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Abstract—We present an efficient algorithm for retrieving
the ocean-surface wind vector from C-band Radar Satellite
RADARSAT-2 fully polarimetric synthetic aperture radar (SAR)
measurements based upon the copolarized geophysical model
function, i.e., CMOD5.N, and the cross-polarized ocean backscat-
ter model, i.e., C-2PO. The analysis of fine quad-polarization mode
single-look complex SAR data and collocated in situ moored buoy
observations reveals that the polarimetric correlation coefficient
between co- and cross-polarization channels has odd symmetry
with respect to the wind direction. This characteristic is different
from the feature that normalized radar cross sections for quad-
polarization have even symmetry regarding the wind direction. We
first use the C-2PO model to directly retrieve wind speeds with-
out any external wind-direction and radar-incidence-angle inputs.
Subsequently, the retrieved wind speeds, along with incidence
angles and CMOD5.N, are employed to invert the wind direction,
still with ambiguities. The odd-symmetry property is then applied
to remove the wind direction ambiguities. Thus, it is shown that
fully polarimetric SAR measurements provide complementary
directional information for the ocean-surface wind fields. This
method has the potential to improve wind vector retrievals from
space.

Index Terms—Fully polarimetric SAR, ocean-surface wind
fields, polarimetric correlation coefficient, SAR polarimetric odd-
symmetry, simultaneous wind speed and direction SAR retrievals.
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I. INTRODUCTION

A CCURATE observations of surface winds over the oceans
are required for a wide range of meteorological and

oceanographic applications, since wind drives surface waves,
provides initial conditions and verification data for numeri-
cal weather prediction, and serves as a basis for calculations
of surface fluxes of heat, moisture, and momentum. Ocean
surface winds from scatterometer observations can improve
numerical weather predication (NWP) model forecasts [1], [2].
While spaceborne scatterometry is useful and important for
wind vector measurements on a global scale, the contamination
from land reflections degrades scatterometer measurements in
coastal regions [3]. In addition, the coarse resolution (25 km)
of scatterometers also limits its applicability to investigate the
variability of wind speed and wind direction on small scales.

Satellite synthetic aperture radar (SAR) sensors constitute
an active microwave system that can provide subkilometer
resolution ocean-surface wind data with large swath coverage
(up to 500 km) and high resolution (25 or 50 m). Ocean
surface wind retrieval from conventional single-polarization
SAR backscatter measurements is achieved by using various
geophysical model functions (GMFs) for X-, C-, and L-band
SARs. Specifically for C-band, the commonly used GMFs
are CMOD4 [4], CMOD_IFR2 [5], and CMOD5.N [6]. They
are derived based on observations from spaceborne microwave
scatterometers, which relate the VV-polarized normalized radar
cross section (NRCS) of the ocean surface to the equiva-
lent neutral wind speed at a 10-m height, the wind direc-
tion versus the antenna look direction, and the radar inci-
dence angle. Over the last decade, single-frequency (C- or
L-band) and single-polarization (VV or HH) SAR systems,
e.g., Environmental Satellite (ENVISAT) Advanced Synthetic
Aperture Radar (ASAR), Advanced Land Observing Satellite
Phased Array type L-band Synthetic Aperture Radar, Radar
Satellite RADARSAT-1, and RADARSAT-2, have been used
to retrieve ocean-surface wind speeds with various GMFs and
polarization-ratio models [7]–[12]. Since the two unknown
parameters, i.e., wind speed and direction, simultaneously exist
in the GMF, one must inevitably obtain the wind direction
from external sources, prior to wind speed retrieval. Moreover,
the copolarized backscatter is strongly dependent on the wind
direction, and therefore, uncertainties in the wind direction can
lead to significant errors in wind speed retrievals.

