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The ocean is an important sink of land-based pollutants. Previous studies showed that serious antibiotic
pollution occurred in the coastal waters, but limited studies focused on their presence in offshore waters.
In this study, eleven antibiotics in three different categories were investigated in offshore waters of the
Bohai Sea and the Yellow Sea in China. The results indicated that three antibiotics dehydration eryth-
romycin, sulfamethoxazole and trimethoprim occurred throughout the offshore waters at concentrations
of 0.10e16.6 ng L�1 and they decreased exponentially from the rivers to the coastal and offshore waters.
The other antibiotics all presented very low detection rates (<10%) and concentrations (<0.51 ng L�1).
Although the concentrations were very low, risk assessment based on the calculated risk quotients (RQs)
showed that sulfamethoxazole, dehydration erythromycin and clarithromycin at most of sampling sites
posed medium or low ecological risks (0.01 < RQ < 1) to some sensitive aquatic organisms, including
Synechococcus leopoliensis and Pseudokirchneriella subcapitata.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The residues of antibiotics are widely present in feces, medical
waste, sewage treatment plants (STPs) and rivers due to their
extensive and long-term usage in human therapies, animals, plant
agriculture and aquaculture (Kummerer, 2009). Additionally, they
tend to persist because of their continuous input (Daughton and
Ternes, 1999). These residues can cause ecological harm in organ-
isms and promote antibiotic resistance genes (ARGs), a newly
emerging contaminant, in bacterial populations (Eguchi et al.,
2004; Kummerer, 2004).

The ocean is an important sink ofmany terrestrial contaminants.
Some recent studies showed that notable amounts of antibiotic
residues were transported to coastal areas via riverine inputs (Jia
et al., 2011; Zhang et al., 2012b; Zou et al., 2011) and STP effluents
(Gulkowska et al., 2007; Minh et al., 2009) except for some residues
that were used in mariculture (Jia et al., 2011). Although steep
gradients from rivers (or STPs) to the sea were observed for most of
the studied antibiotics due to dilutionwith seawater,many occurred
widely in the coastal area, with some of the antibiotics causing high
All rights reserved.
ecological risks to some aquatic organisms. Because many antibi-
otics occurred in the coastal area, the question arises ofwhether and
howmuch they are transported to the offshore area or the open sea,
where no new inputs occur (apart from atmospheric deposition,
which is not to be expected in the cases of the mostly polar or even
ionic pharmaceuticals). However, knowledge on the presence of
antibiotic contamination in these areas is very limited. Their
detection in the offshore area or the open sea would confirm their
ubiquitous character and could lead to new insights into their
persistence. In this work, emphasis is placed upon antibiotics in the
offshorewaters in theBohai Sea (BS) and theYellowSea (YS) of China
based on our previous studies in the coastal water of the two seas.

The BS and YS were selected as the target study areas because
their coasts (including four provinces and twomunicipalities under
the direct jurisdiction of the Central Government) supported
almost 25% of the Chinese population and provided 35% of the
national GDP in 2008 (Lin et al., 2011). Dense populations, devel-
oped industries and agriculture, including animal husbandry and
aquaculture, have produced a large amount of domestic, industrial,
agricultural and aquacultural waste, which might contain antimi-
crobial agents, their degradation intermediates and antimicrobial-
resistant bacteria (Ma et al., 2001). Additionally, the previous
studies proved that these pollutants occurred widely in these
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wastes and were transported to the coastal areas, such as the three
main bays of the BS (Bohai Bay, Laizhou Bay and Liaodong Bay),
Jiaozhou Bay of the South YS and the bays around Yantai City in the
North YS (Jia et al., 2011; Jiang et al., 2011; Luo et al., 2010, 2011;Wei
et al., 2011; Zhang et al., 2012b; Zou et al., 2011). Moreover, the two
seas are representative of two different types of bodies of water:
the BS is a semi-enclosed sea and the YS is an open sea.

