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  Abstract           Ruditapes     philippinarum , a clam that thrives in intertidal zones of various salinities, is a 
useful biomonitor to marine contaminants. We investigated the infl uence of dilution to 75% and 50% of 
normal seawater salinity (31.1) on the responses of the digestive gland of  R .    philippinarum  to arsenic 
exposure (20 μg/L), using nuclear magnetic resonance (NMR)-based metabolomics. After acute arsenic 
exposure for 48 h, salinity-dependent differential metabolic responses were detected. In normal seawater, 
arsenic exposure increased the concentrations of branched-chain amino acids, and of threonine, proline, 
phosphocholine and adenosine, and it decreased the levels of alanine, hypotaurine, glucose, glycogen and 
ATP in the digestive glands. Differential changes in metabolic biomarkers observed at lower salinity (~23.3) 
included elevation of succinate, taurine and ATP, and depletion of branched-chain amino acids, threonine and 
glutamine. Unique effects of arsenic at the lowest salinity (~15.6) included down-regulation of glutamate, 
succinate and ADP, and up-regulation of phosphocholine. We conclude that salinity infl uences the metabolic 
responses of this clam to arsenic. 

  Keyword:   Ruditapes     philippinarum ; salinity; arsenic; toxicological effects; nuclear magnetic resonance 
(NMR); metabolomics 

 1 INTRODUCTION 

 Arsenic (As) is a toxic element that is widespread 
in estuarine and coastal environments. Although some 
arsenic is released into the environment from natural 
geogenic sources, e.g., volcanic activity (World 
Health Organization, 1981; Sanders et al., 1994), the 
major contributors to arsenic contamination of  
environment are anthropogenic activities, such as 
mining, smelting, and the production of fertilizers and 
pesticides (Agency for Toxic Substances and Disease 
Registry, 2007; Irving et al., 2008; Chen et al., 2009). 
Arsenic is toxic to most organisms and in mammals it 
causes diverse effects, including cancer and 
cardiovascular disease (Hughs, 2002). In an aquatic 
environment, arsenic may occur in the inorganic 
forms of arsenate As(V) and arsenite As(III), and in 

organic forms, including arsenoribosides, 
arsenobetaine, monomethylarsonic acid, and 
dimethylarsinic acid (Harrington et al., 1997; Sohrin 
et al., 1997). In heavily-polluted estuaries along the 
Bohai Bay, North China, concentrations of total 
arsenic in water as high as 400 μg/L have been 
recorded (Meng et al., 2004). The main form of 
arsenic in aquatic environments is arsenate As(V) 
(Maeda, 1994; Suhendrayatna et al., 2002). Arsenic is 
readily accumulated by marine organisms, where it 
may induce a range of toxicological effects. Along the 
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Bohai Sea coast, North China, salinity changes from 
0 to 33 between estuaries and marine environments 
Therefore, to better understand the toxicological 
mechanisms of environmental contaminants, it is 
important to investigate the infl uence of salinity on 
these processes. 

 Previous research has focused on the toxic effects 
of arsenic in fi sh (Gilderhus, 1996; Larsen and 
Francesconi, 2003; Liao et al., 2003) but the 
mechanisms of arsenic toxicity in marine mollusks 
have not been well elucidated. Along the Bohai Sea 
coast, the clam  Ruditapes     philippinarum    inhabits 
both low intertidal and subtidal zones, where salinities 
change rapidly during the entry and exit of fresh 
water. Because of its high tolerance of salinity changes 
and contaminants,  R .    philippinarum  has frequently 
been used as a bioindicator in the “Mussel Watch 
Program” and in marine environmental toxicology 
(Laing and Child, 1996; Moraga et al., 2002; Matozzo 
et al., 2004; Ji et al., 2006; Hegaret et al., 2007; Liu et 
al., 2011a; Zhang et al., 2011a). Consequently, 
 R .    philippinarum  was selected as the experimental 
animal for this study. 

