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ABSTRACT: Dynamic environments like seagrass habitats are characterised by continuous local
erosion and burial processes, which may induce seagrass decline if disturbances become too
intense or frequent. We aim to quantify for Zostera noltii the resilience of both the edge of a
meadow and individual propagules to local-scale burial and erosion events. In a set of mesocosm
and in situ manipulation experiments, we varied the frequency (sudden vs. continuous rate) and
intensity (different levels; —6 cm erosion to 6 cm burial) of sediment dynamics. Our results showed
that the intensity of the disturbance event (-6 up to 6 cm) was negatively correlated with plant sur-
vival. Burial frequency also had a significant effect on plant survival, with sudden events having
a stronger negative impact than continuous ones. Both experiments, on individual propagules and
attached rhizomes at meadow edges, demonstrated a rapid acclimatization of seagrass plants to
sediment dynamics within certain levels of disturbance (-6 up to 6 cm). After erosion or burial, all
surviving plants in the field and mesocosm experiments were able to relocate their rhizomes to the
preferential depth (from 0.3 to 0.8 cm), which was the depth at which the rhizomes of undisturbed
plants were most frequently found in the field. In situ manipulation experiments showed that
at the edge of the meadow, Z. noltii invaded experimentally created hollows more easily than
hills. Overall, our results demonstrate that Z. noltii meadows can rapidly recover by clonal growth
after modest sediment disturbance, thereby contributing to the current understanding of seagrass
recovery mechanisms following disturbances (e.g. sediment dynamics).
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INTRODUCTION

Seagrasses occur widely in coastal zones through-
out the world, where they provide critical ecosystem
functions and services (Short & Wyllie-Echeverria
1996, Orth et al. 2006). The accelerating widespread
loss of seagrasses has multiple causes, physical dis-
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turbance and eutrophication being the most im-
portant ones (Orth et al. 2006, Waycott et al. 2009).
Physical disturbances may arise from large-scale
processes like coastal construction activities, dredg-
ing, sediment deposition, anthropogenic or climati-
cally driven hydrological alterations (e.g. Cunha et
al. 2005, Hammerstrom et al. 2006, Dolch & Reise
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2010), but may also occur at a local scale, due to bio-
turbation, grazing, boat anchoring and manual col-
lection of fauna (e.g. Bolam & Fernandes 2002,
Cabaco et al. 2005, Vonk et al. 2008). It is also likely
that large-scale disturbances may aggravate effects
of local disturbances. The resilience of seagrass
meadows to local disturbances through rapid accli-
mation and sufficient recovery potential of plants are
thus vital for their long-term survival.

Sediment dynamics create important and wide-
spread disturbances to seagrasses, as extreme burial
and erosion events can be detrimental (Cabaco et al.
2008). Due to different resource allocation strategies
and life-history characteristics, seagrass species may
differ in tolerance to burial and erosion events (Preen
et al. 1995, Duarte et al. 1997, Terrados et al. 1998,
Cabaco & Santos 2007). Mortality of large seagrasses
such as Posidonia oceanica was significantly corre-
lated to the burial level, and even moderate burial
levels of 5 cm induced significant shoot mortality
(Manzanera et al. 1998). Mills & Fonseca (2003)
showed that increasing burial of Zostera marina sig-
nificantly increased mortality and decreased produc-
tivity. Marba & Duarte (1994) demonstrated that
Cymodocea nodosa seedlings tolerated burial of
<7 cm, while moderate burial stimulated the growth
of surviving seedlings. In the case of the small-sized
seagrass Z. noltii, both erosion (-2 cm) and burial
(2 cm) decreased shoot density in natural meadows,
while the burial threshold for the shoot dying out was
found to be between 4 and 8 cm (Cabaco & Santos
2007). Moreover, under laboratory experimental con-
ditions, individual shoots of Z. noltii did not survive
>2 wk under complete burial (Cabago & Santos
2007).