Generally, there are three approaches to obtain wind direc-
tions. The first method directly extracts wind directions from
wind-induced streaks visible in the SAR image using fast
Fourier transforms, local gradients, and wavelet analysis tech-
niques [13]–[15]. Although this approach is often successful,
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there are times when the windrow signature is weak or when
there are other features in SAR images, such as oceanic or
atmospheric internal waves, which can also produce linear
features on the same spatial scale as that of wind rows. These
nonwind-streak features are not generally aligned with the local
wind vectors and can contaminate wind direction retrievals
from the SAR image. In addition, the 180◦ directional ambigui-
ties that exist in retrieved wind directions have to be removed by
using wind shadows, weather charts, atmospheric models, buoy
measurements, or ancillary data [7], [8]. The second method
utilizes the wind direction estimates from global operational
NWP models. This method has the following disadvantages:
1) NWP-model spatial resolutions are generally far less than
those of the SAR images; and 2) NWP models tend not to in-
clude all aspects of marine atmospheric boundary layer physics
necessary to resolve the fine-scale features observed by SAR
[16]. The third method uses wind direction measurements from
other operational sensors, i.e., scatterometer. As previously
mentioned, scatterometer measurements suffer from accuracy
loss in coastal regions [17]. The limitations in obtaining wind
directions from these external sources are the main challenges
for SAR wind speed retrieval.

Recently, C-band cross-polarized ocean backscatter has been
documented as being insensitive to wind directions and radar
incidence angles, and can be thus used to directly retrieve wind
speeds [12], [18], [19]. This characteristic provides a poten-
tial opportunity to retrieve wind vectors with simultaneously
acquired co- and cross-polarized SAR measurements.

In this paper, we present the result that the polarimetric
correlation coefficient (PCC) between the VV and VH channels
has odd symmetry with respect to wind direction. This charac-
teristic is different from the NRCS values in quad-polarization
(HH, HV, VH and VV), which have even symmetry with respect
to wind direction. The odd symmetry property can be used to
resolve the wind direction ambiguity. Following this rationale,
we propose an efficient algorithm to simultaneously retrieve
absolute wind speed and direction using C-band RADARSAT-2
fully polarimetric SAR data. In Section II, we describe the
wind vector retrieval algorithm, followed by the wind direction
ambiguity removal method in Section III. Discussions and
conclusions are given in Section IV.

II. WIND VECTOR RETRIEVAL ALGORITHM

A. Wind Speed Retrieval

As previously mentioned, the ocean backscatter in co- and
cross-polarizations are quite different; the latter is indepen-
dent of wind direction and radar incidence angle but has a
linear relationship with respect to wind speed. A C-band cross-
polarized ocean backscatter model (C-2PO) relating NRCS in
VH polarization σo

VH to the equivalent neutral wind speed at a
10-m height U10 was developed using RADARSAT-2 fine quad-
polarization mode SAR data and collocated buoy observations,
via a nonlinear least-square method [18], [20]. The C-2PO
model is

σo
VH = 0.580 ∗ U10 − 35.652 (1)

where the units of σo
VH and U10 are in decibels and meters

per second, respectively. Compared with a conventional copo-

Fig. 1. (Black dots) All four relative wind direction solutions φ, π − φ, −φ,
and −(π − φ) for the same NRCS in VV polarization (σo

VV) corresponding to
an assumed wind speed of 10 m/s and an incidence angle of 45◦, calculated by
the CMOD5.N model. (Dashed line) Directional ambiguity of the model.

larized GMF, e.g., CMOD5.N [6], C-2PO is a straightforward
mapping of calibrated cross-polarized NRCS to wind speed
without a priori wind direction input. In comparisons with buoy
wind speeds, the C-2PO model achieved a root mean square
(RMS) error of 1.63 m/s, whereas CMOD5.N resulted in an
RMS difference of 1.88 m/s [20]. It should be noted that C-2PO
permits wind speed estimations only from observed C-band
cross-polarized ocean backscatter that is sufficiently above the
instrument noise floor (the noise-equivalent sigma naught or
σo
NE), e.g., above 10 m/s for σo

NE of −30 dB or above 20 m/s
for σo

NE of −25 dB [18]. According to RADARSAT-2 product
documentation, the radiometric calibration error is less than
1 dB and σo

NE, for fine quad-polarization SAR data, i.e.,
−36.5± 3 dB [21].