Similar to our previous studies, eleven antibiotics belonging to
three groups, the macrolides (MLs), sulfonamides (SAs) and dia-
minopyrimidines (DMs), were selected as the target compounds in
present study. The detailed information, including the physico-
chemical properties and primary usage of the target compounds,
are given in Supplementary Table S1. They are the most frequently
prescribed antibiotics for human treatment and veterinary medi-
cine in China. The antibiotics selected in this studywere alsowidely
present in the surface waters in Europe, the U.S.A., and China
(Hirsch et al., 1999; Kolpin et al., 2002; McArdell et al., 2003; Xu
et al., 2007; Zou et al., 2011).

The objectives of the present study were not only to compre-
hensively survey the occurrence and distribution of antibiotics in
the offshore marine environment but also to assess their persis-
tence and attenuation from the rivers to the offshore area. Mean-
while, their ecological risks to the aquatic organisms in the offshore
marine environment were assessed using calculated risk quotients
(RQs) (Hernando et al., 2006).
Fig. 1. A: Map of sampling sites in the Bohai Sea and the Yellow Sea, North China. B-1, 2: Anti
Regional statistic results of antibiotics and water salinity in the Bohai Sea and the Yellow Se
BHM, LZM and LDM indicate the mouths of Bohai Bay, Laizhou Bay and Liaodong Bay, respect
estuaries of the Yellow River and the Yangtze River, respectively. LK indicates the section n
2. Materials and methods

2.1. Sampling stations and sample collection

The locations of sampling sites in the BS and YS are illustrated in Fig. 1A. A total
of 62 surface water samples were collected during April 20eMay 5, 2010 in one
cruise on the “Dong Fang Hong 2” research vessel, including stations B10eB33 and
FJ04eFJ09 in the BS and H1eH43, B2eB9 and B34eB48 in the YS. The station
numbers in the study were discrete because they were the unified numbers of the
cruise, but parts of the stations were selected in the study. Twenty-seven stations in
the BS further included six sections: the Bohai Strait (BHS: B10eB17), the mouth of
Liaodong Bay (LDM: B18eB23), the mouth of Bohai Bay (BHM: B24eB28), the mouth
of the Laizhou Bay (LZM: B29eB33), the area adjacent to the estuary of the Yellow
River (YRE: FJ04eFJ06) and the section near Longkou City (LK: FJ07eFJ09). Thirty-
five stations in the YS further included two parts: the North YS (B05eB09 and
B34eB48) and the South YS (H01eH43 and B02eB04). More information about the
samples is given in Supplementary Table S2. All the samples were collected
(approximately 0e50 cm below the water’s surface) using a stainless steel bucket
and were immediately transferred to a 5-L pre-cleaned amber glass bottle. The
bottle was rinsed with the sample prior to sampling. The samples were kept at 4 �C
in a cold storage room before further treatment and analysis in the laboratory.

2.2. Chemicals and standards

The selected compounds belonged to three different antibacterial families: MLs
include erythromycin (ETM), spiramycin (SRM), azithromycin (AZM), clarithromycin
(CTM) and roxithromycin (RTM); SAs consist of sulfadiazine (SDZ), sulfamethoxazole
(SMX), sulfadimidine (SDM), sulfathiazole (STZ) and sulfacetamide (SAAM);
DMs(trimethoprim (TMP)). The synergist TMP is often prescribed in combination
with SAs and has similar properties to SAs, so it was usually grouped with the SAs
biotic concentration and water salinity profiles in the Bohai Sea and the Yellow Sea. B-3:
a. The abbreviations BS and YS indicate the Bohai Sea and the Yellow Sea, respectively.
ively, and BHS indicates the Bohai Strait. YRE and YZE indicate the areas adjacent to the
ear Longkou City. ETM indicates dehydration erythromycin.
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when discussing the results. All the target compounds were purchased from Sigmae
Aldrich Co. (St. Louis, MO, USA). The 13C3-caffeine solution was obtained from
Cambridge Isotope Labs (1 mg mL�1 in methanol, USA) and used as surrogate
standard. All the antibiotic compounds were dissolved in methanol and stored in
a freezer. Erythromycin-H2O (ETM-H2O), a major degradation product of erythro-
mycin, was obtained by acidification of erythromycin using themethod described by
McArdell et al. (2003).