Nowadays, erosion has become an important pro-
cess in many coastal ecosystems, such as the Wadden
Sea (NW Europe) (van Katwijk et al. 2000, Polte et al.
2005), C4diz Bay (SW Spain) (Brun et al. 2005) or the
Thames estuary (SE England) (Hughes & Paramor
2004). However, compared to sediment burial, few
studies have directly assessed the effects of erosion
on seagrass performance, even when erosion has
been demonstrated to promote seagrass loss (Marba
& Duarte 1994, Short & Neckles 1999, Cruz-Palacios
& van Tussenbroek 2005, Cabaco & Santos 2007).
Among the studied species, Thalassia testudinum
seemed to have a relatively high tolerance to erosion
when compared to Cymodocea nodosa, Syringodium
filiforme and Zostera noltii, as neither a response to
shoot density nor to the length of the rhizome was
observed (Cabaco et al. 2008). Considering the small
size, the low aboveground biomass and the thin rhi-

zomes, one may expect Z. noltii to be highly sensitive
to sediment dynamics. Cabaco & Santos (2007)
showed that Z. noltii attempted to relocate the leaf-
producing meristems closer to the sediment surface
or in search of new sediment avoiding the eroded
area. As a small species, Z. noltii may have a pro-
nounced capacity of occupying empty gaps, coupled
with large changes in plant morphometry and photo-
synthetic parameters (Peralta et al. 2005).

Currently, seagrass beds (mainly constituted by
Zostera noltii) in the Wadden Sea (NW Europe) and
eastern Scheldt (SW Netherlands) are limited to the
upper part of the tidal flat, close to the high tide line
(Polte et al. 2005). These meadows are typically
surrounded by many elevations and depressions
(Fig. 1A), causing local erosion or burial of apical
shoots at the edges of the meadow (Fig. 1B,C) rather
than affecting the whole meadow. Likewise, these
elevations and depressions are likely to also affect
recently established seagrass propagules. Moreover,
the recovery of disturbed seagrass beds is often
strongly dependent on the horizontal vegetative
growth from apical (i.e. runner) shoots located at the
edge of the meadows and on the establishment of
new patches from detached propagules (Duarte
1995, Neckles et al. 2005, Bostrom et al. 2006, Brun et
al. 2006, Zipperle et al. 2009). For this reason it is
highly important to study the response to local sedi-
ment dynamics and the mechanisms underlying such
a response, for the plants located at the edge of a
meadow that are responsible for the expansion of the
meadow and the propagules that can initiate the col-
onization of new areas. Nevertheless, previous stud-
ies have mainly focused on the sediment dynamics of
the whole meadow (Cabaco et al. 2008), neglecting
these more local-scaled processes.

In the present study, our main objective was to
quantify the resilience (acclimation and recovery) of
seagrasses to local sediment dynamics. To achieve
this, we assessed the resilience of both Zostera noltii
propagules and attached rhizomes at the edge of a
meadow to contrasting sediment scenarios of local
erosion and burial using a set of mesocosm and
manipulative field experiments. Sediment scenarios
were applied as: (1) sudden burial of individual
Z. noltii propagules at contrasting depths (meso-
cosm), (2) continuous burial and erosion of individual
Z. noltii propagules (mesocosm), (3) local attached
rhizome burial or erosion at the edges of a Z. noltii
meadow (field) and (4) re-colonization of bare areas
within a meadow that had contrasting elevations and
depressions relative to the surrounding meadow
(field). We assessed the resilience of seagrasses to
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Fig. 1. Typical sediment topography around seagrass mead-
ows in the eastern Scheldt estuary (SW Netherlands). On the
large scale, ridges and runnels (A) can be observed, which
may cause small-scale burial (B) or uprooting (C) of rhizomes

local sediment dynamics (burial and erosion) by mea-
suring the depth of each newly formed rhizome, as
this provides a measure of how fast plants can adapt
to burial and erosion events, by returning its rhi-
zomes to the depth where they frequently occur. In

addition, we also measured a set of parameters to
describe the plant response to disturbance, like plant
survival (e.g. see Cabaco & Santos 2007), rhizome
elongation rate (e.g. Olesen et al. 2004), shoot num-
ber (e.g. Rollon et al. 1999) and biomass (e.g. Schanz
& Asmus 2003).

MATERIALS AND METHODS
Mesocosm experiments
Effect of sudden burial on individual propagules

To assess the effect of sudden burial on the sur-
vival, elongation rate and rhizome depth of propag-
ules, Zostera noltii propagules (1 apical shoot plus
the first lateral shoot, and respective internodes)
were buried in PVC cylinders (12 cm diameter and
height). Cylinders were filled with muddy sand sedi-
ment (grain size [mean + SD] was 118.83 + 1.19 pm,
organic content was 0.25%). Sediment cover of the
propagules was 0.5, 1, 1.5, 2, 2.5, 3, 4 or 6 cm. Only at
the burial depth of 6 cm were shoots completely cov-
ered (as shoot length was 5.22 + 1.16 cm, mean + SD,
n = 576).

