig. 7c) indicates another pair of redox peak appearing at

about 0.22 V. Obviously, this pair of peak corresponds to

the electro-active MB. At last, the CV curve of the rGO/

MB/AuNPs/GC electrode (Fig. 7d) exhibits a considerably

larger redox peak of MB. Given the facilitation of AuNPs

to electron transfer, this phenomenon can be easily

understood. The inset in Fig. 7 is the CV curve of rGO/

MB/AuNPs modified electrode in 0.5 mol L-1 H2SO4

solution from 0.2 to 1.5 V which exhibits the peak of Au

clearly. It should be noted that MB can be oxidized when

the potential is larger than 1.2 V with the disappearance of

the MB redox peak. The electrode modified with the pro-

posed rGO/MB/AuNPs composites exhibits a promising

prospect for practical application due to its excellent

electrochemical properties.

Potential application of the rGO/MB/AuNPs

composites in electrochemical analysis

AA, DA, and UA are electro-active compounds with sim-

ilar electrochemical properties and almost the same oxi-

dation peak potential [33, 50]. Due to these similarities, the

electrochemical identification of these three compounds is

very difficult. In this work, DPV was employed to explore

the application of the target rGO/MB/AuNPs composites in

electrochemical analysis. The DPV measurements were

carried out in PBS (pH = 7.4) from -0.6 to 0.8 V

(amplitude 0.05 V, pulse width 0.5 s) for the rGO/MB/

AuNPs/GC electrode. The results are shown in Fig. 8. It

can be seen that, there is only one oxidation peak of MB

can be observed at about -0.3 V in PBS solution without

analytes (Fig. 8a) [12, 42, 44]. With the addition of

500 lmol L-1 AA, there appears its oxidation peak at

about 0 V (Fig. 8b) [33]. Sequentially, after the addition of

1 lmol L-1 DA, the oxidation peak of DA appears at about

0.17 V. Obviously, this peak does not affect the peaks of

AA and MB (Fig. 8c) [33, 50]. When the solution contains

500 lmol L-1 AA, 1 lmol L-1 DA, and 10 lmol L-1

UA, four oxidation peaks can be observed, one of which is

the UA oxidation peak at about 0.31 V (Fig. 8d) [33, 50,

51]. The inset in Fig. 8 is the curve of Fig. 8d after back-

ground substraction. These three analytes can be thor-

oughly separated under this proposed rGO/MB/AuNPs/GC

Fig. 6 XRD patterns of GO (a), rGO (b), rGO/MB (c), and rGO/MB/

AuNPs composites (d)

Fig. 7 Cyclic voltammograms of bare (a), rGO (b), rGO/MB (c),

and rGO/MB/AuNPs (d) modified GC electrodes in 0.5 mol L-1

H2SO4 solution (scan rate 100 mV s-1)
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electrode. That is, in the simultaneous detection of the

three aforementioned analytes by DPV, the potential dif-

ferences among the three oxidation peaks are 170 mV

(AA–DA), 132 mV (DA–UA), and 302 mV (AA and UA)

separately. These values are superior to those previously

reported for modified electrodes [52, 53]. Preliminary

experiments were carried out to explore the application of

the rGO/MB/AuNPs composites modified electrode for the

determination of AA, DA, and UA. Compared with pre-

viously reported nano-structured materials modified elec-

trodes [54–57], the rGO/MB/AuNPs composites modified

electrode presents a lower detection limit (2.5, 0.15, and

0.25 lmol L-1 for AA, DA, and UA, respectively) because

of the excellent electrochemical properties of this proposed

rGO/MB/AuNPs composites.

Stability of the rGO/MB/AuNPs composites was inves-

tigated by measuring the current responses to AA every few

days with the rGO/MB/AuNPs composites modified elec-

trode stored in air. After being stored for 30 days in air, the

response current of the rGO/MB/AuNPs/GC electrode to AA

remains 75.28 % of the initial values. To confirm whether

AA would further destroy the structure of the rGO/MB/

AuNPs composites during the electro-catalytic process, 40

measurements of the current responses to 0.05 mmol L-1

AA were done using one rGO/MB/AuNPs/GC electrode, and

the RSD is only 2.6 %. In other words, AA will not further

destroy the structure of the rGO/MB/AuNPs composites

when AA as a substrate in the electrochemical analysis.

The rGO/MB/AuNPs composites present promising

prospects for practical application in electrochemical

analysis.

Conclusions

The novel rGO/MB/AuNPs composites were synthesized

by a green and easy method based on the simultaneous

reduction of GO and HAuCl4 by AA, with MB as the

auxiliary reductant and formed AuNPs as the self-catalyst.

MB is firmly coated onto the rGO surface through p–p
stacking non-covalent interactions and serves as the anchor

for AuNPs in situ because of the electrostatic attraction

between positively charged MB and negatively charged

AuCl4
-. Because of the novel structure and the combina-

tion of excellent properties of MB, rGO, and AuNPs, the

target rGO/MB/AuNPs composites are promising materials

for practical application in electrochemical analysis.
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