Methanol (HPLC grade) was obtained fromMerck (Darmstadt, Germany). Formic
acid and ammonium acetate were purchased from CNW (Germany). Disodium
edetate dihydrate (Na2EDTA) was analytical grade and obtained from Tianjin
Chemical (Tianjin, China). Ultra-pure water was prepared with a Milli-Q water
purification system (Millipore, Bedford, Massachusetts, USA). Unless otherwise
indicated, the chemicals used in the analysis were analytical grade or above.

2.3. Sample extraction and analysis

The antibiotics in the water were concentrated by the solid-phase extraction
(SPE) using the Oasis HLB cartridge (500 mg, 6 mL, Waters Corporation, Milford,
Massachusetts, USA) (Xu et al., 2007). Before extraction, a 5 L water sample was
filtered through 0.7 mm glass fiber filters (GF/F, Whatman, Mainstone, England) and
then acidified to pH ¼ 3.0 with 3.0 mol L�1 H2SO4, followed by the addition of 0.2 g
Na2EDTA as the chelating agent and 100 ng of 13C3-caffeine as the surrogate to
monitor the recovery. The SPE cartridgewas preconditioned. Each water sample was
passed through the cartridge. The analytes were eluted with 2 mL � 3 of methanol,
volume-reduced to approximately 20 ml, and then dissolved in 40% aqueous meth-
anol to a final volume of 1.0 mL. The details of SPE process are shown in
Supplementary S1.

The extracted samples were analyzed using high performance liquid
chromatographyeelectrospray ionization tandem mass spectrometry (HPLCeESIe
MSeMS) with multiple reactions monitoring (MRM). The instrumental analysis
method was also optimized based on our previous method (Zhang et al., 2012b) for
the three antibiotic classes. The separation of the compounds was performed with
Agilent 1200 series (Agilent, Palo Alto, USA) on an Agilent Zorbax XRD-C18 column
(2.1 mm � 50 mm, 1.8 mm) with a guard column SecurityGuard� C18
(4.0 mm� 3.0mm). Formass spectrometric analysis, Agilent 6460 triple quadrupole
mass spectrometer (Agilent, Palo Alto, USA) equipped with an electrospray ioniza-
tion source in the positive mode (ESIþ) was used to analyze the antibiotics. More
conditions of liquid chromatography and mass spectrometry were described in
Supplementary S2.

2.4. Quality analysis and quality control

A quantitative analysis of each compoundwas performed using HPLCeESIeMSe
MS in the MRM mode using two of the highest characteristic precursor ion/product
ion transitions. Together with the retention times, the characteristic ions were used
to ensure the correct peak assignment and peak purity. The 13C3-caffeine was added
as a surrogate standard to all samples prior to being filtered to compensate for the
matrix effects during the analytical procedure. Although the use of multiple surro-
gate standards is preferred to enhance the accuracy of analysis of multiple
compounds with different physicochemical properties, the unavailability of some
labeled antibiotics and budget constraints precluded this approach. Because of such
constraints, several recent studies similarly relied on the standards addition method
plus a single internal standard to analyze multiple antibiotics.

The limits of quantification (LOQ) for each compound in the seawater obtained
using the method described by Xu et al. (2007) ranged from 0.09 to 2.6 ng L�1

(Supplementary Table S4).
For the recovery experiments, the eleven target compounds were determined

using the standards addition method, i.e., 5 L of filtered seawater fortified with
100 ng of target analytes was treated in the same procedure as the field samples. The
recovery rates of these spiked antibiotics were 78e88% (Supplementary Table S4).
The field and procedural blanks were treated as controls for possible contamination
Table 1
Summary of results for the selected antibiotics in the Bohai Sea and the Yellow Sea (n ¼

TMP þ Sulfonamides (ng L�1)

TMP SMX SDM SDZ SA

Meana 1.4 1.0 0.01 0.01 0.0
SDb 3.4 1.7 0.02 0.05 0.0
Median 0.22 0.45 nd nd nd
Min <LOQ <LOQ nd nd nd
Max 16.6 8.3 0.16 0.36 0.1
Detected rate (%) 73 98 1.6 4.8 1.6

nd: not detected.
LOQ: limits of quantification.

a Mean and SD values were calculated using the measured values if above the LOQ, th
b Standard deviation.
in the laboratory and in the field sampling. Analysis of these blanks demonstrated
that the extraction and sampling procedures were free of contamination. More
detailed information about the quality analysis and quality control is shown in
Supplementary S3.