Each treatment had 12 replicates. The PVC cylin-
ders were kept submerged in aerated and filtrated
seawater (31 psu). The seawater was slowly flowing,
and was changed twice every week. During the
experiment, the daily average integrated photoirra-
diance at the surface of the mesocosm was 22 mol
photons m~2 d~! with a photoperiod of 18 h light:6 h
dark, which was similar to the optimum daily light
dose for Zostera noltii growth (Peralta et al. 2002).
Temperature was kept constant at 19°C. After 4 wk,
we counted the number of surviving shoots in each
cylinder and surviving plants in each treatment, and
measured the burial depth and length of each inter-
node (including the new rhizomes produced).

The depth at which rhizomes were buried was ini-
tially measured using 2 different methods. (1) We
measured rhizome depth by using a ruler with a mil-
limetre scale, pushing it gently into the sediment and
then stopping when rhizomes were perceived. This
method proved to be very simple and reproducible,
since the ruler can be easily pushed into the soft sed-
iment, making it easy to detect the resistance of the
rhizomes. (2) We partly removed the sediment above
the rhizomes and then measured the sediment depth
from the surface to the cleared rhizome again using
the ruler. As both methods gave similar results (F =
0.139, p = 0.710), in the following experiments, rhi-
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zome depth was determined using method (1). The
elongation rate of the rhizomes (cm d™!) was calcu-
lated by dividing the length of the newly grown rhi-
zomes by the experimental period. The number of
days required to produce a new internode was calcu-
lated by dividing the total number of new internodes
by the total number of days of the experiment.

Effect of continuous burial and erosion on
individual propagules

To study the effect of continuous erosion or burial
on the survival and depth of individual propagules,
Zostera noltii propagules were initially planted at
depths of 0, 0.5 and 1 cm for both erosion and burial
treatments. The 0 cm treatment corresponded to a
propagule that had experienced an erosion event, so
that only the roots were still seated in the sediment.
Flume experiments at the NIOO revealed that such
units were not washed away by gentle waves or flow,
until all the roots were washed out of the sediment
(mean rootlength + SD =5.11 + 1.15 cm, n = 672). For
the 0.5 cm and 1.0 cm treatments, 0.5 or 1.0 cm from
the top of the cylinder was measured and marked
using a pencil. Then sediment was filled into the
cylinder up to the mark. For the 0 cm treatment, the
cylinder was completely filled with sediment. The
roots of individual propagules were carefully placed
into the sediment, and the rhizome was located on
the sediment surface in all the treatments. Subse-
quently, for the 0.5 and 1.0 cm treatments, sediment
was carefully placed on top of the rhizome until the
cylinder was full. For each treatment, 16 cylinders
with 1 propagule each were used.

All plants, independent of planting depth, were
exposed to the following burial or erosion treat-
ments: 1 time 0.3 cm sediment addition or removal in
Week 1, 2 times per week 0.3 cm sediment addition
or removal in Weeks 2 & 3, and in Week 4 no sedi-
ment addition or removal. Thus, at the end of the
experiment, a total of 1.5 cm of sediment was added
to or removed from each plant. All plants were grown
in PVC cylinders (12 cm in diameter and height) with
an open bottom, containing a plastic bag filled with
muddy sand. Erosion treatments were applied by
placing 0.3 cm thick discs below the plastic bag,
thereby lifting the sediment plus plants, and subse-
quently carefully removing 0.3 cm of sediment
around the plants, thus mimicking a 0.3 cm erosion
event. Burial treatments were applied by removing
0.3 cm thick discs from below the plastic bag, which
were placed there before planting the seagrass,

allowing the bag with sediment plus plants to sink,
and carefully adding 0.3 cm of sediment around the
plants. Removal of a disc thus mimicked a 0.3 cm
accretion event. Growing conditions were identical
to those in the previously described mesocosm exper-
iment. After 4 wk, the number of surviving shoots
and surviving plants in each treatment was counted,
and the burial depth of each internode between 2
adjacent shoots was measured.