 In the post-genomic era, metabolomics represents 
a systems biology approach that has been successfully 
applied in multiple studies, including drug toxicity, 
and disease diagnosis toxicology (Brindle et al., 2002; 
Bundy et al., 2004; Viant et al., 2006a, 2006b; Wu et 
al., 2005a, 2005b). Metabolomics focuses on all of 
the low molecular weight (<1 000 Da) metabolites, 
which are the end-products of metabolism, and which 
represent the functional responses of biological 
systems (e.g., in cells, tissues, urine, or plasma) 
(Lindon et al., 2000; Viant et al., 2001). Several 
modern analytical techniques, particularly nuclear 
magnetic resonance (NMR) spectroscopy and mass 
spectrometry (MS), have been successfully used in 
metabolomics (Nicholson et al., 1985; Plumb et al., 
2003; Wang et al., 2003; Wu and Wang, 2010). High 
resolution proton nuclear magnetic resonance (HR- 1 H 
NMR) spectroscopy is particularly suitable for the 
measurement of a large number of metabolites in 
biological samples because it is rapid, non-invasive 
and is rich in structural and quantitative information 
(Brindle et al., 2002; Lindon et al., 2000). NMR-
based metabolomics has been effi ciently used in 
several recent studies in marine environmental 
toxicology (Viant et al., 2001; Viant et al., 2006a, 
2006b; Jones et al., 2008; Williams et al., 2009; 
Gordon and Leggat, 2010; Lannig et al., 2010; Santos 
et al., 2010; Tikunov et al., 2010). 

 The primary aim of this work was to illustrate the 
infl uences of reduced seawater salinities on arsenic-
induced toxicological effects in  R .    philippinarum , 
using NMR-based metabolomics. Three experimental 
salinities lying within the normal range experienced 
by  R .    philippinarum  (14.0–33.5) were used in this 
study: normal seawater, 75% seawater, and 50% 
seawater. 

 2 MATERIAL AND METHOD 

 2.1 Chemicals 

 Sodium dihydrogen phosphate (Na 2 HPO 4 ), 
disodium hydrogen phosphate (NaH 2 PO 4 ) and sodium 
arsenate (Na 2 HAsO 4 ) (all analytical grade) were 
purchased from Guoyao Chemical Co. Ltd. (Shanghai, 
China). Extraction solvents, methanol and chloroform 
(HPLC grade) were purchased from Guoyao Chemical 
Co. Ltd. (Shanghai, China). Deuterium oxide (D 2 O, 
99.9% in D) and sodium 3-trimethlysilyl [2,2,3,3-D4] 
propionate (TSP) were purchased from Cambridge 
Isotope Laboratories (Miami, FL, USA). 

 2.2 Clam exposure 

 Adult clams  R .    philippinarum  (shell length: 3.4–
3.8 cm, white pedigree,  n =72) were purchased from a 
local culturing farm. Animals were transported to the 
laboratory and kept for 1 d in natural seawater (salinity 
31.1) collected from a pristine environment. The 
clams were then acclimated to either normal seawater 
(salinity 31.1), or 75% seawater (salinity 23.3) or 
50% seawater (salinity 15.6). Gradual dilution to the 
experimental salinities was achieved by adding de-
ionized water over a period of 3 d and measured daily 
(Fig.1). Clams were further acclimated at each salinity 
for another 3 d, refreshing the water daily. Six 
treatments were designed consisting of three 
unexposed control groups (normal, 75% and 50% 
seawater) and three corresponding arsenic-exposed 
groups. The nominal concentration of arsenic was 
20 μg/L (measured concentrations, 21.1–22.0 μg/L) 
and was prepared from a stock solution of Na 2 HAsO 4  
(200 mg/L As). This represents an environmentally 
realistic concentration in polluted sites along the 
Bohai coast (Meng et al., 2004). In each treatment, 12 
individuals were maintained in a tank containing 10 L 
of the experimental seawater. During the acclimation 
and exposure periods, clams were kept at 22°C under 
a photoperiod of 12 h light and 12 h dark, and fed with 
the  Chlorella vulgaris  Beij at a ration of 2% tissue dry 
weight daily. After 48 h of exposure, all clams were 
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immediately dissected for digestive gland tissues, 
which were fl ash frozen in liquid nitrogen and then 
stored at -80°C before further processing ( n =12). 

