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a b s t r a c t

Stochastic nonlinear state-space models (SSMs) are prototypical mathematical models in geoscience.

Estimating unknown parameters in nonlinear SSMs is an important issue for environmental modeling.

In this paper, we present two recently developed methods that are based on the sequential Monte Carlo

(SMC) method for parameter estimation in nonlinear SSMs. The first method, which belongs to classical

statistics, is the SMC-based maximum likelihood estimation. The second method, belonging to Bayesian

statistics, is Particle Markov Chain Monte Carlo (PMCMC). With a low-dimensional nonlinear SSM, the

implementations of the two methods are demonstrated. It is concluded that these SMC-based

parameter estimation methods are applicable to environmental modeling and geoscience.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few decades, more contemporary scientific meth-
ods have been adopted to conduct geoscience research (Zhao
et al., 2009). For example, the revolution in high-performance
computing and observing technologies allows mathematical
models to describe the dynamic processes of the Earth system
and the discovery of underlying mechanisms (Evensen, 2007).
Given the complex natures of natural processes and the Earth
System, mathematical models in geoscience are usually nonlinear
with complex dynamical behaviors (Zhao et al., 2009). Because
most mathematical models cannot be analyzed theoretically,
numerical simulation models, which are discretized mathemati-
cal models, are usually used to find approximate solutions for
geoscience problems. Stochastic elements also play a role in the
Earth system, and these uncertainties are referred to as system
noises. Moreover, measurements for state variables of mathema-
tical models in geoscience are not free of errors. Therefore, system
identification is a key issue for environmental modeling in
geoscience research (Berliner et al., 2003; Wikle et al., 2003;
Hansen and Penland, 2007).

Simultaneously considering the nonlinearity and uncertainty
of Earth system processes, many discretized mathematical mod-
els in geoscience can be summarized as nonlinear state-space
models (SSMs). SSMs, also known statistically as a hidden Markov
ll rights reserved.
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models, provide a general framework for combining dynamic
processes, system noise and measurement errors. A generic SSM
consists of a state evolution model and an observation model,
which can be expressed as the following:

xtþ1 ¼ f ðxt ,vtÞ ð1Þ

yt ¼ hðxt ,ntÞ ð2Þ

where t is the time index, xt is the state vector, and yt is the
measurement vector. vt and nt are independent and identically
distributed random vectors representing the system noise and
measurement error, respectively. When the model structure is
well understood and the parameters are known, the main task of
system identification is to estimate the ‘‘true’’ state variables xt

hiding behind the noisy observations yt. State estimation, also
known as data assimilation, is a classical research topic in
geoscience. During the past few decades, various approaches to
data assimilation have been developed (Kalman, 1960; Daley,
1991; Gordon et al., 1993; Evensen, 1994). The Bayesian paradigm
provides a coherent probabilistic approach for data assimilation;
however, the integration of Bayesian approaches into data assim-
ilation is still in its infancy (Dowd, 2007; Wikle and Berliner,
2007). High-performance computing makes it possible to use the
methods of computational statistics, especially the Monte Carlo
method, to perform data assimilation. In the context of the hidden
Markov model, the state transition density pðxtþ19xtÞ and obser-
vation density pðyt9xtÞ can be derived from Eqs. (1) and (2),
respectively. This probabilistic framework provides the most
complete and general solution to the state estimation problems.
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From a Bayesian perspective, the aim of state estimation is to
infer the probability function of the state variable xt given the
measurement sequence y1:t ¼ fy1,y2, . . . ,ytg. It is worthwhile to
note that many traditional data assimilation methods can be
unified within a Bayesian framework (Wikle and Berliner, 2007).

In most geoscience models, there are a few parameters lacking
a priori information; thus, it is necessary to estimate model states
and unknown parameters simultaneously. However, compared
with state estimation, parameter estimation is an important
matter as model dynamics are usually sensitive to model para-
meters (Liu and West, 2001). In this study, we are concerned with
estimating the static parameters of nonlinear SSMs. For the
problem of parameter estimation, there exists a significant
difference between classical and Bayesian statistics. Classical
methods, sometimes referred to as frequentist methods in statis-
tical literature, treat parameters as fixed, unknown constants. In
this case, parameter estimation is based on the maximum like-
lihood method. However, maximum likelihood functions are
difficult to construct and compute for a nonlinear non-Gaussian
SSM (Poyiadjis et al., 2005). Maximum likelihood estimation in
nonlinear SSM still remains an open problem until sequential
Monte Carlo (SMC) is introduced to construct the maximum
likelihood function (Poyiadjis et al., 2005; Wills et al., 2008).
Bayesian methods treat parameters as random variables with
prior distributions, and parameter estimation is implemented by
deriving the posterior distributions. However, deriving the analy-
tical expression of the posterior distributions is neither possible
nor necessary (Andrieu et al., 2010). Recent research indicates
that the SMC method also plays a very important role in Bayesian
parameter estimation of nonlinear SSMs (Andrieu et al., 2010). In
this paper, two recently developed batch parameter estimation
methods, also known as off-line parameter estimation methods,
are presented. The first method is referred to as the SMC-based
maximum likelihood estimation because the output of SMC is
used to compute the likelihood function. The second method
involves the use of the Markov Chain Monte Carlo (MCMC)
technique to implement a Bayesian inference of unknown para-
meters. In constructing the Markov Chain, SMC is also used. So the
second method is referred to as Particle Markov Chain Monte
Carlo (PMCMC). The basic ideas of these two methods belong to
classical and Bayesian statistics, respectively.