B. Wind Direction Retrieval

Using wind speeds derived from the C-2PO model as in-
put to the C-band copolarized GMF, i.e., CMOD5.N [6], we
retrieve wind directions with ambiguities. CMOD5.N relates
VV-polarized backscatter as sensed by the spaceborne ERS-2
and ASCAT scatterometers, to the equivalent neutral ocean
vector wind at a 10-m height and scatterometer incidence angle.
It takes the general form, i.e.,

σo
VV(θ, U10, φ) = A0(θ, U10) [1 +A1(θ, U10) cosφ

+A2(θ, U10) cos(2φ)]
1.6 (2)

where θ, φ, and U10 are the incidence angle, the wind direction
versus the antenna look direction (relative wind direction), and
the wind speed, respectively. A0, A1, and A2 are coefficients,
which are dependent on the wind speed and the radar incidence
angle. Fig. 1 illustrates the relative wind direction φ dependence
of NRCS in VV polarization for ocean surfaces at a 45◦

incidence angle for 10-m/s wind speed. Fig. 1 also shows that
VV-polarized NRCS values estimated from CMOD5.N have
even symmetry with respect to the wind direction. For specific
NRCS values in VV polarization and given wind speeds and
incidence angles, there are four relative wind directions. If
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Fig. 2. Flowchart for the simultaneous wind speed and direction retrieval
algorithm.

we use φ to represent one direction, the other three possible
directions are π − φ, −φ, and −(π − φ).

In this paper, we propose a simultaneous wind speed and
wind direction retrieval algorithm using CMOD5.N and C-2PO,
the SAR-measured NRCS in VV and VH polarizations, and
the radar incidence angle. Fig. 2 shows the flowchart for this
wind vector retrieval method. The retrieved wind directions
have the directional ambiguities previously noted, which can
be resolved by using the different symmetric characteristics of
PCC between the VV and VH channels and the NRCS values in
quad-polarization. The former has odd symmetry with respect
to the wind direction, whereas the latter has even symmetry.
The details of removing the wind direction ambiguity solutions
with PCC will be described in Section III.

III. WIND DIRECTION AMBIGUITY REMOVAL

A. Data Set

RADARSAT-2 fine quad-polarization mode single-look
complex (SLC) SAR data are characterized by a nominal spatial
resolution of 5.4 m × 8.0 m in range and azimuth, respec-
tively. For each individual quad-polarization SAR image with
a specific beam mode, the pixel spacing in azimuth and range
directions is about 5 m, respectively. The nominal incidence
angles vary by about 1.5◦ across a swath of 25 km.

Before collocating quad-polarization SAR observations with
buoy measurements, we first examine the homogeneity of the
selected subsections of SAR images. It is well known that the
wind speed can be only retrieved from SAR data that are free
of sea-surface features not due to the local wind, e.g., sea ice
and slicks. To exclude SAR images that contain features not
associated with the local wind, a filter is applied. The filter
was developed to distinguish between homogeneous and in-
homogeneous SAR images and, furthermore, to retrieve ocean
wave spectra and wind speed fields [22], [23]. This technique
uses tests involving the statistical properties of periodograms,
as commonly used for spectral estimations. According to the
standard theory, spectral densities estimated from a single
periodogram that are negative exponentially distributed have
the basic property that variance var(I) is equal the squared

mean intensity 〈I〉2 [24]. Thus, we apply formula CVAR =
var(I)/〈I〉2 to check the homogeneity of subsections of SAR
images of about 100 m × 100 m size. For a perfectly homo-
geneous image, the inhomogeneity parameter CVAR should
be 1. Therefore, in the following discussion, all SAR images
with an inhomogeneity parameter CVAR ≥ 1 were defined
as inhomogeneous. It should be mentioned that SAR images
containing mesoscale oceanic or atmospheric phenomena are
excluded from this analysis as inhomogeneous.