Field experiments

Effect of burial and uprooting on attached rhizomes
at the edge of a meadow

To understand the effect of burial and uprooting on
the depth at which Zostera noltii produces new rhi-
zomes at the edge of a meadow, we placed meadow-
attached apical rhizomes at different depths. At the
beginning of the experiment, we measured the nat-
ural rhizome burial depth in the field (original depth).
Subsequently, we carefully took apical seagrass rhi-
zomes with 3 shoots out of the sediment, tagged the
rhizomes with different coloured marks for each
treatment, and then placed them back on the sedi-
ment surface (0 cm, as ‘erosion treatment’), at the
original depth (N) and at 1, 2, 3 or 4 cm deeper than
N (n = 8). This experiment was carried out on the
'‘Zandkreek' tidal flat in the eastern Scheldt estuary,
SW Netherlands, in August 2009. After 3 wk, the
effect of the treatments on the depth of the marked
rhizomes was analyzed by determining rhizome
depth and counting the number of surviving plants.

Ability of attached rhizomes at the edge of a
meadow to invade bare hills and hollows

To assess the ability of attached rhizomes at the
edge of a patch or a meadow to invade bare areas
that may be higher (hills) or lower (hollows) than the
overall meadow, we created bare areas of different
elevation in a Zostera noltii meadow at the 'Slikken
van Viane' tidal flat in the eastern Scheldt, SW
Netherlands. We randomly applied 56 treatments
using a PVC cylinder (diameter 40 cm, height 20 cm).
At the beginning of the experiment, the cylinder was
placed within the meadow, the internode depth of
the Z. noltii plants inside the cylinder was measured,
and all seagrass material above- and belowground
was collected to estimate total fresh biomass, show-
ing that there were no biomass differences at the
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beginning of the experiment (F= 1.126, p = 0.361) in
any of the treatments. In the newly created bare
areas, 7 different sediment levels were created rela-
tive to the meadow: +6, +4, +2, 0 cm (control, where
sediment was maintained at its original height), -2,
-4 and -6 cm. For the hill treatments, we filled the
cylinder with sediments until accretion reached the
selected height (i.e. +6, +4, +2 cm). For the hollow
treatments, we washed sediments out of the cylinder
until the selected destruction was reached (i.e. -2,
—4, -6 cm). Each treatment had 8 replicates in a block
design.

The experiment started in June 2009 and lasted for
4 wk. Every week, shoot numbers inside each experi-
mental plot were counted. At the end of the experi-
mental period, all seagrass material within the exper-
imental plots was collected and freeze-dried, and the
total biomass was weighed. The field experiments
were carried out during the calm season of the year
and were located at sheltered locations. That is, the
sites were specifically selected so that the hydro-
dynamic forces from tidal currents were insufficient
to disturb our experiments by flattening out the hol-
lows and hills. Sediment accretion or erosion rates in
the eastern Scheldt are negligible in the short time
span used in this experiment (Oenema & DelLaune
1988). Natural processes, predominantly sediment
reworking by burrowing animals and resuspension,
slightly altered the sediment levels (1 cm elevations
or depressions compared to the original at the end of
the experiment, except in the 0 cm treatment) during
the course of the experimental period. We chose not
to maintain the initial experimental sediment levels,
since we intended to mimic the effect of a natural dis-
turbance event.

Statistical analysis

The effects of burial, erosion and the manipulation
of the adjacent sediment height near a seagrass
meadow on the elongation rate, survival rate, depth
of newly grown rhizomes, fresh and dry biomass and
shoot number were analyzed using 1-way ANOVA
and post hoc tests. Normality and homogeneity of the
data were previously checked, and, when necessary,
data were transformed to comply with ANOVA
assumptions. Data were presented as means (+SE),
and a significance level of 5% was used in all
analyses. When ANOVA was significant (p < 0.05),
the Tukey's multiple comparison test was applied
to determine which treatments were significantly
different.

RESULTS
Mesocosm experiments
Effect of sudden burial on individual propagules

Survival of Zostera noltii plants was 100 % for indi-
vidual propagules buried at 0.5 and 1.0 cm, while
plant survival decreased when rhizomes were buried
deeper than 1 cm (Fig. 2A). In spite of the observed
decline on survival, the rhizome elongation rate of
remaining plants was not significantly different
among treatments (F = 0.890, p = 0.508). It was on
average 7.5 + 3.7 mm d~!, except at 6 cm burial depth
(only 1 seagrass plant was still alive), where the rhi-
zome elongation rate was 2.6 mm d-! (Fig. 2B). The
diameter of the rhizome was 1.25 + 0.19 mm and
showed no significant differences between treat-
ments. Since the mean shoot length was 5.22 =+
1.16 cm (n = 576), only at the burial depth of 6 cm
were shoots completely covered by sediment, while
half of the shoot was covered at the burial depth of
3 cm. We observed that all newly produced rhizomes
of surviving plants had grown towards the sediment
surface to a depth ranging from 0.3 to 0.8 cm
(Fig. 2C), which may be regarded as the preferential
depth range. When the rhizome was buried at 6 cm,
the first new rhizome internode relocated quickly to
2 cm depth, while the next one was already situated
at the preferential depth range (Fig. 2C).