 2.3 Metabolite extraction, NMR spectroscopy and 
data analysis 

 Polar metabolites in digestive glands of clams were 
extracted using a modifi ed extraction protocol as 
described previously (Liu et al., 2011b, 2011c; Zhang 
et al., 2011b). 

 Extracts of digestive gland from clams were 
analyzed on a Bruker AV 500 NMR spectrometer 
performed at 500.18 MHz (at 298 K), as described 
previously (Liu et al., 2011a, 2011b, 2011c; Zhang et 
al., 2011b). NMR spectral peaks were identifi ed from 
tabulated chemical shifts (Fan, 1996; Viant et al., 
2003), using the software, Chenomx (Evaluation 
Version, Chenomx Inc., Edmonton, Alberta, Canada). 

 As described previously, all one-dimensional 
proton NMR spectra were converted to a format using 
custom-written ProMetab software in Matlab (version 
7.0; The MathsWorks, Natick, MA, USA) to generate 
NMR spectral data (Purohit et al., 2004; Parsons et 
al., 2007; Katsiadaki et al., 2009). NMR spectral data 
were mean-centered before principal components 
analysis (PCA) using PLS Toolbox (version 4.0, 
Eigenvector Research, Manson, WA, USA). 

 3 RESULT AND DISCUSSION 

 3.1 Metabolic differences in the digestive glands of 
clams exposed to reduced salinity 

 As reported previously, the white pedigree of the 
clam  R .    philippinarum  is relatively sensitive to heavy 
metal contaminants (Liu et al., 2011b, 2011c), which 
was the reason for its use as the experimental animal 
in this work. A representative raw  1 H NMR spectrum 
of a digestive gland tissue extract from a control clam 
is shown in Fig.2a, and as the generalized log (glog)-
transformed form in Fig.2b, with identifi ed metabolites 
labeled in Arabic numerals. 

 The unsupervised pattern recognition method, 
principal components analysis (PCA), was conducted 
on the NMR spectral datasets of digestive gland 
extracts from the three control groups to compare 
their metabolic profi les (Fig.3a; normal seawater 
salinity 31.1, inverted red triangles; reduced salinity 
groups 23.3, green circles; and 15.6, blue squares). 
Signifi cant differences ( P <0.001) were found between 
the groups, which are also shown in a PC1 loadings 

plot (Fig.3b). It is apparent that the reduced salinities 
up-regulated branched-chain amino acids (valine, 
leucine and isoleucine), arginine, succinate, 
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 Fig.1 Time course of the salinity change for both the 
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 Fig.2 A representative 1-dimensional 500 MHz  1 H NMR 
spectrum of digestive gland tissue extracts from a 
white clam of control group in raw (a) and generalized 
log transformed ( λ =1.0×10 -9 ) (b) forms 
 Keys: (1) branched-chain amino acids: isoleucine, leucine and 
valine; (2) threonine; (3) alanine; (4) arginine; (5) glutamate; (6) 
glutamine; (7) acetoacetate; (8) succinate; (9) hypotaurine; (10) 
aspartate; (11) 4-aminobutyrate; (12) malonate; (13) betaine; (14) 
taurine; (15) glycine; (16) unknown 1 (4.07 ppm); (17) homarine; 
(18) β-glucose; (19) α-glucose; (20) glycogen; (21) ATP; (22) 
tyrosine; (23) histidine; (24) unknown (7.68 ppm). 
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phosphocholine and ATP, and down-regulated 
hypotaurine, glycine, homarine, glucose and 
glycogen. Hypotaurine and homarine are organic 
osmolytes that help to balance the intracellular 
osmolarity (Viant et al., 2003). They may be 
accumulated or released, respectively, in response to 
increased or decreased seawater salinity. Accordingly, 
we observed that these two osmolytes were decreased 
in the digestive glands of the clams under reduced 
seawater salinities. The levels of glycogen and 
glucose also fell, which is a common observation in 
mollusks experiencing food restriction (Viant et al., 
2003; Jones et al., 2008). Since reduced salinities can 
signifi cantly decrease the food intake of clams, the 
depletion of glycogen and glucose may have been 
metabolic responses to starvation induced by reduced 
salinity. As discussed by Jones et al. (2008) and Viant 
et al. (2003), some marine mollusks maintain high 
intracellular concentrations of amino acids to match 
their intracellular osmolarity to the high osmolarity of 
the environment. These oxidizable amino acids are 
also used extensively in cellular energy metabolism 
(Moyes et al., 1990). Therefore, the decreased glycine 
concentration in the digestive glands of clams under 
reduced seawater salinities was probably concerned 