Subsequently, we make a 20 pixel × 20 pixel boxcar average
on the NRCS, in each polarization, so that the resampled pixel
spacing is 100 m. To analyze the symmetry property between
the PCC and the wind direction, we collected RADARSAT-2
fine quad-polarization mode SAR images from geographic
locations that are collocated with 52 in situ National Oceanic
and Atmospheric Administration (NOAA) National Data Buoy
Center (NDBC) buoys located in the Gulf of Alaska, East
and West coasts of the USA, and the Gulf of Mexico be-
tween December 2008 and May 2011. Each individual SAR
image includes one NDBC buoy. The buoys’ wind speeds and
directions are averaged over 8-min periods. Buoy measure-
ments also include hourly wave parameters (significant wave
height, wave period, and wave direction) and surface meteo-
rological parameters (air temperature, sea-surface temperature,
dew point temperature, and sea-surface pressure). All buoy-
measured wind speeds at different heights are converted to
10-m equivalent neutral wind conditions using the Tropical
Ocean and Global Atmosphere Response Experiment (TOGA
COARE) bulk flux algorithm (version 2.5) [25]. This algorithm
is structured so as to derive the wind profiles and the roughness
lengths using the buoy-measured values of air and sea-surface
temperatures, dew point, air pressure, and wind speed. The
buoy measurements and the RADARSAT-2 observations were
required to occur within a time difference of 30 min. This
matchup criterion resulted in a data set consisting of 1068
RADARSAT-2 observed NRCS (σo

HH, σo
HV, σo

VH, and σo
VV)

estimates in quad-polarization mode and polarimetric scattering
matrix elements (PSMEs) (SHH, SHV, SVH, and SVV), as well
as radar incidence angles, collocated with buoy-measured wind
speeds and wind directions. In this data set, the entire range
of incidence angles and wind speeds are between 20◦ and 49◦,
and 1 and 26 m/s, respectively. Wind directions range from 0◦

to 360◦.

B. Polarimetric Correlation Coefficient

Conventional SAR systems operate with a single fixed-
polarization antenna for both transmission and reception of
radio-frequency signals. In this way, a single scattering coef-
ficient, namely, backscatter amplitude (intensity), is measured
for a specific transmit-and-receive polarization combination.
A result of this implementation is that the scattered wave,
i.e., a vector quantity, is measured as a scalar quantity and
any additional information about the scattering process con-
tained in the polarization properties of the scattered signals
is lost [26]. On the contrary, fully polarimetric SAR mea-
sures the complex scattering matrix of a given medium with
quad-polarization and provides not only amplitude but also
phase information associated with the reflectivity of all the
scatterers contained in a resolution cell. The scattering matrix
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Fig. 3. RADARSAT-2 measured NRCS in VV and HH polarizations versus
relative wind direction. The average wind speed and incidence angle are 10 m/s
and 35◦, respectively.

in a linear horizontal- and vertical-polarization base can be
expressed as

S =

[
SHH SHV

SVH SVV

]
(3)

where SHV is the scattering element of horizontal-transmitting
and vertical-receiving polarization, and the other three ele-
ments are similarly defined. Each scattering matrix element
is a complex number with its amplitude and phase indicating
the strength of scattering signals and phase delay. The square
of the absolute magnitude of each scattering matrix element
represents the radar backscatter for each polarization. In ad-
dition to co- and cross-polarized backscatter measurements,
fully polarimetric SAR can also acquire the correlation between
different polarized backscatter measurements. The correlation
between VV and VH polarization channels is denoted by
PCC, i.e.,

ρVVVH =
〈SVV · S∗

VH〉√
〈|SVV|2〉 〈|SVH |2〉

. (4)

This is a complex number that indicates the degree of cor-
relation and relative phase angle (phase difference) of VV and
VH polarized backscatter signals.