Assuming that plants grew evenly over the experi-
mental period, we assessed that the preferential
depth was reached between 2 (0.5 cm treatment) and
16 d (6 cm treatment). In general, in those plants
placed at relatively shallow depths, the first new
internode produced had already reached the prefer-
ential depth range (Fig. 2C), whereas for the deeper
plants the second new internode produced reached
the preferential depth range (Fig. 2C). Present results
indicated that individual propagules acclimate to
moderate sudden burial by rapidly growing upward
to the preferential depth range.

Effect of continuous burial and erosion on
individual propagules

Survival of Zostera noltii propagules ranged from
81 to 100% in all burial and erosion treatments,
except for the erosion treatment where additional
erosion dislodged some plants from the sediment
when initially placed at the sediment surface. The
survival of Z. noltii was higher under burial than
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Fig. 2. Zostera noltii. Mesocosm experiment. Effects of
different burial depths on (A) plant survival, (B) rhizome
elongation rate and (C) rhizome depth of individual prop-
agules after 4 wk. In Panel C, the initial burial depths of the
individual rhizomes were 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and
6.0 cm. For rhizome internode codes, the lowest number in-
dicates the oldest internode, the highest number indicates
the youngest

under comparable erosion treatments (Fig. 3A). The
rhizome elongation rate of surviving plants showed
no significant difference among treatments and was
8.0 +5.9mm d! (F=0.388, p = 0.855). During the first
3 wk that we applied the erosion treatment, the indi-
vidual rhizomes of Z. noltii became uncovered and
remained at the sediment surface (i.e. depth = 0 cm).
Only when the simulated erosion ceased (in the
fourth week) were the rhizomes able to grow down-
wards to a depth ranging from 0.1 to 0.9 cm (Fig. 3B).
The continuous increase in height for the newly
formed rhizomes indicated that, throughout the bur-
ial treatment, the newly formed rhizomes of Z. noltii
continuously grew toward a depth of 0.1 to 0.9 cm
(Fig. 3C).

Field experiments

Effect of burial and uprooting on attached
rhizomes at the edge of a meadow

Measurements on a large number of rhizomes in
the field (n = 144) indicated that the natural depth of
Zostera noltii rhizomes was 0.6 + 0.3 cm (ranging
from O to 1.4 cm). All the plants grew into their pref-
erential depth range during the experimental period.
When mimicking uprooting (i.e. when attached
rhizomes at the edge of the meadow were placed
onto the sediment), the first new internode had al-
ready very shallowly grown back into the sediment
(Fig. 4A,B). However, it took 21 d and the production
of 4 new rhizomes for the rhizomes to get back to
their preferential depth range. When the attached
rhizomes at the edge of a meadow were placed at the
natural depth, all the new rhizomes produced
remained at this depth during the experimental
period (Fig. 4A,B). When they were placed 1, 2 and
3 cm deeper than the natural depth, the second new
internode (Fig. 4A) grew to its preferential depth
range within circa 10 d, while when they were placed
4 cm deeper than the natural depth, the third new
internode (Fig. 4A,B) grew to the preferential depth
range within around 20 d.

Ability of attached rhizomes at the edge of a
meadow to invade bare hills and hollows

The recolonization of a bare area by Zostera noltii
was clearly affected by the height of the hills and hol-
lows relative to the surrounding meadow (Fig. 5).
Whereas during Week 1 of regrowth, the shoot num-
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ural' depth where undisturbed rhizomes occur (0.6 cm); N +
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ber (from 0 to 8) was not significantly different
among the treatments (F= 1.36, p = 0.25), differences
emerged during Week 2 (df = 6, MS = 1.03, F=6.99,
p < 0.05) and Week 3 (df = 6, MS = 2.13, F = 5.32,
p < 0.05). The number of shoots was lower in hills
than in hollows in Week 2 (t = 5.12, p < 0.01) and
Week 3 (t=5.69, p < 0.01; Fig. 5A). The same pattern
was found for total biomass at the end of the experi-
ment (df = 6, MS = 109, F = 8.97, p < 0.01; Fig. 5B).
The total biomass showed the highest values in the
hollows with a depth of 2 to 4 cm.
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Fig. 5. Zostera noltii. Field experiment. Effects of artificially
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ment. The initial sediment heights were +6, +4, +2, 0, -2, -4
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tive values indicating hollow formation). Bars with different
letters were significantly different at the level of p < 0.05