with osmotic regulation, and is consistent with the 
decreased levels of homarine and hypotaurine. 
Conversely, the increased concentrations of branched-
chain amino acids (especially valine and leucine) and 
arginine could be related to energy metabolism. As 
reported by De Zwaan et al. (1976), mussels are able 
to use an unusual carbohydrate fermentation process, 
with a non-oxidative tricarboxylic acid (TCA) cycle 
that works in reverse, from pyruvate up to succinate. 
Therefore, we infer that the increase in succinate 
observed here under reduced salinities was a 
biomarker for anaerobic processes in the clam. 
Phosphocholine is catalyzed by choline kinase that 
converts ATP and choline into phosphocholine and 
ADP. The accumulation of phosphocholine and ATP 
in clam digestive glands at reduced salinities implies 
that stimulation of energy metabolism was associated 
with the hypoosmotic stress. 

 3.2 Differential metabolic responses in digestive 
gland from clams exposed to arsenic under reduced 
seawater salinities 

 Differences were observed in the metabolic profi les 
of the digestive glands of clams exposed to both 
arsenic and reduced seawater salinities relative to the 

Sc
or

es
 o

n 
PC

2 
(1

3.
79

%
)

-60
-100 -80 -60 -40

Scores on PC1 (42.87%)
-20 0

a b

c d

20 40 60 80

-40

-20
0

20

40

60

80

Sc
or

es
 o

n 
PC

2 
(1

7.
15

%
)

-50
-80 -60 -40

Scores on PC1 (37.61%)
-20 0 20 40 60 80 100

0

50

100

Lo
ad

in
gs

 o
n 

PC
1 

(3
7.

61
%

)
-0.15

9 8
Chemical shift (ppm)

7 6 5 4 3 2 1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Lo
ad

in
gs

 o
n 

PC
1 

(4
2.

87
1%

)

-0.15
9 8

Chemical shift (ppm)
7 6 5 4 3 2 1

-0.1

-0.05

0

0.05

0.1

0.15
0.2
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β-glucose, (9) α-glucose, (10) glycogen, (11) unknown 1 (5.99 ppm), (12) ATP, (13) alanine and (14) betaine. 
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profi les of clams exposed only to reduced salinity 
(Fig.3). Decreased alanine and betaine levels were 
observed (Fig.3d) although the level of succinate was 
not altered. These differences suggest that arsenic 
exposure modifi es the metabolic responses induced 
by reduced seawater salinity, i.e., reduced salinity and 
arsenic toxicities must interact. 