To analyze the symmetric characteristics of PCC with respect
to wind direction, we first fixed the radar incidence angle
and the wind speed as 35◦ and 10 m/s and thus obtained a
small data set. Alternate examples, such as 25◦ and 15 m/s,
would give similar results. The data set consists of PSMEs
(SHH, SHV, SVH, and SVV) and NRCS (σo

HH, σo
HV, σo

VH,
and σo

VV) in quad-polarizations. Subsequently, we combine
collocated PSME with (4) to estimate PCC. Both NRCS in
co- and cross-polarizations are shown to have even symmetry
with respect to the wind direction in Figs. 3 and 4. We can
also observe the upwind-to-downwind asymmetry of the NRCS
that is induced by an additional nonpolarized contribution
associated with breaking waves, which was explained in the
literature using the composite Bragg model [27]. Figs. 5 and
6 show that the real and imaginary parts of PCC have odd
symmetry with respect to wind direction. This observed odd
symmetry of polarimetric active scattering, for satellite SAR,

Fig. 4. RADARSAT-2 measured NRCS in HV and VH polarization versus
relative wind direction. The average wind speed and incidence angle are 10 m/s
and 35◦, respectively.

Fig. 5. RADARSAT-2 measured real part of the PCC between VV and
VH channels versus relative wind direction. The average wind speed and
incidence angle are 10 m/s and 35◦, respectively.

Fig. 6. RADARSAT-2 measured imaginary part of the PCC between VV
and VH channels versus relative wind direction. The average wind speed and
incidence angle are 10 m/s and 35◦, respectively.

agrees with theoretical considerations from rigorous Maxwell
equation derivations [28], two-scale models [29], and other
earlier airborne polarimetric scatterometer observations [30],
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Fig. 7. C-band (a) HH-, (b) HV-, (c) VH-, and (d) VV-polarized SAR images off the U.S. East Coast from RADARSAT-2 fine quad-polarization
mode SLC SAR data acquired on May 12, 2010, at 22:56 UTC (grayscale colorbar denotes sigma-naught; in units of decibels). NDBC buoy (#41001,
34◦ 40′ 30′′N 72◦ 41′ 54′′ W) is collocated to the SAR image. RADARSAT-2 Data and Product MacDonald, Dettwiler, and Associates Ltd., All Rights
Reserved.abcd

[31]. The symmetry characteristic helps differentiate among the
ambiguities separated by 180◦.

We utilize PCC’s odd symmetry characteristic to derive
criteria to facilitate the selection of the relative wind di-
rection among the four relative wind direction solutions,
i.e., φ, π − φ, −φ, and −(π − φ). The criteria are as
follows:

If(PCC_Real<0& PCC_Imag>0) Then−180◦<Φ<−90◦

If(PCC_Real>0& PCC_Imag>0) Then − 90◦<Φ<0◦

If(PCC_Real<0& PCC_Imag<0) Then 0◦<Φ<90◦

If(PCC_Real>0& PCC_Imag<0) Then 90◦<Φ<180◦

where PCC_Real and PCC_Imag denote the real and imagi-
nary parts of PCC, respectively.

In the following discussion, we first apply the proposed
wind vector retrieval algorithm to three different sea state
cases. Fig. 7 shows the first case, i.e., a RADARSAT-2 fine
quad-polarization mode SAR image acquired on May 12,
2010, at 22:56 Coordinate Universal Time (UTC). This
SAR image collocates with a NDBC buoy (#41001,
34◦ 40′ 30′′N 72◦ 41′ 54′′ W) off the U.S. East Coast. The
buoy-measured 10-m equivalent neutral wind speed and direc-
tion are 13.3 m/s and 229◦ at 22:50 UTC. Fig. 8(a) shows
the SAR-retrieved wind speeds from C-2PO and NRCS in
VH polarization, on a 100-m resolution scale, without any
external wind-direction and radar-incidence-angle inputs. The

resulting wind speed and incidence angle at each pixel were
imported into CMOD5.N to estimate the wind direction, with
ambiguities. Using the directional ambiguity removal criteria
previously mentioned, the final wind directions are plotted in
Fig. 8(b) without ambiguities. The SAR-retrieved wind speed
and wind direction at the buoy location are 12.5 m/s and 213◦.
The second and third cases are quad-polarization images off the
U.S. West Coast and in the Gulf of Alaska, which are shown
in Figs. 9–11. The SAR-retrieved wind vectors are illustrated
in Figs. 10 and 12. The comparisons between the wind vector
retrievals of the two cases and buoy observations are summa-
rized in Table I. It is shown that the SAR retrievals are in good
agreement with buoy measurements, which suggests that the
proposed simultaneous retrieval method for both wind speeds
and wind directions is feasible for these three case studies.