DISCUSSION

Many natural and human-induced events create
disturbances in seagrasses throughout the world
(Orth et al. 2006). Whereas previous studies mainly
documented the effect of large-scale homogeneous
sediment changes on homogeneous seagrass mead-
ows (reviewed in Cabaco et al. 2008), we studied
both individual Zostera noltii propagules and
attached Z. noltii rhizomes at the edge of a meadow
with regards to rapid responses to erosion and sud-
den and continuous burial. This is the first study to
quantify the resilience (acclimation and recovery) of
seagrasses to local sediment dynamics and to demon-
strate that all surviving plants reestablished their rhi-
zomes at the preferential depth (i.e. the depth at

which rhizomes were naturally growing) following
erosion and burial disturbances. Such small-scale
studies are relevant, as they show recovery through
the establishment of new seagrass patches by
propagules or by vegetative growth from existing
patches. The present study clearly demonstrates that:
(1) the intensity and frequency of burial or erosion
have different effects on the survival, elongation rate
and rhizome depth of Zostera noltii and (2) that Z.
noltii rapidly acclimates to burial or erosion distur-
bances by relocating the newly produced rhizomes to
a preferential depth (from 0.3 to 0.8 cm), both in the
mesocosm and field experiments.

Sudden burial caused a linear decrease in survival
below the preferential depth (Fig. 2A). For instance,
when individual rhizomes were buried at their pref-
erential depth, the survival rate was 100 %, while
only 6% survived when individual rhizomes were
subjected to 6 cm of sudden burial (Fig. 2A). This is
in line with previous studies showing a decrease in
seagrass survival after large-scale sudden burial
(see Cymodocea nodosa in Marba & Duarte 1994;
Posidonia oceanica in Manzanera et al. 1998;
Zostera marina in Mills & Fonseca 2003; and Z.
noltii in Brun et al. 2005 and Cabaco & Santos
2007). Increased (sudden) burial depth of individual
propagules also caused a strong decrease in the rhi-
zome elongation rate of Z. noltii plants (Fig. 2B).
Survival of Z. noltii plants was much higher under
continuous burial (94 to 100%) compared to the
effect of sudden burial. This can be explained
because of the higher stress conditions that plants
experienced during strong sudden burial (e.g. low
light levels and anoxic conditions). The latter might
result in a lower capacity to mobilize non-structural
carbohydrates to cover metabolic requirements,
which negatively affect the plants (Brun et al. 2003).
As rapid burial raises the sediment surface, the
depth of sediment anoxia almost certainly rises
upward toward the photosynthetic portions of the
seagrass (Mills & Fonseca 2003). The latter may
result in sulphide intrusion into meristematic areas
and buried tissues (Pedersen et al. 2004) and inhibit
the plants’ recovery from the burial event (Goodman
et al. 1995). Survival of plants was consistently
higher for the same sediment levels of burial than
erosion (Fig. 3A). The high mortality of individual
propagules that were initially placed on the sedi-
ment surface could be easily explained by plants
washed away by hydrodynamic forces (Fig. 3A).