The rest of this paper is organized as follows. In Section 2, we
first formulate the problem of Bayesian inference in SSMs and
introduce the SMC method. Then, a SMC-based maximum likelihood
estimation method is presented. The basic idea and algorithms of
PMCMC for parameter estimation are also described. Section 3
provides a numerical illustration of parameter estimation in a low-
dimensional nonlinear SSMs using the two methods introduced in
Section 2. Finally, we summarize this study in Section 4.
2. Methods

2.1. Bayesian inference in state-space model

For the Bayesian inference in SSM, the state variables are
denoted as x1:T9fx1,x2, . . . ,xTg and the measurements as
y1:T9fy1,y2, . . . ,yT g, where T indicates the length of the period of
interest of the SSMs. Given the observations y1:T , simply applying
Bayes’ rule yields the following:

pðx1:T9y1:T Þ ¼
pðy1:T9x1:T Þpðx1:T Þ

pðy1:T Þ

ppðy1:T9x1:T Þpðx1:T Þ ð3Þ

To explicitly distinguish the problem of state estimation and
parameter estimation, we use two probability density functions
(pdf), pyð�Þ and pðy,�Þ, corresponding to cases whose parameters
are known and unknown. First, applying a Markov assumption to
the prior pdf pyðx1:T Þ results in

pyðx1:T Þ ¼ pyðx1Þ
YT

t ¼ 2

pyðxt9xt�1Þ ð4Þ

where pyðxt9xt�1Þ is the evolution distribution. Another critical
assumption is that the observations are independent given that
the true model states are known. Then, the likelihood function is

pyðy1:T9x1:T Þ ¼
YT

t ¼ 1

pyðyt9xtÞ ð5Þ

Combining Eqs. (4) and (5), the posterior pdf of states becomes

pyðx1:T9y1:T Þppyðx1Þ
YT

t ¼ 2

pyðxt9xt�1Þ
YT

t ¼ 1

pyðyt9xtÞ ð6Þ

If the parameter y is unknown, we ascribe a prior density pðyÞ to
y; then we have

pðy,x1:T9y1:T ÞppðyÞpyðx1Þ
YT

t ¼ 2

pyðxt9xt�1Þ
YT

t ¼ 1

pyðyt9xtÞ ð7Þ

Eqs. (6)–(7) provide the mathematical basis for state and para-
meter estimation in SSMs respectively. In this study, the method
for state estimation is SMC, while the problem of parameter
estimation is solved by using SMC-based maximum likelihood
estimation method and the PMCMC method.

2.2. Sequential Monte Carlo method

For non-linear non-Gaussian models, deriving the analytical
expressions of pyðx1:T9y1:T Þ is nearly impossible, making Bayesian
inference difficult. It is therefore necessary to resort to approx-
imations. A discrete weighted approximation to the true posterior
pdf pyðx1:T9y1:T Þ is

pyðx1:T9y1:T Þ �
XN

i ¼ 1

oi
Tdðx1:T�xi

1:T Þ ð8Þ

where fxi
1:T ,oi

T g
N
i ¼ 1 are referred to as support points and asso-

ciated weights (Arulampalam et al., 2002). dð�Þ is the Dirac delta
function.