Aside from specific case studies, we also made a statistical
comparison. We randomly choose 534 (50% of the test data set)
matchup pairs under different sea states to assess the proposed
wind vector retrieval method. These pairs include the PSME,
the NRCS in co- and cross-polarization modes, and buoy-
measured wind speeds and wind directions. The cross-polarized
backscatter and the C-2PO model are first used to directly
retrieve wind speeds without wind-direction and incidence-
angle inputs. The C-2PO retrieved wind speeds are found to
be in good agreement with buoy observations, with a bias of
0.04 m/s and an RMS error of 1.39 m/s, as shown in Fig. 13(a).
According to the C-2PO model (1), a calibration error of 1 dB
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Fig. 8. (a) SAR-retrieved wind speeds from the C-2PO model and the VH-polarized SAR image, as shown in Fig. 7(c), without any external wind-direction and
radar-incidence-angle inputs, and (b) SAR-retrieved wind directions without ambiguities from PCC between VV and VH channels, C-2PO-retrieved wind speeds,
CMOD5.N, and VV-polarized SAR image, as shown in Fig. 7(d), as well as the radar incidence angle.

Fig. 9. C-band (a) HH-, (b) HV-, (c) VH-, and (d) VV-polarized SAR images off the U.S. West Coast from RADARSAT-2 fine quad-polarization mode
SLC SAR data acquired on September 21, 2010, at 01:56 UTC (grayscale colorbar denotes sigma-naught; in units of decibels). NDBC buoy (#46047,
32◦ 24′ 11′′N 119◦ 32′ 08′′ W) is collocated to the SAR image. RADARSAT-2 Data and Product MacDonald, Dettwiler, and Associates Ltd., All Rights
Reserved.

in the cross-polarized NRCS will induce an error of 1/0.58
(1.72) m/s in the retrieved wind speed. Fig. 13(a) suggests
the RADARSAT-2 quad-polarization SAR data have very good
radiometric calibration. Under extreme weather conditions, the
NRCS will be strongly dampened due to heavy-rain contam-

ination and additional effects associated with high waves and
severe sea states, which are able to cause underestimation of
the estimates for the highest wind speeds. Thus, rain effects on
the NRCS have to be considered when retrieving wind speeds
under intense rainfall environments [20].
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Fig. 10. (a) SAR-retrieved wind speeds from the C-2PO model and the VH-polarized SAR image, as shown in Fig. 9(c), without any external wind-direction and
radar-incidence-angle inputs, and (b) SAR-retrieved wind directions without ambiguities from PCC between VV and VH channels, C-2PO-retrieved wind speeds,
CMOD5.N, and VV-polarized SAR image, as shown in Fig. 9(d), as well as the radar incidence angle.

Fig. 11. C-band (a) HH-, (b) HV-, (c) VH-, and (d) VV-polarized SAR images off the Gulf of Alaska from RADARSAT-2 fine quad-polarization
mode SLC SAR data acquired on January 9, 2011, at 05:15 UTC (grayscale colorbar denotes sigma-naught; in units of decibels). NDBC buoy (#46073,
55◦ 0′ 40′′N 171◦ 58′ 50′′ W) is collocated to the SAR image. RADARSAT-2 Data and Products©C MacDonald, Dettwiler, and Associates Ltd. All Rights
Reserved.

