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Short Communication

Magnetic Susceptibility and Heavy Metals
Distribution from Risk-cultivated Soil around
the Iron–Steel Plant, China

Magnetic susceptibility is a non-conventional way that can be used for evaluating proxy

soil heavy metals pollution. The paper monitors available heavy metals (Cu, Fe, Zn, and

Mn) present in cultivated soils around iron–steel plant by soil magnetic susceptibility.

Our study was located in an area with high pollution with small grid density of 250 m in

China. Results showed that low field magnetic susceptibility was significantly corre-

lated with available Cu, Zn, and Mn. No clear association exists between magnetic

susceptibility and available Fe, soil organic matter, pH. Frequency dependent suscepti-

bility >5% suggests the possible presence of super-paramagnetic particles, fly ashes

produced during coal combustion.
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1 Introduction

Heavy metals in soils have recently received increasing attention [1–

4]. Some soil heavy metals are physiologically essential for plants and

animals, thus they have a direct or indirect impact on agricultural

products and human health, and therefore they are closely related to

ecosystem safety [5–7].

During the last few decades, many studies of the total content of

heavy metals in urban areas have been reported [8–13]. Although the

degree of pollution depends not only on the total heavy metal

content, but also on the proportion of their mobile and bioavailable

forms [3, 13–15]. It is more important to know the available content

of soil heavy metal, for plants and agricultural products directly

absorbed them [14–18].

It is possible to use easily measured magnetic properties to

identify and trace heavy metal pollution in the environment.

Measurements of low field magnetic susceptibility of surface soils

have been applied recently around local pollution sources [9, 13–15].

Soil magnetic susceptibility is sensitive to presence of ferrimagnetic

minerals [19–21]. Ferrimagnetics in soils are of both primary and

different forms of secondary origin [4, 14–16]. Most important sour-

ces of anthropogenic ferrimagnetic particles include fly ashes pro-

duced during combustion of fossil fuel [17, 18, 22–27].

The aim of this work was to assess if available heavy metal con-

tents (Fe, Cu, Mn, and Zn) in cultivated soils around iron–steel plants

are correlated with magnetic susceptibility, in order to determine if

magnetic susceptibility can be used as a quick and inexpensive

method for detection of higher available heavy metal.

2 Materials and methods

Soil magnetic susceptibility was measured using a Bartington

MS2 susceptibility meter. By using a MS2B dual frequency sensor,

both low- and high-frequency susceptibility were measured (XLF and

XHF), allowing the frequency-dependent susceptibility (XFD) to be

calculated:

XFD ¼ XLF � XHF

XLF � 100%

The Linfen region is well known for intense coal mining and related

heavy industry (steel–iron production and processing). The study

area, located south of Shanxi Province, lies in longitude 1108220–

1128340 and latitude 358230–368570. Prevailing soil types in the study

area are brown soil and lime-brown soil.

Detailed magnetic investigation was carried out on 250� 250 net

of topsoil distributed around iron–steel plants. A total of 60 topsoil

(0–20 cm) for the cultivated layer, where fly ash from steel mills and

coal combustion are deposited were collected in October 2010. The

samples were taken with a stainless steel trowel and stored in a

plastic bag. The samples were air-dried at room temperature and

sieved using a mesh-size of 2 mm. The available metal concentrations

for Fe, Cu, Mn, and Zn were analyzed by flame atomic absorption

spectrometry (AAS).

3 Results and discussion

3.1 Description of soil properties

The concentrations of the available heavy metals and soil magnetic

susceptibility in the 60 topsoil samples are shown in Tab. 1. Low

frequency magnetic susceptibility (XLF) represents the total contri-

bution of ferrimagnetic minerals. XLF values ranged from 71.5� 10�8

to 600.7� 10�8 m3 kg�1, mean values XLF¼ 130.79� 10�8 m3 kg�1

(Fig. 3).
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The values lie within the range commonly observed in related

soils. XFD is sensitive to the presence of super paramagnetic (SP)

grains. The 83.3% XFD values >3% in study areas prove that the

magnetic properties are controlled by the presence of SP grains.

The lower values point to the additional presence of multidomain

(MD) particles. The high mean values XFD¼ 5.17% indicated that

samples contain SP grains. In such case, apparently high fre-

quency-dependent susceptibility may be an artificial fact, resulting

from coal-burned processing.

Available copper concentration values vary between 0.52 and

2.44 ppm. Concentrations of available Zn, Fe, and Mn were found

to be 1.36–11.17, 3.35–20.86, and 4.89–14.46 ppm, respectively.

The coefficient variation (CV) values of soil properties in the study

ranges from 0.03 to 0.83, indicating that they had strong variations.

The CV of XLF and XHF were 0.80 and 0.83, respectively, suggesting

that XLF and XHF have the greatest variation. We can infer that the

surface soil magnetic susceptibility may be influenced by steel plant

activities such as steel mills and coal burning. The CV of available

heavy metals was between 0.25 and 0.49, suggesting that they had a

moderate variation.