Using the SMC method, the approximation of pyðx1:t9y1:tÞ can
be obtained sequentially (Doucet et al., 2001). At each time step,
one has samples of pyðx1:t�19y1:t�1Þ and wants to approximate
pyðx1:t9y1:tÞ with a new set of samples. From Eqs. (3) and (6), it is
easy to check that

pyðx1:t9y1:tÞ ¼ pyðx1:t�19y1:t�1Þ
pyðxt9xt�1Þpyðyt9xtÞ

pyðyt9y1:t�1Þ

ppyðx1:t�19y1:t�1Þpyðxt9xt�1Þpyðyt9xtÞ ð9Þ

Assuming the approximate samples fxi
1:t�1g

N
i ¼ 1 of pyðx1:t�19y1:t�1Þ

are available at time t, then we can draw samples fxi
tg

N
i ¼ 1 from the

proposal density qyð�9yt ,x
i
1:t�1Þ. The importance weight of xi

t is
defined as

oi
t ¼

pyðx
i
t9x

i
t�1Þpyðyt9x

i
tÞ

qyð�9yt ,x
i
1:t�1Þ

If only a filtered estimate pyðxt9y1:tÞ is required at each time step, a
simple importance density qyð�9yt ,x

i
t�1Þ can be used. Then, the

posterior pdf of xt can be updated without calculating the pdf of
all other states x1:t�1. This sequential updating algorithm is
referred to as a particle filter. Then the output of the SMC
algorithm is filtered particles fxi

t ,oi
tg

N
i ¼ 1 or fxi

1:t ,oi
tg

N
i ¼ 1 . In

practice, normalized weights ~o i
t ¼oi

t=
P

oj
t are more commonly

used in many variants of particle filter.
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The byproduct of filtering is the estimate of marginal like-
lihoods pyðy1:tÞ. From Eq. (9), we have

pyðyt9y1:t�1Þ ¼

Z
pyðxt9xt�1Þpyðyt9xtÞpyðx1:t�19y1:t�1Þ dx1:t

¼

Z
pyðxt9xt�1Þpyðyt9xtÞ

qyð�9yt ,x
i
t�1Þ

qyð�9yt ,x
i
t�1Þpyðx1:t�19y1:t�1Þ dx1:t

¼

Z
oi

tqyð�9yt ,x
i
t�1Þpyðx1:t�19y1:t�1Þ dx1:t ð10Þ

Then, the estimate of pyðyt9y1:t�1Þ becomes

p̂yðyt9y1:t�1Þ :¼
1

N

XN

i ¼ 1

oi
t ð11Þ

and

p̂yðy1Þ :¼
1

N

XN

i ¼ 1

oi
1 ð12Þ

Multiplying the above estimates yields

p̂yðy1:T Þ ¼ p̂yðy1Þ
YT

t ¼ 2

p̂yðyt9y1:t�1Þ ð13Þ

2.3. SMC-based maximum likelihood estimation

The problem of parameter estimation in nonlinear SSMs (Eqs.
(1) and (2)) using the maximum likelihood method can be stated
as the classical maximum log-likelihood problem

ŷ9arg max
y

LyðYÞ, LyðYÞ ¼ log pyðy1:T Þ ð14Þ

Eq. (13) already provides the estimate of marginal likelihood
p̂yðy1:T Þ; however, the log-likelihood function L̂yðYÞ is discontin-
uous with respect to y due to Monte Carlo variation (Kantas et al.,
2009). Given this variation, it is nearly impossible to use a
traditional iterative gradient-based search procedure to find the
optimal yn. Poyiadjis et al. (2005) proposed a new approach to
approximate the log-likelihood gradient, and then used a general
gradient-ascent algorithm to find the optimal yn. Their method
avoids the drawback of the increasing-variance of the general
method that approximates the derivative directly based on SMC
(Kantas et al., 2009).

In this study, we focus on an alternative method that applies the
Expectation–Maximization (EM) algorithm to solve the maximum
likelihood problem. The EM algorithm for parameter estimation in
nonlinear SSMs has been widely applied due to the asymptotic
consistency and efficiency of the resulting estimates (Chitralekha
et al., 2010). The EM algorithm includes two steps: (1) computing
the expectation and (2) the maximization step (Wills et al., 2008).

The first step is to compute the expectation (E-step)

Q ðy,ykÞ9
Z

LyðX,YÞpyk
ðX9YÞ dX ð15Þ

where yk is the current parameter estimate. Eq. (15) can be
viewed as marginalization of the missing data, X. It is convenient
to verify that (Wills et al., 2008)