2.5. Antibiotics attenuation model

Antibiotics attenuation (e.g., by adsorption, dilution, photolysis, hydrolysis and
biodegradation) was assumed (and confirmed) to follow first-order kinetics. The
attenuation coefficient (k) in the rivers was calculated as following by Luo et al.
(2011):

k ¼
�v
L

�
ln
�
ci
cI

�
(1)

where L is the distance from site i to site I; ci and cI are the antibiotic concentrations
at sites i and I, respectively; and v is the average river velocity between the two sites.
k was determined without the use of conservative tracers that would be needed to
quantify dilution. Thus, k values represent overall attenuation coefficients that
provide insight on the relative persistence and potential reach of different antibi-
otics (rather than specific degradation coefficients for use in predictive fate and
transport models). This model was only applied to segments with a single pollution
source, usually located in the tributaries. But in this study, the pollution source was
not a single, the directions of sea currents were not stable and the velocities of the
sea currents were difficult to be available. Therefore, we just talked about the
correlation of antibiotics contents with the distance and the k was calculated as:

k ¼
�
1
L

�
ln
�
ci
cI

�
(2)

The first-order attenuation assumption was tested by assessing the goodness of
fit of the data to the exponential decay model [C ¼ C0e�kL] as described in the
Supplementary Table S7.

3. Results and discussion

3.1. Detection frequency and overall concentration levels of the
target antibiotics

Ten antibiotics of the eleven target compounds except SRM
were detected at least once in the offshore waters of the BS and YS.
The results are shown in Fig. 1B and summarized in Table 1. All raw
data are available in Supplementary Table S5. As shown in Table 1,
three antibiotics (ETM-H2O, SMX and TMP) were detected widely,
with detection rates of more than 73%. Among the ten detected
antibiotics, ETM-H2O, which was the predominant form of ETM in
the aquatic environment (McArdell et al., 2003), was the most
frequently detected compound with the detection rate of 100%.
SMX showed the second highest detection rate of 98%, followed by
TMP with a detection rate of 73%. Except for the three predominant
antibiotics aforementioned, the other antibiotics were detected
sporadically, with detection rates of less than 10%.

Concentrations of all the detected antibiotics ranged from
0.10 ng L�1 to 16.6 ng L�1. Among the ten detected antibiotics, the
three predominant antibiotics also presented the highest concen-
trations. The mean and maximum concentrations of the three
predominant antibiotics were from 0.69 to 1.4 ng L�1 and from 6.7
62).

Macrolides (ng L�1)

AM STZ ETM-H2O RTM AZM CTM

03 0.02 0.69 0.09 0.06 0.07
2 0.03 1.1 0.06 0.05 0.07

nd 0.31 <LOQ <LOQ <LOQ
nd 0.13 nd nd nd

2 0.17 6.7 0.26 0.39 0.51
4.8 100 1.6 6.5 8.1

e half of LOQ if <LOQ or 0 if not detected.



Fig. 2. Antibiotic concentration (mean) profiles in the rivers, coastal waters and
offshore waters of the Bohai Sea. The abbreviation ETM indicates dehydration eryth-
romycin. The abbreviation R indicates rivers adjacent to the sea. BHB, LZB, LDB, BHM,
LZM, LDM, BHS, JZB, YTB and NYS indicate Bohai Bay, Laizhou Bay, Liaodong Bay, mouth
of the Bohai Bay, mouth of the Laizhou Bay, mouth of the Liaodong Bay, Bohai Strait,
Jiaozhou Bay, bays near Yantai City and North Yellow Sea, respectively. Some of the
data in the figure are from Jia et al. (2011), Zhang (2011), Zhang et al. (2012a) and
Zou et al. (2011).
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to 16.6 ng L�1, respectively, which were obviously lower than those
in the coastal water, such as the Bohai Bay (Zou et al., 2011), Laizhou
Bay (Zhang et al., 2012b), Liaodong Bay (Jia et al., 2011), Victor
Harbor (Minh et al., 2009), Hong Kong coasts (Gulkowska et al.,
2007) and Belgian coastal harbors (Wille et al., 2010)
(Supplementary Table S6). Compared with the three predominant
antibiotics, the other antibiotics showed much lower concentra-
tions. Their maximum concentration was just 0.51 ng L�1, and their
mean concentrations (from 0.003 to 0.09 ng L�1) were all below
their LOQs because their concentrations were all below their LOQs
in more than 90% of the samples. The percentage of the three major
antibiotics accounted for up to 75e100% of the total concentrations
of the detected antibiotics.