The naturally recorded rhizome depth of Zostera
noltii was 0.6 £ 0.3 cm (from 0 to 1.4 cm) in the field,
and the observed preferential depth was 0.3 to 0.8 cm
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in the mesocosm. This falls within the natural range
described for this species (Duarte et al. 1998). In all
cases, surviving rhizomes grew rapidly towards an
apparently preferential depth range after disturban-
ces. In general, for those plants placed at relatively
shallow depths, the first new internode produced can
reach the preferential depth range directly (Fig. 2C).
In the case of sudden deeper burial, the first new rhi-
zomes produced from surviving rhizomes did not
reach the preferential depth range, but the second
intenode did (Figs. 2C & 4A), indicating that Z. noltii
can rapidly acclimate to moderate sudden burial
events. This rapid response may be supported by the
apical dominance in Z. noltii, suggesting that, under
stress conditions, such as sudden burial, plant
resources will mainly be directed to the apical shoot
(Duarte et al. 1998, Marba et al. 2002, Brun et al.
2007). Thus, plants buried at deeper points fre-
quently developed rhizomes without shoots when the
rhizomes remained well below the preferential
depth. The production of new shoots only began
again when rhizomes reached the preferential depth,
where shoots have access to more favourable light
conditions and resume the elongation of vertical
internodes until the apical meristem is repositioned
at the sediment surface (Terrados 1997, Brun et al.
2005). During erosion events, plants subjected to
continuous erosion were unable to bury into the sed-
iment until disturbance ceased (Fig. 3B), and the time
needed by plants to reach the preferential depth was
directly related to erosion intensity (Fig. 4A,B). The
greater the erosion, the longer the period plants
remained uncovered and, therefore, the higher the
risk of plants being uprooted by waves, currents, or
animal activities.

Seagrass patch growth and patterns are affected
by external, mainly hydrodynamic factors and the
underlying geomorphology of the area (Kendrick et
al. 2005). Local sediment disturbances can result in
newly created bare gaps and hills within the seagrass
landscape (Robbins & Bell 2000). The recovery of
gaps in seagrass meadows has been described for a
range of species. Gaps <25 m? in Posidonia sinuosa
meadows were refilled over 50 yr (Hastings et al.
1995). Thalassia hemprichii grew into experimental
0.25 m? gaps over 2 yr, but Enhalus acoriodes was
predicted to take 10 yr to refill these gaps (Rollon et
al. 1999). Halodule wrightii beds can fill in small gaps
in <6 mo (Bell et al. 1999). Our results showed that
Zostera noltii can fill in gaps of 0.13 m? in 1 mo. This
is much faster than all the above-mentioned sea-
grasses except for H. wrightii. Although our gap was
smaller than those observed in previous studies, the

rates (0.13 m? mo™') clearly indicate that Z. noltii can
refill the same-size gaps faster than larger seagrass
species. This agrees well with the observation that
small (pioneer) seagrass species are able to occupy
disturbed areas more rapidly than large species
(Neckles et al. 2005), as small species have faster
rates of horizontal spread than large species (Marba
& Duarte 1998). Whereas the potential to recover
from disturbances by growth is enhanced with
decreasing seagrass size, the mortality caused by
burial increased with decreasing seagrass size
(Duarte et al. 1997, Peralta et al. 2005). Thus, our
results show that a trade-off related to seagrass size
exists, in terms of recovery time versus resistance to
stresses, such as sediment disturbance.

In our field study the growth of Zostera noltii plants
into a bare area was clearly affected by relative sed-
iment height compared to the surrounding meadow
(Fig. 5). Z. noltii-attached rhizomes at the edge of the
meadow can invade hollows more easily than hills.
This may be due to the prevention of desiccation
provided by the hollows, which facilitates photosyn-
thesis and nutrient uptake during low tide. In con-
trast, plants on hills may suffer higher desiccation
and thereby greatly reduced photosynthetic rates
(Leuschner et al. 1998). This response is in agree-
ment with the findings of Rasheed (1999), who found
that the size and type of disturbance are likely to
influence seagrass recovery. Although seagrass pat-
ches can sustain some burial, and patch mortality is
more likely to result from erosion (Ramage & Schiel
1999, Brun et al. 2005), the present study showed that
Z. noltii patches may recover more rapidly by vegeta-
tive growth of the attached rhizomes at the edge of
the meadow after moderate erosion (hollows) than
after burial (hills) disturbance.

CONCLUSIONS

The present study showed that Zostera noltii is
well adapted to cope with sediment disturbances of
limited amplitude (i.e. £6 cm) by rapidly relocating
their rhizomes to the preferential depth. This res-
ponse appears to be quite fundamental to the spe-
cies, as it was present both in individual propagules
and in attached rhizomes at the edges of a meadow.
Sudden burial has a much stronger negative effect on
the survival response of Z. noltii than continuous bur-
ial. The effect of erosion differs between individual
propagules and attached rhizomes at the edges of a
meadow, with individual propagules being more vul-
nerable due to the risk of being washed away. Our
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study provides a quantitative understanding of the
ability of seagrasses like Z. noltii to recover from
small-scale sediment disturbances, which is impor-
tant for understanding the mechanisms involved in
seagrass degradation and recovery.
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