Q ðy,ykÞ ¼

Z
log pyðx1Þpyk

ðx19y1:T Þ dx1

þ
XT�1

t ¼ 1

Z
log pyðxtþ19xtÞpyk

ðxtþ1,xt9y1:T Þ dxt:tþ1

þ
XT

t ¼ 1

Z
log pyðyt9xtÞpyk

ðxt9y1:T Þ dxt ð16Þ

where pyk
ðxt9y1:T Þ is the smoothed density. Given the current

estimate yk, we first apply SMC to generate filtered particles
fxðiÞt ,oðiÞt g

N
i ¼ 1. Next, we set xðiÞ

T9T
¼ xðiÞT and oðiÞ

T9T
¼oðiÞt , and then
generate smoothed particles fxðiÞ
t9T ,oðiÞ

t9Tg
N
i ¼ 1 ð1rtoTÞ based on

the following recursive rule:

pyðxtþ1,xt9y1:T Þ ¼ pyðxt9xtþ1,y1:T Þpyðxtþ19y1:T Þ

¼
pyðxtþ19xtÞ

pyðxtþ19y1:tÞ
pyðxt9y1:tÞpyðxtþ19y1:T Þ ð17Þ

The above procedure is referred to as particle smoothing. There are
also many algorithms to implement particle smoothing in prac-
tical applications, and two of them are used in the EM algorithm
(Doucet et al., 2000; Tanizaki, 2001).

With smoothed particles and normalized weights ~oðiÞ
t9T

, we
have

Q̂ ðy,ykÞ ¼
XN

i ¼ 1

~oðiÞ
19T log pyðx

ðiÞ
19T
Þþ

XT�1

t ¼ 1

XN

i ¼ 1

~oðiÞ
tþ19T log pyðx

ðiÞ
tþ19T

9xtÞ

þ
XT

t ¼ 1

XN

i ¼ 1

~oðiÞ
t9T

log pyðyt9x
ðiÞ
t9T
Þ ð18Þ

The second step of the EM algorithm is the maximization step
(maximizing Q̂ ðy,ykÞ with respect to y). First, we need to calculate
the gradient of Q̂ ðy,ykÞ

ryQ̂ ðy,ykÞ ¼
XN

i ¼ 1

~oðiÞ
19T

@ log pyðx
ðiÞ
19T
Þ

@y

þ
XT�1

t ¼ 1

XN

i ¼ 1

~oðiÞ
tþ19T

@ log pyðx
ðiÞ
tþ19T

9xtÞ

@y

þ
XT

t ¼ 1

XN

i ¼ 1

~oðiÞ
t9T

@ log pyðyt9x
ðiÞ
t9T
Þ

@y
ð19Þ

With ryQ̂ ðy,ykÞ, we can use a classical gradient-based searching
method, such as Quasi-Newton, to find ykþ19arg max yQ̂ ðy,ykÞ.
Iterating these two steps produces the estimate of the para-
meters. In this study, we mainly describe the major procedures;
and more details of this algorithm and its applications can be
found in references such as Wills et al. (2008), Gopaluni (2008),
Chitralekha et al. (2010) and Schön et al. (2011).

2.4. Particle Markov chain Monte Carlo

PMCMC originates from MCMC methods, which is a class of
approaches for computational Bayesian statistics (Andrieu et al.,
2010). The basic idea of an MCMC is to generate a Markov Chain
with a stationary distribution (target distribution) that cannot be
sampled directly (Metropolis et al., 1953; Hastings, 1970; Gilks
et al., 1996). For SSMs, the target distribution of a Bayesian
inference is pðx1:T ,y9y1:T Þ when the model parameters are
unknown. However, pðx1:T ,y9y1:T Þ cannot be sampled directly.
The key feature of PMCMC is using the approximations of
pyðx1:T9y1:T Þ produced by an SMC algorithm to construct the
Markov Chain with the target distribution (Andrieu et al., 2010).

The first algorithm of PMCMC presented in this study is a
particle marginal Metropolis-Hastings (PMMH) sampler, which is
derived from classical Metropolis–Hastings algorithm. In PMMH,
the Markov Chain of ðx1:T ,yÞ can be constructed by iterating the
following two steps: (1) generate a new sample ðx01:T ,y0Þ from the
proposal density qðð�,�Þ9ðx1:T ,yÞÞ; and (2) accept ðx01:T ,y0Þ as the next
state of the Markov Chain with the probability

min 1,
pðx01:T ,y09y1:T Þ

pðx1:T ,y9y1:T Þ

qððx1:T ,yÞ9ðx01:T ,y0ÞÞ
qððx01:T ,y0Þ9ðx1:T ,yÞÞ

( )
ð20Þ

In practice, y0 and x01:T are not updated simultaneously. Given
current ðx1:T ,yÞ, we first use a proposal qð�9yÞ to generate a new
sample y0, and then sample x01:T � py0 ð�9y1:T Þ. Now, the proposal