It should be noted that the presence of the three main antibi-
otics throughout the BS and YS indicated that they are sufficiently
persistent to withstand transformation on their way to and within
the seas, where no new inputs occur (Weigel et al., 2002). In
addition, the significantly different physico-chemical and biological
conditions in marine aquatic systems from limnic ones may lead to
a completely different behavior of organic chemicals like, in some
cases, an enhancement of stability (Weigel et al., 2002).

3.2. Environmental distributions of the target antibiotics

When interpreting the pollution distributions in the BS and YS,
the pollution sources, the distance away the coast, water exchange
ability and main water currents in the seas should be kept in mind.
BS was the most polluted sea in China. It received approximately
36% of the wastewater and 47% of the solid pollutants in China
(Wang and Wang, 2007). Additionally, it was a large aquaculture
base and fish farming base. Its water exchange ability was much
poorer than that of the YS because it was a semi-enclosed inner sea
whereas the YS was an open sea. For the water currents, they are
basically characterized by the flow of Bohai Sea Coastal Current
(BSCC), Yellow Sea Warm Current (YSWC) and Yellow Sea Coastal
Current (YSCC) (Guo et al., 2006), which were shown in the
Supplementary Fig. S1. YSWC is the only source of open oceanwater
into the BS, YS, and even East Sea of China. When YSWC hit
the coast of the Bohai Bay, it changes into two directions, one to the
north, another to the south, and also forms a circular current in
the Bohai Bay and out from the Liazhou Bay.

In general, the distribution patterns of the total target antibiotics
showed that their total concentration in the BS (5.9 ng L�1) was
notably higher than that in the YS (1.4 ng L�1) (Fig. 1B-3). It may be
due to the larger number of pollution sources and the poor water
exchange ability of the BS. And the low salinity of the BS (31.8&)
compared with the YS (32.1&) (Fig. 1B-3) can also support the
statement, i.e., open ocean seawater increased salinity and dilute
pollutants and fresh water runoff decreased salinity but brings in
antibiotics. Among the detected antibiotics, TMP and SMX in the
two seas presented the most obvious differences. The concentra-
tions of TMP and SMX in the BS were 21 and 3 times, respectively,
those in the YS, whereas the other antibiotics were at nearly
comparable levels in the two seas.

There were much more detailed regional spatial distributions
features in the two seas (Fig. 1B and Supplementary Fig. S2). One
significant feature was that much more MLs were detected in the
areas adjacent to the estuaries of both the Yangtze River (YZE) and
Yellow River. Their concentrations were the highest in the sites
closest to the estuaries (H40 and FJ04) and decreased along those
transects fromH40 toH42, H40 to H36, FJ04 to FJ06 and FJ04 to B25.
This feature might be impacted by the inputs of the Yangtze River
and Yellow River, which also can be proven by the homochronous
salinity distribution, i.e., the salinity increased with the river inputs
along the transects away the coast. And the salinity negatively
correlated to the concentrations of ETM-H2O in those transects
mentioned above (r2 > 0.9, P < 0.01) (Supplementary Fig. S3).
Among the MLs, CTM, RTM and AZM were predominantly used by
humans, whereas ETM can be used to treat humans and animals.
However, the linear regression analysis indicated that a significant
linear correlation occurred between ETM-H2O and AZM in the area
near YZE (r2¼ 0.97, P¼ 0.04) and between ETM and CTM in the area
near YRE (r2 ¼ 0.95, P ¼ 0.12) (Supplementary Fig. S4). This corre-
lation may indicate that ETM-H2O is from same source (domestic
sewage) and/or presents the same environmental behavior as CTM
and AZM (Zhang et al., 2012a).