The content of organic matter is about 0.3–5.24%. The mean value

is 2.77%. These are relatively high values compared to other soils

from the same climatic zone. The importance of organic matter for

the formation of fine grained magnetite/maghemite in soil has been

observed by several authors. According to the pH data available, all

the studied soils are alkaline (pH varies between 7.04 and 8.96). At

higher pH, Fe2þ adsorption increases due to increasing amounts of

positively charged Fe(OH)2þ species [16–20]. High pH is favorable for

magnetite formation.

Spatial distribution of surface magnetic susceptibility of the study

area is outlined as in Figs. 1 and 2. The change in magnetic suscepti-

bility values as dependence on their distance from the plant is

shown. The highest value of magnetic susceptibility is near the plant

Table 1. Descriptive statistics of soil properties

Minimum Maximum Mean Median SD Variance Skewness Kurtosis CV

pH 7.04 8.96 7.84 7.84 0.26 0.066 0.38 7.49 3.27
OM (%) 0.30 5.24 2.77 2.63 0.76 0.58 0.54 2.78 27.32
XLF (10�8 m3 kg�1) 71.5 600.70 130.79 98 104.60 10941.18 3.59 12.61 79.98
XHF (10�8 m3 kg�1) 67.80 595.30 125.25 93.1 104.34 10887.61 3.59 12.62 83.31
XFD (%) 0.89 8.69 5.17 5.75 1.80 3.25 �0.52 �0.39 34.82
Cu (ppm) 0.52 1.89 1.04 1.01 0.31 0.09 1.85 6.20 29.96
Zn (ppm) 1.36 8.12 3.85 3.81 1.96 3.82 1.05 1.73 49.26
Fe (ppm) 3.35 20.86 6.08 5.48 2.74 7.49 3.54 15.31 45.05
Mn (ppm) 4.89 14.46 8.66 8.46 2.19 4.82 0.69 0.32 25.35
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Figure 3. Scattered plots displaying the relationship between soil low fre-
quency magnetic susceptibility and heavy metals content.
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Figure 1. Contour plots of spatial distribution of soil low frequency
susceptibility.
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Figure 2. Contour plots of spatial distribution of soil frequency dependent
susceptibility.
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and to the south. Higher values of magnetic susceptibility were

found at the reference point in this direction. This is due to prevail-

ing wind erosion.

3.2 Correlation with available heavy metals

Table 2 shows the Pearson correlation coefficients between magnetic

susceptibility values and available heavy metal concentrations for all

analyzed samples. Low frequency magnetic susceptibility (XLF) shown

a significant positive correlation with available Cu (r¼ 0.272), Zn

(r¼ 0.453), and negative correlation with available Mn (r¼�0.315)

levels. While frequency magnetic susceptibility (XFD) showed a sig-

nificant negative correlation with available Zn (r¼�0.347) and

positive correlation with available Mn (r¼�0.269).

The Pearson correlation value between available Cu and Zn (Tab. 2)

shows a linear correlation suggesting the same pollution source. Zn

is not of typically lithogenic origin. It can be found in topsoils due to

high mobility affected by specific industrial sources. This result is

particularly interesting because these metals are representative of

the pollution sources in the monitored area (Fig. 3). The magnetic

susceptibility and available Fe are not significant. Contrary to Cu, Zn,

Mn, and Fe plays as elements of typically lithogenic origin. Fe is

characterized by variable efficacy of leaching methods. High Fe2þ

supply, organic matter, locally anoxic microenvironment is neces-

sary to form magnetite. In conclusion, the obtained results suggest

that magnetic susceptibility measurements can be used to monitor

this kind of areas.

Soil magnetic susceptibility has shown no significantly correlation

with organic matter and pH. This paper presents the results of a

similar study to Yang et al. [18]. Comparison of data with others

highlights some remarkable differences [15, 20–22]. The difference is

our study sample coming from cultivated soil not urban street dust.

This lack of correlation can be attributed to high pH values, intense

fly ash particles, and from coal combustion in cultivated soil.

4 Conclusions

The magnetic susceptibility values decrease with their distance from

the source of contamination. The highest XLF is 600.07� 10�8 m3 kg�1,

and located near steel–iron plant. Available heavy metal concen-

trations in the analyzed samples and the correlation coefficient

indicate a common source for Zn and Cu with an industrial contri-

bution [1, 4, 7–11, 22, 27].

We found in this horizon industrial fly ash in the size of SP-

particles. A major problem in the investigation was the influence

of human activities. The industrial particles cover the original soil

signal in the topsoil and the homogenization by the cultivation

make it possible to observe soil pollution processes [14–27].

We believe that from the correct interpretation of magnetic

susceptibility data, it is necessary that we should have a careful

analysis of the tested site and the integration between magnetic

susceptibility data and chemical observations [17–25]. More detailed

work is under way for providing more reliable magnetic suscepti-

bility system for the contaminated soils.
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