M. Gao, H. Zhang / Computers & Geosciences 44 (2012) 70–77 73
density becomes

qððx01:T ,y0Þ9ðx1:T ,yÞÞ ¼ qðy09yÞpy0 ðx
0
1:T9y1:T Þ ð21Þ

and the acceptance ratio is

pðx01:T ,y09y1:T Þ

pðx1:T ,y9y1:T Þ

qððx1:T ,yÞ9ðx01:T ,y0ÞÞ
qððx01:T ,y0Þ9ðx1:T ,yÞÞ

¼
qðy9y0Þ
qðy09yÞ

py0 ðy1:T Þ

pyðy1:T Þ

pðy0Þ
pðyÞ

ð22Þ

It is nearly impossible to sample exactly from pyðx1:T9y1:T Þ and to
compute the marginal likelihood pyðy1:T Þ and py0 ðy1:T Þ. However,
Eq. (8) indicates that pyðx1:T9y1:T Þ can be approximated using SMC
methods. At that point it is possible to obtain a new sample x01:T .
Moreover, approximations of the marginal likelihood pyðy1:T Þ and
py0 ðy1:T Þ are also available (Andrieu et al., 2010). With these
approximations, a Markov Chain can be constructed that is as
simple as the classical Metropolis–Hastings algorithm.

The second algorithm of the PMCMC is the particle Gibbs (PG)
sampler, which also targets pðx1:T ,y9y1:T Þ but does not update y
and x1:T jointly. The PG sampler is more complicated than the
classical Gibbs sampler because a conditional SMC algorithm is
used to generate the sample x1:T from pyðx1:T9y1:T Þ. A conditional
SMC algorithm is similar to standard SMC algorithm but is such
that a pre-specified particle ~x1:T with ancestral lineage is ensured
to survive all the resampling steps, while the other N�1 particles
are generated in the usual way. Then, the particles generated in
the next step are conditional on the current particle. In this study,
we merely introduce the PG algorithm but omit the conditional
SMC algorithm. Interested readers may refer to Andrieu et al.
(2010). The pseudocode of the PG algorithm is as follows:
(a)
 initialize the Markov Chain (i¼0) by setting yðiÞ, x1:T ðiÞ and its
ancestral lineage arbitrarily,
(b)
 set i¼ iþ1 and sample yðiÞ from pðy9x1:T ði�1Þ,y1:T Þ,

(c)
 run a conditional SMC algorithm targeting pyðiÞðx1:T9y1:T Þ con-

ditional on x1:T ði�1Þ with its ancestral lineage returning an
estimate p̂yðiÞðx1:T9y1:T Þ,
(d)
 sample x1:T ðiÞ from p̂yðiÞðx1:T9y1:T Þ and return its ancestral
lineage,
(e)
 iterate steps (b–d) M times and record the Markov Chain yðiÞ
and x1:T ðiÞ ði¼ 0;1, . . . ,MÞ.
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In practical applications, the convergence of the Markov Chain
should be checked to ensure that the samples drawn from the
Markov Chain are truly representative of the target distribution.
In general, a ‘‘burn-in’’ period is required and the samples in this
period are discarded. In practice, it is unnecessary to calculate the
length of the ‘‘burn-in’’ period if the total Markov Chain is
sufficiently long (Dowd, 2007). Although there are many methods
that can be used for convergence monitoring, one of the simplest
to understand and implement is the autocorrelation function
(ACF). The faster the ACF drops, the better the algorithm is. For
a Markov Chain generated by the PMMH algorithm, acceptance
rate is also a very simple indictor. A higher acceptance rate means
that the Markov Chain mixes better (Andrieu et al., 2010).
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Fig. 1. Evolution of the parameter values using SMC-based maximum likelihood

method (EM algorithm). From top to bottom: s2
1, s2

2 and s2
3. The true values

yn
¼ ð0:0262,0:008,0:003Þ are marked by the dotted lines.
3. Numerical illustrations

In this section, we choose a low-dimensional nonlinear dyna-
mical model to illustrate the capability of EM and PMCMC
approaches for parameter estimation. The low-dimensional non-
linear dynamical model is derived from the Van del Pol oscillator,
which is described by a second-order differential equation

d2x

dt2
�að1�x2Þ

dx

dt
þx¼ 0 ð23Þ
A first-order Euler discretization of the differential equation of the
Van del Pol oscillator yields

x1,tþ1 ¼ x1,tþhx2,t

x2,tþ1 ¼ x2,tþhað1�x2
1,tÞx2,t�hx1,t ð24Þ

where h is the step size. First, we assume that the Van del Pol
oscillator is driven by stochastic white noises with a zero mean
and a covariance matrix Q AR2�2. Moreover, for simplicity, we
assume that either x1,t or x2,t can be measured, and the measure-
ment error is in the form of additive white noise with a zero mean
and a covariance matrix R. Then, the stochastic Van del Pol
oscillator can be restated as a nonlinear SSM

xtþ1 ¼ f ðxtÞþwt

ytþ1 ¼ xtþvt ð25Þ

where wt �Nð0,Q Þ, vt �Nð0,RÞ, and xt ¼ ðx1,t ,x2,tÞ. Nð�,�Þ represents
the normal distribution. Let a¼ 1 and h¼0.1 so that the discrete-
time system without stochastic noise is stable. For simplicity we
assume that only x2,t can be observed. The noise covariance of wt

is a diagonal matrix, while the variance of vt is a scalar variable. In
this study, we set