The resulting wind speeds from C-2PO and radar incidence
angles are imported into CMOD5.N to estimate the wind di-
rections. Using the criteria previously described, we removed
all the wind direction ambiguities. Fig. 13(b) shows SAR-
retrieved wind directions from CMOD5.N and PCC versus
buoy-observed wind directions. The bias and the RMS error
are 1.65◦ and 22.47◦, respectively. The wind direction retrieval

errors come from two sources, i.e., inaccuracies in C-2PO and
co- and cross-polarized NRCS calibration errors. Moreover, in
high-wind conditions, NRCS dampening induced by rainfall
may also be a factor. Fig. 13(c) shows SAR-retrieved wind
speeds with sigma-naught in the VV polarization (σo

VV), using
CMOD5.N and retrieved wind directions, versus C-2PO wind
speeds. This result verifies that the retrieved wind directions
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Fig. 12. (a) SAR-retrieved wind speeds from the C-2PO model and the VH-polarized SAR image, as shown in Fig. 11(c), without any external wind-direction
and radar-incidence-angle inputs, and (b) SAR-retrieved wind directions without ambiguities from PCC between VV and VH channels, C-2PO-retrieved wind
speeds, CMOD5.N, and VV-polarized SAR image, as shown in Fig. 11(d), as well as the radar incidence angle.

TABLE I
WIND SPEEDS AND DIRECTIONS RETRIEVED FROM THE THREE

RADARSAT-2 FINE QUAD-POLARIZATION MODE SAR IMAGES

COMPARED WITH CORRESPONDING WIND OBSERVATIONS

PROVIDED BY NOAA NDBC BUOYS

are good because the retrieved wind speeds from CMOD5.N
are in good agreement with those of C-2PO, with a bias of
−0.05 m/s and an RMS error of 1.84 m/s.

IV. DISCUSSION AND CONCLUSION

In this paper, we have presented a simultaneous wind speed
and direction retrieval method based on RADARSAT-2 fine
quad-polarization mode SLC SAR data. The cross-polarization
backscatter model (C-2PO) and the NRCS in VH polarization
have been used to directly retrieve the wind speed without
any external wind-direction and radar-incidence-angle inputs.
The resulting wind speeds from C-2PO and the NRCS in
VV polarization, as well as incidence angles, are then im-
ported into CMOD5.N to estimate the wind direction, with
ambiguities.

We analyzed the quad-polarization SAR data with collocated
in situ ocean-surface wind observations and found that the
copolarized backscatters have even symmetry with respect to
the wind direction, while the PCC between the co- and cross-

polarization channels has odd symmetry, with respect to the
wind direction. This symmetry property can be used to remove
the wind direction ambiguities. Three cases were used to show
that it is feasible to derive ocean-surface vector wind images
using the method proposed in this paper. To present a statistical
assessment of the proposed wind vector retrieval algorithm,
we randomly selected 534 SAR images collocated with buoy
measurements, which represent 50% of our available data set
of SAR and buoy matchups, under different sea states. We
showed that the retrieved wind speeds and directions are in
good agreement with buoy measurements. The retrieved wind
speeds have essentially no bias (0.04 m/s) with an RMS error
of 1.39 m/s. The corresponding retrieved wind directions have
a small bias of 1.65◦ with an RMS error of 22.47◦. These
results indicate that fully polarimetric SAR measurements
provide both wind speed and direction retrievals. When the
retrieved wind directions are used in CMOD5.N to infer wind
speeds, results verify well C-2PO wind speeds, with a bias of
−0.05 m/s and an RMS error of 1.84 m/s.

The proposed vector-wind retrieval algorithm in this paper
has been only tested with RADARSAT-2 fine quad-polarization
mode SAR images, with small swath (25 km). For the monitor-
ing of large oceanic areas, the fine mode domain is not practical.
By comparison, the dual-polarization (VV, VH) ScanSAR wide
mode SLC SAR data have large coverage (500 km). More-
over, the Canadian C-band RADARSAT Constellation Mission
SAR satellites (to be launched in 2016) will provide SAR
measurements in compact polarization mode with large swath
(350 km) and medium resolution (50 m). These measurements
can be transformed to quad-polarization values. Thus, the dual-
polarization and compact-polarization imagery can potentially
provide an operational technique for wind vector mapping with
large area coverage.
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