Another significant feature was that the total antibiotic concen-
trations in BS showed the following regional distribution feature:
LZM (17.7 ng L�1) > BHM (2.4 ng L�1) > LDM (1.9 ng L�1) > BHS
(1.3 ng L�1) (Fig.1B-3). The LaizhouBaycontributedmuchmoreTMP
and SMX to the BS. Their concentrations at sites from B30 to B33 of
the LZM and its adjacent site FJ07 were much higher than those at
the other sites. Moreover, the concentration of TMP decreased
gradually along those transects (from FJ06 to FJ04 and from B28 to
B24) off the Laizhou Bay, and the concentration of SMX also
decreased along the transect from FJ06 to FJ04. These results imply
that the TMP and SMX in a large sea area of the BSwere impacted by
the Laizhou Bay. In addition, the area impacted by TMP was larger
than that by SMX, which may be because TMP presented a much
higher concentration than SMX in the LZM. Considering the sea
current YSWC, the antibiotics detected at sites in Laizhou Bay (the
highest in this study) may come from sources of both runoffs in the
Bohai Bay and the Laizhou Bay. But surely TMP and SMX are mainly
from the Laizhou Bay because their mean concentrations in the
whole Laizhou Bay were even higher than those in the coast area of
the Bohai Bay (Fig. 2) (Zhang et al., 2012b; Zou et al., 2011).
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Another characteristic was that the concentrations of most of
the antibiotics decreased gradually along these transects off the
coast. For example, steep gradients along the transects from FJ07 to
FJ09, from B04 to B02, and from B39 to B43 were observed for the
three major antibiotics due to dilution with clean seawater, sorp-
tion to particles, and/or degradation on their transport path, such as
hydrolysis, photolysis, biodegradation, and so on.

The correlations between salinity and the antibiotic concentra-
tion in the some local area were discussed above. In the view of the
more large area, inverse correlation also can be found between the
salinity and the total antibiotic concentrations in the BS (r2 ¼ 0.56,
n¼ 27, P< 0.001), the YS (r2 ¼ 0.23, n¼ 35, P< 0.001) and even the
whole of the two seas (r2 ¼ 0.24, n¼ 62, P< 0.001) (Supplementary
Fig. S5), suggesting that the input of fresh water enriched the
antibiotics in the marine environment. Moreover, the relationship
of salinity and antibiotic concentration in the seas can explain the
distribution of antibiotics in the LZM, BHM and LDM to some
extent. For example, the Laizhou Bay is the smallest in the three
bays and the distance of themouth to the coast is the shortest, so its
mouth was impacted seriously by the coastal water (or river water),
which was proved by the salinity in the mouth (lowest in the three
bay mouths). Therefore, the antibiotic concentration in the mouth
was the highest. The revise feature occurred in the Liaodong Bay,
i.e., the distance of the LDM to the coast of Liaodong Bay was the
longest, the salinity in the LDMwas the highest while the antibiotic
concentration in there was the lowest. Therefore, the antibiotic
concentrations in LZM, BHM and LDM were related to the distance
of the sampling area to the coast to some extent.

3.3. Transport of antibiotics from the rivers to the offshore waters

Fig. 2 demonstrates the distribution of antibiotics in the rivers
discharging to sea, coast and offshore in some bays of the BS and the
YS. As thisfigure shown, the antibiotic contents decreased obviously
in the followingorder in the three baysof theBS: rivers> coast>bay
mouth. The contents also decreased further in the BHS. In the bays of
YS, the orderwas same: rivers> coast>offshore. The similar feature
was also found from the sites near the STPs towards the outside of
the shelter in theVictorHarbor (Minhet al., 2009). Thephenomenon
may clearly show the transport process of the antibiotics from the
rivers to the offshore areaswith the river inputs, sea currents and/or
diffusion. Moreover, they attenuated sharply on the transport
process because of the adsorption, dilution, photolysis, hydrolysis
and/or biodegradation. The attenuation can even be described
roughly by the exponential attenuationmodelC¼C0e�kLmentioned
in Section 2.5 (Supplementary Table S7), which also applied in the
coastal waters of the Bohai Bay and the Jiaozhou Bay (Zhang, 2011).
The attenuation rate coefficient (k values) indicated that ETM-H2O
(k: 0.052e0.069 km�1) was themost prone to attenuation, followed
by TMP (k: 0.041e0.051 km�1) and SMX (k: 0.02e0.06 km�1). The
Table 2
Aquatic toxicity data for the eight selected antibiotics and the most sensitive aquatic spe