Q ¼
s2

1 0

0 s2
2

 !
¼

0:0262 0

0 0:008

� �
, R¼ s2

3 ¼ 0:003 ð26Þ

With these parameters, we simulate the system (25) from an
arbitrary initial state x1;0 �Nð0,0:01Þ and x2;0 �Nð0,0:01Þ. System
(25) will iterate 1000 times, i.e., T¼1000. Since h is the step
length, estimating h is meaningless. Then, the interesting para-
meters that need to be estimated are a, s2

1, s2
2 and s2

3. Next, we
will use EM and PMCMC methods to estimate these four para-
meters conditional on the observed time series y1:T .

For the EM method, the major work is to compute the
approximations Q̂ ðy,ykÞ and ryQ̂ ðy,ykÞ. In this study, the state
variable is a vector ðx1,t ,x2,tÞ and it can be easily verified that

pyðxtþ19xtÞ ¼ pðx1,tþ19xtÞpðx2,tþ19xtÞ ð27Þ

and we have pðx1,tþ19xtÞ �Nðx1,tþhx2,t ,s2
1Þ, pðx2,tþ19xtÞ �Nðx2,tþ

hað1�x2
1,tÞx2,t�hx1,t ,s2

2Þ and pðyt9xtÞ �Nðx2,t ,s2
3Þ. With these nor-

mal distributions, the numerical approximations Q̂ ðy,ykÞ and
ryQ̂ ðy,ykÞ can be directly computed given the smoothed particles
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and their associated weights. The number of particles is chosen as
N¼500. The optimization method is the standard Quasi-Newton
method. In Fig. 1, the evolution of parameters with respect to EM
iterations are presented. We also replicate this numerical experi-
ment for 100 times with different initial conditions, and the
results are summarized in Table 1. It is clear that the EM method
gives a satisfactory estimate.

To test the PMCMC methods, we use the same synthetic data
and initial setting. Moreover, we specify the prior distribution for
Table 1
True and estimated parameter values for system (25) using the SMC-based

maximum likelihood method (EM algorithm). The mean value and standard

deviations are shown for the estimates based on 100 Monte Carlo runs. In each

Monte Carlo simulation, the estimated parameter values is the average value of y
in the last 20 iterations.

Parameters True values Estimated

a 1 1.0270.037

s2
1

0.0262 0.02672.8�10�3

s2
2

0.008 0.00873.3�10�4

s2
3

0.003 0.003179.2�10�5
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Fig. 2. Histogram approximations of the posterior densities (diagonal plots) and sample

In the diagonal plots, the solid lines are the prior densities pðyÞ, and the dash-dotted

indicate the true values. The number of particles is 2000. (For interpretation of the refer

article.)
the unknown parameters a�Uð0:5,1:5Þ, s2
1 � IGð0:5,0:01Þ,

s2
2 � IGð0:5,0:002Þ and s2

3 � IGð0:5,0:001Þ. Uðc,dÞ represents a con-
tinuous uniform distribution in interval ½c,d�, and IGða,bÞ is the
inverse Gamma distribution with shape parameter a and scale
parameter b. In the PMMH, we use a normal random-walk
proposal with a diagonal covariance matrix

qðy09yÞ �Nðy,CÞ ð28Þ

where y¼ ða,s2
1,s2

2,s2
3Þ represents the current parameter estimate.