 Therefore, PCA was performed on the  1 H NMR 
spectral datasets generated from the control (untreated 
with arsenic) and arsenic-treated groups of clams 
under reduced seawater salinities (Fig.4). For the 
groups under normal (31.1) and reduced seawater 
salinities (23.3 and 15.6), the control (inverted red 
triangles) and arsenic-exposed groups (green circles) 
were all signifi cantly ( P <0.05) separated along 
various PC axes (Fig.4a, 4c and 4e). Signifi cant 

metabolic responses induced by arsenic at normal 
seawater salinity included the elevation of branched-
chain amino acids (valine, leucine and isoleucine), 
threonine, proline, phosphocholine and adenosine, 
and the depletion of alanine, hypotaurine, glucose, 
glycogen and ATP. At the reduced seawater salinity of 
23.3 (75% seawater), arsenic exposure caused 
signifi cant increases of succinate, taurine and ATP, 
and decreases in branched-chain amino acids, 
threonine, alanine, glutamine, hypotaurine, glucose, 
glycogen and adenosine. Essentially similar metabolic 
profi les were observed in clam samples from 15.6 
salinity (50% seawater) although some specifi c 
differences were detected, including elevated 
phosphocholine, and depletion of glutamate and 
succinate. Similar changes in taurine and homarine 
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levels were observed in clam samples from salinities 
23.3 and 15.6. 

 The differential metabolic responses to arsenic 
exposure show that reduced seawater salinity affects 
the metabolic responses to arsenic exposure in the 
digestive glands of clams. In normal seawater, the 
metabolic biomarkers including threonine, glucose, 
glycogen, phosphocholine, branched-chain amino 
acids and ATP indicated disturbances to energy 
metabolism, as mentioned above. Changes in other 
metabolites, such as hypotaurine and proline, were 
linked to the disturbances in osmotic regulation. The 
change of adenosine, a nucleotide, may be related to 
peroxisome proliferation, as reported by Ringeissen 
et al. (2003). At the reduced salinity of 23.3, 
differential metabolic responses relative to the 
metabolic profi les of samples from normal seawater 
were detected after arsenic exposure, including 
decreased branched-chain amino acids, threonine, 
ATP and adenosine. In addition, the level of succinate, 
a biomarker of anaerobic processes, was elevated in 
the clam samples from salinity 23.3. The decreased 
levels of branched-chain amino acids and increased 
taurine levels at this salinity presumably refl ected 
disturbance of osmotic regulation. The metabolic 
profi les of clam samples from the lowest salinity 
(15.6) were similar to those from the 23.3 salinity 
group, except for the changes in succinate, 
phosphocholine, glutamate, ADP, homarine and 
taurine. Succinate, phosphocholine and ADP were 
clearly biomarkers of disturbed energy metabolism, 
while the change in the amino acid glutamate may 
have been concerned with osmotic regulation. These 
fi ndings imply that the two reduced seawater salinities 
(75% and 50% seawater) had similar infl uences on 
the toxicological effects induced by arsenic exposure 
in clam digestive glands. However, at the lowest 
salinity, arsenic induced more severe disturbances in 
energy metabolism. Possibly, the weaker physiological 
status of clams at the lowest salinity reduced their 
tolerance to arsenic. 

 4 CONCLUSION 

 There is a lack of information on the infl uences of 
environmental factors (e.g., temperature, salinity) on 
the metabolic responses of marine organisms used as 
environmental bioindicators and biomonitors for 
contaminants. Here, we investigated the infl uences of 
reduced seawater salinities (75% and 50% seawater) 
on the metabolic responses within the digestive gland 
of  R .    philippinarum  exposed to an environmentally 

relevant level of arsenic (20 μg/L), using NMR-based 
metabolomics. Acute exposure for to arsenic for 48 h 
caused disturbances in energy metabolism and 
osmotic regulation in the digestive glands of clams at 
normal seawater salinity (31.1) and at reduced 
salinities (23.3 and 15.6). However, a number of 
differential metabolic biomarkers were detected in 
the digestive glands of clams at a salinity of 23.3, 
including elevated levels of succinate, taurine and 
ATP, and depletion of branched-chain amino acids, 
threonine and glutamine. At a salinity of 15.6, further 
distinct metabolic biomarkers induced by arsenic 
included the down-regulation of glutamate, succinate, 
phosphocholine and ADP. These observations 
demonstrate that metabolomics is able to provide 
important insights into the mechanisms of response to 
arsenic under changing salinities. 
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