Compound Non-target organism Toxicity data (mg L�1) Tox

TMP R. salina EC50 ¼ 16 Acu
SMX S. leopoliensis EC50 ¼ 0.027 Acu
SDM S. vacuolatus EC50 ¼ 19.52 Chr
SDZ S. capricornutum EC50 ¼ 2.2 Acu
ETM-H2O P. subcapitata EC50 ¼ 0.02 Chr
RTM P. subcapitata NOEC ¼ 0.01 Chr
CTM P. subcapitata EC50 ¼ 0.002 Chr
AZM Daphnia sp. EC50 > 120 Acu

NOEC: no observable effect concentration.
EC50: half maximal effective concentration.

a AF: Assessment factor.
b PNEC: Predicted no effect concentration.
same trend was observed in the coastal waters of the Bohai Bay and
Jiaozhou Bay (Zhang, 2011). The sorption to particles and sediments
(Li and Zhang, 2010; Tolls, 2001) and relatively shorter half-life (Xu,
2007) are two important mechanisms contributing to the relatively
high attenuation capacity for ETM-H2O. The lower k values of TMP
and SMX indicated that the two antibiotics were more stable than
ETM-H2O on the one hand. On the other hand, the use of TMP and
SMX in the mariculture may be another reason for their lower k
values. However, the k values in this study were obviously lower
than those in the coastal waters of the Bohai Bay and Jiaozhou Bay,
which may demonstrate that these antibiotics attenuate slowly at
trace concentrations and/or in the offshore environment because of
their different physico-chemical and biological conditions.

3.4. Risk assessment

Given that some of the antibiotics occurred widely in the BS and
YS, although at very low levels in the offshore areas, do they pose an
ecological risk to aquatic organisms? The potential environmental
risks of the detected antibiotics were assessed on the basis of the
risk quotients (RQs), according to the European technical guidance
document on risk assessment (TGD) (EC, 2003). The RQ value can be
calculated through the predicted environmental concentration
(PEC) or measured environmental concentration (MEC) divided by
the predicted no-effect concentration (PNEC). According to the
TGD, when only short-term/acute toxicity data EC50/LC50 are
available, the calculation of PNEC is obtained from the EC50/LC50
divided by an assessment factor of 1000. Once the long-term/
chronic NOEC values for one, two or three trophic levels are avail-
able, an assessment factor of 100, 50 or 10 is used (EC, 2003). In
some studies, however, an assessment factor of 1000 was used for
the long-term/chronic EC50/LC50 values, although the assessment
factor reduces the degree of uncertainty in the extrapolation from
the test data on a limited number of species compared with the real
environment (Isidori et al., 2005). In this study, the acute or chronic
toxicity data of the selected antibiotics on non-target organisms
were collected from the literature and are shown in Supplementary
Tables S8eS10. The PNEC values were also calculated based on the
toxicity data and are shown in Table 2. Additionally, the RQ for each
detected antibiotic was calculated using the MEC in the surface
water of the studied area and the PNEC values shown in Table 2
(Fig. 3).