The diagonal elements of C are ð10�3,10�5,10�6,10�6
Þ. As the

value parameters in this SSM must be positive, negative values
generated by the normal random-walk proposal are omitted. In
the PG algorithm, we first initialize yð0Þ using the prior distribu-
tion, and run SMC to obtain a sample x1:T ð0Þ from the particles
ensemble fxðiÞ1:T g

N
i ¼ 1. Then, we use the full-conditional distributions

to obtain samples of unknown parameters. The derivation of all
full-conditional distributions are shown in the Appendix, and we
list only the results here

pðs2
19�s

2
1,x1:T ,y1:T Þ � IG aþ

T�1

2
,bþS1

� �
ð29Þ
0.5 1 1.5
α

0 0.002 0.004 0.006
σ3

2

s (scatter plots) of model parameters based on the output of the PMMH algorithm.

lines indicate the true values of parameters. In the scatter plots, the red crosses

ences to color in this figure legend, the reader is referred to the web version of this
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pðs2
29�s

2
2,x1:T ,y1:T Þ � IG aþ

T�1

2
,bþS2

� �
ð30Þ

pðs2
39�s

2
3,x1:T ,y1:T Þ � IG aþ

T

2
,bþS3

� �
ð31Þ

pða9�a,x1:T ,y1:T Þ �N½c,d�

PT�1
t ¼ 1 AtBtPT�1

t ¼ 1 A2
t

,
s2

2PT�1
t ¼ 1 A2

t

 !
ð32Þ

where N½c,d�ð�,�Þ is a truncated normal distribution within interval ½c,d�
and the minus before a parameter indicates taking out this parameter
from the parameter set y. Other terms in Eqs. (29)–(32) are

S1 ¼
1

2

XT�1

t ¼ 1

ðx1,tþ1�x1,t�hx2,tÞ
2

S2 ¼
1

2

XT�1

t ¼ 1

ðx2,tþ1�x2,t�ahð1�x2
1,tÞx2,tþhx1,tÞ

2

S3 ¼
1

2

XT

t ¼ 1

ðyt�x2,tÞ
2

At ¼ hð1�x2
1,tÞx2,t

Bt ¼ x2,tþ1�x2,t�hx1,t
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Fig. 3. Histogram approximations of the posterior densities (diagonal plots) and sample

symbols and parameter setting are the same as that in Fig. 2.
The PG algorithm will be implemented using these full-conditional
distributions. Both the PMMH algorithm and the PG algorithm are
run for 25,000 steps, and the first 5000 steps are discarded as burn-in
steps. Andrieu et al. (2010) recommend to choose N in the same order
as T. In this study, the numbers of particles are chosen as N¼1000,
1500, 2000, 3000 in the SMC and the conditional SMC algorithms.

The marginal posterior distributions of the four parameters
based on the Markov Chain (the final 5000 values) generated by
the PMMH and the PG algorithms are shown in Figs. 2 and 3,
respectively. Obviously, the posterior densities are different from the
prior ones but close to the true values. For the PMMH, the overall
acceptance rates are 0.29, 0.37, 0.39, and 0.40 when N¼1000, 1500,
2000, 3000, respectively. Additionally, we present the ACFs of the
Markov Chain of parameter a in Fig. 4. It is also verified that the
performance improves as N increases. Moreover, we find that the PG
algorithm performs better than the PMMH algorithm.
4. Conclusion

This paper presents two recently developed methods for
parameter estimation in nonlinear state-space models. Estimating
model parameters in nonlinear SSMs is a difficult task. Due to
measurement errors, the true state variables can only be treated
as missing values in constructing the likelihood functions. In
0.5 1 1.5
α

.03 0 0.005 0.01
σ3

2

s (scatter plots) of model parameters based on the output of the PG algorithm. The
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Fig. 4. Autocorrelation functions (ACFs) of a. The left panel corresponds to the PMMH algorithm, and the right panel corresponds to PG algorithm. Symbols: N¼1000,‘� � �’;

N¼1500, ‘þ ’; N¼2000, ‘n’; N¼3000, ‘&’.
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other words, parameter estimation in SSMs relies on state
estimation. SMC is a standard approach to state estimation in
nonlinear SSMs, and further provides the basis for parameter
estimation. The two methods presented in this paper both rely
on SMC. The first method uses SMC to compute the approxima-
tion of maximum likelihood, and then uses the Expectation–
Maximization algorithm to find the optimal values in the global
parameter space (Wills et al., 2008; Schön et al., 2011). The
second method is a Bayesian inference that uses MCMC to
approximate the posterior density of unknown parameters.
Because SMC is used to build an efficient high-dimensional
proposal distribution in each MCMC step, this method is referred
to as particle Markov Chain Monte Carlo (Andrieu et al., 2010).
The performance of these two methods for parameter estimation
was examined with the stochastic Van del Pol oscillator. The
results indicate that the two methods both perform well,
although the underlying statistical framework uses frequentist
and Bayesian methods. Because SMC is needed in each iteration,
the computational expense of these two methods for high-
dimensional state-space model in geoscience remains a limiting
factor. Developing parallel simulation method on the utility of
modern computing architectures, such as graphics processing
units, is necessary.
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Appendix A. Derivation of Eqs. (29)–(32)