To better elucidate the risk levels, the ratios were classified into
three risk levels: 0.01e0.1, low risk; 0.1e1, medium risk; and >1,
high risk (Hernando et al., 2006). Three antibiotics, SMX, ETM-H2O
and CTM, posed at least a low risk to aquatic organisms both in the
BS and YS (Fig. 3). All three of these antibiotics could pose as
a medium risk to the relevant sensitive aquatic organisms (Syn-
echococcus leopoliensis, Pseudokirchneriella subcapitata and Pseu-
dokirchneriella subcapitata, respectively) in the BS. The proportions
cies.

icity AFa PNECb (ng L�1) Reference

te 1000 16,000 (Lutzhoft et al., 1999)
te 1000 27 (Ferrari et al., 2004)
onic 1000 19,520 (Bialk-Bielinska et al., 2011)
te 1000 2200 (Eguchi et al., 2004)
onic 1000 20 (Isidori et al., 2005)
onic 100 100 (Yang et al., 2008)
onic 1000 2 (Isidori et al., 2005)
te 1000 >120,000 (FDA-CDER, 1996)
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Fig. 3. Boxplots for the calculated risk quotients (RQs) for the eight antibiotics detected in the Bohai Sea and the Yellow Sea. The abbreviation ETM indicates dehydration
erythromycin.
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of the samples causing medium risk by SMX, ETM-H2O and CTM in
the BS were 19%, 11% and 11%, respectively. These samples were
found mainly in the LZM and YRE (Supplementary Fig. S6). In the
YS, however, only one antibiotic, ETM-H2O, posed a medium risk to
the aquatic organism in the two sites near the YZE (Supplementary
Fig. S6). In most of the sampling sites of YS, the three antibiotics
posed a low risk. The proportions were 69%, 63% and 97% for SMX,
ETM-H2O and CTM, respectively. It should be noted that the CTM
levels in all the YS samples were below the LOQ or not detected.
CTM levels below the LOQ had RQs between 0.01 and 0.1 when
½ LOQ was used to calculate the RQ. Therefore, the CTM in these
sites could pose a potential low risk to P. subcapitata. Spatially, the
antibiotics pose a higher risk in the sites near the coast relative to
the offshore sites. For example, for ETM-H2O and SMX, the sites
with RQs below 0.01 were mainly those sites furthest from the
coast, such as B09, H08, H09 and H10 (Supplementary Fig. S6).
Although their concentrations were not very high, SMX, ETM-H2O
and CTM in these study areas, especially the areas near the coast,
still showed relatively higher ecological risks to the relevant aquatic
organisms. Similar results were reported in Laizhou Bay of the BS
(Zhang et al., 2012b), Beibu Gulf of the South China Sea (Zheng et al.,
2012) and in the surface waters of Germany (Kummerer and
Henninger, 2003) and Korea (Lee et al., 2008). Thus, monitoring
the detection of antibiotics in our surface waters and regulating
their abuse is a worthwhile effort.

However, it should be noted that the risk assessment above has
some limitations, as we could not collect all the toxicity data and
the mixture toxicity of the compounds was not considered.
4. Conclusions

Eleven selected antibiotics belonging to three categories were
investigated in a wide range of offshore surface water from the BS
and the YS of China. Three antibiotics, ETM-H2O, SMX and TMP,
occurred widely in the offshore water of the two seas with the
concentrations of 0.10e16.7 ng L�1, although they were obviously
lower than those in the coastal water reported by the previous
studies. In terms of their regional distribution in the two seas,
higher concentrations were detected in the BS due to the poor
water exchange ability and the larger amount of sewage discharged
into the sea. Higher concentrations of macrolides mostly occurred
in the estuaries of the Yellow River and Yangtze River, indicating
that riverine inputs were the primary source of macrolides in the
seas. Inverse correlation can be found between salinity and the total
antibiotic concentrations in the two seas, suggesting that the input
of fresh water enriched the antibiotics in the marine environment.
Moreover, the exponential decrease of the antibiotic concentrations
from the rivers to the offshore areas also confirmed their transport
process from river to the ocean. Although these antibiotics atten-
uated exponentially on their transport process, they were detected
in the offshore area approximately 400 km away from the coast,
which indicated that they are sufficiently persistent in the seas. In
addition, although the concentrations in the offshore waters were
not very high, risk assessment based on the calculated risk quotient
(RQ) showed that SMX, ETM-H2O and CTM at most of sampling
sites can posemedium or low ecological risks (0.01< RQ< 1) to the
most sensitive aquatic organisms, such as Synechococcus leopo-
liensis and Pseudokirchneriella subcapitata.
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