We denote the state variables and process noise as vectors
xt ¼ ðx1,t ,x2,tÞ and wt ¼ ðw1,t ,w2,tÞ, then rewrite system (25) as

x1,tþ1 ¼ x1,tþhx2,tþw1,t ðA:1Þ
x2,tþ1 ¼ x2,tþahð1�x2
1,tÞx2,t�hx1,tþw2,t ðA:2Þ

yt ¼ x2,tþvt ðA:3Þ

where w1,t �Nð0,s2
1Þ, w2,t �Nð0,s2

2Þ and vt �Nð0,s2
3Þ. The prior

distribution assigned to s2
i ði¼ 1;2,3Þ is inverse gamma distribu-

tion IGða,bÞ, then we have

pðs2
i Þpðs

2
i Þ
�a�1 exp �

b

s2
i

 !
: ðA:4Þ

We first show how the posterior distribution of s2
1 is derived,

pðs2
19�s

2
1,x1:T ,y1:T Þ ¼ pðs2

19x1:T Þppðs2
1Þpðx1:T9s2

1Þ

¼ pðs2
1Þpðx1Þ

YT�1

t ¼ 1

pðxtþ19xt ,s2
1Þ

¼ pðs2
1Þpðx1Þ

YT�1

t ¼ 1

1ffiffiffiffiffiffi
2p
p

s1

exp �
ðx1,tþ1�x1,t�hx2,tÞ

2

2s2
1

( )

pðs2
1Þ
�a�1 exp �

b

s2
1

 !
s�ðT�1Þ

1 exp �
S1

s2
1

 !

pðs2
1Þ
�ðaþ T�1

2 þ1Þ exp �
bþS1

s2
1

 !
ðA:5Þ

where S1 ¼
1
2

PT�1
t ¼ 1ðx1,tþ1�x1,t�hx2,tÞ

2. From Eq. (A.5), we find
that the posterior distribution of s2

1 is an inverse gamma dis-
tribution,

pðs2
19�s

2
1,x1:T ,y1:T Þ � IG aþ

T�1

2
,bþS1

� �
: ðA:6Þ

Similarly, we can derive the posterior distribution of s2
2 and s2

3.

pðs2
29�s

2
1,x1:T ,y1:T Þ � IG aþ

T�1

2
,bþS2

� �
ðA:7Þ

pðs2
39�s

2
1,x1:T ,y1:T Þ � IG aþ

T

2
,bþS3

� �
ðA:8Þ

where S2 ¼
1
2

PT�1
t ¼ 1ðx2,tþ1�x2,t�ahð1�x2

1,tÞx2,tþhx1,tÞ
2 and S3 ¼

1
2PT

t ¼ 1ðyt�x2,tÞ
2.

The posterior distribution of a is also simple to obtain. We
have assumed that the prior distribution of a is a continuous
uniform distribution Uðc,dÞ, and the posterior distribution is

pða9�a,x1:T ,y1:T ÞppðaÞpyðx1:T ,y1:T Þ



M. Gao, H. Zhang / Computers & Geosciences 44 (2012) 70–77 77
¼ pðaÞpðx1Þ
YT�1

t ¼ 1

pyðxtþ19xtÞ
YT

t ¼ 1

pyðyt9xtÞ

¼ pðaÞpðx1Þ
YT�1

t ¼ 1

pyðx1,tþ19xtÞpyðx2,tþ19xtÞ
YT

t ¼ 1

pyðyt9xtÞ

ppðaÞ
YT�1

t ¼ 1

pyðx2,tþ19xtÞ

ppðaÞðs2
2Þ
�ðT�1Þ exp �

1

2s2
2

XT�1

t ¼ 1

½Ata�Bt�
2

( )
ðA:9Þ

where At ¼ hð1�x2
1,tÞx2,t and Bt ¼ x2,tþ1�x2,t�hx1,t . A simple math-

ematical manipulation further gives

pða9�a,x1:T ,y1:T ÞppðaÞ exp �

PT�1
t ¼ 1 A2

t

2s2
2

a�
PT�1

t ¼ 1 AtBtPT�1
t ¼ 1 A2

t

" #2
8<
:

9=
;:
ðA:10Þ

Then, we have

pða9�a,x1:T ,y1:T Þ �N½c,d�

PT�1
t ¼ 1 AtBtPT�1

t ¼ 1 A2
t

,
s2

2PT�1
t ¼ 1 A2

t

 !
ðA:11Þ

where N½c,d�ð�,�Þ is a truncated normal distribution.
Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org.10.1016/j.cageo.2012.03.
013.
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