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The normalized peak area (NPA) of remote-sensing reflectance (Rrs) in the near-in-
frared region was used to estimate the concentration of total suspended matter
(CTSM) in coastal waters. A linear regression model between CTSM and SNPA

(R2 = 0.83) was established, where SNPA is the area encompassed by the reflectance
curve and the straight line between wavelengths 768 and 840 nm where there is a
maximum of Rrs near 715 nm. In the Pearl River estuary of South China, this NPA
model performed better than other single-band and multi-band regression models,
with a root mean square error (RMSE) of 4.07 mg l–1. This model may be widely
applied to in situ measurements of TSM.

1. Introduction

Total suspended matter (TSM) is one of the key colour-producing agents in
water. A number of remote-sensing models have been proposed to estimate TSM.
Hoogenboom et al. (1998) proposed a matrix model to retrieve the concentration
of TSM (CTSM) from underwater irradiance. Using the near-infrared bands, Moore
(1980) obtained CTSM on the basis of the bidirectional reflectance distribution func-
tions (BDRFs) on the water surface. Based on the forward and inverse modelling of
light radiation transfer, Dekker et al. (2001, 2002) developed an analytical algorithm
to estimate CTSM; this model could be applied to Landsat Thematic Mapper (TM)
and Satellite Pour l’Observation de la Terre (SPOT) images. On the basis of the spec-
tral characteristics of in situ spectra and remote-sensing images, Binding et al. (2003)
obtained retrieval models of water quality parameters including CTSM. In the study of
Teodoro et al. (2007b), the retrieval accuracy of a multiple-band regression model was
better than that of an artificial neural network (ANN) model. Schiebe et al. (1992) and
Harrington et al. (1992) proposed an exponential function to describe the relationship
between extra-atmospheric reflectance and suspended sediment concentration on the
basis of Landsat Multispectral Scanner (MSS) data and in situ suspended sediment
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concentrations; more recently, this work has been extended to retrieve chlorophyll-a
concentration (Dall’Olmo et al. 2003).

For the estimation of CTSM, empirical algorithms usually have relatively higher
retrieval precision. Nevertheless, they are often restricted by specific temporal and spa-
tial conditions. Analytical algorithms adopt bio-optical models for retrieving CTSM

on the basis of the inherent and apparent optical properties of water constituents.
In many cases, analytical models have a poor performance because of difficulties in
obtaining accurate absorption and backscattering coefficients from optically complex
Case-II waters. Semi-analytical models are commonly used to retrieve CTSM because
they are simpler and have higher retrieval accuracy than the empirical and analyti-
cal algorithms. However, most of the semi-analytical algorithms developed so far also
have temporal and spatial restrictions, and cannot be used widely in different regions.
It is therefore important to find a TSM retrieval method that can be widely used in
different areas with varied environmental factors.

In the visible and near-infrared spectral regions, and especially in the near-infrared,
most of the backscattering is caused by suspended matter in comparison to other
major colour-producing constituents in water (Ruddick et al. 2006, Teodoro et al.
2007a). Mahtab et al. (1998) investigated the responses of remote-sensing reflectance
(Rrs) to different CTSM according to the simulated spectra, and concluded that TM
band 4 (TM4) was the best band for retrieving CTSM. Gitelson et al. (1993) pointed
out that the reflectance at 700–900 nm was sensitive to TSM, and these bands were
the best for retrieving CTSM from reflectance. The near-infrared region was therefore
chosen in the current work for an effective model for retrieving CTSM according to the
optical properties of suspended matter in water.

2. Methods

2.1 In situ measurements and data preprocessing

Twenty-eight water samples were collected from two different cruises, on 6 and 21
December 2006, respectively (see figure 1 for study area and sampling sites). A portable
field spectroradiometer (SD2000 from Ocean Optics Inc., Dunedin, FL, USA) was
used to measure the above-water Rrs (Shi et al. 2007, Xing et al. 2008). The Rrs spectra
were resampled at a spectral resolution of 1 nm, and the region between 740 and 875
nm (figure 2) was chosen for analysing the spectral properties. The CTSM was deter-
mined by the weighing method. The water samples were filtered through pre-weighed
Whatman polycarbonate membrane filters (GE Healthcare, UK) with a nominal pore
diameter of 0.20 µm, and then the filters containing particles were dried at 60◦C until
there was no change in weight. The quantities of TSM were obtained by subtracting
the initial weights of the filters from the weights after drying, and the TSM concentra-
tions were calculated according to the TSM quantities and the volumes of the filtered
water samples.

2.2 Calculation of normalized peak area

In the near-infrared region of each Rrs spectrum (figure 2), one peak and two troughs
could be seen at the wavelengths 815, 768 and 840 nm, respectively. The peak may be
obtained because there is less water absorption at 815 nm compared with 768 and 840
nm (Palmer and Williams 1974). Atmospheric absorption at 810–830 nm (Xing 2007)
together with the fluorescence (Xing et al. 2008) and/or Raman scattering in water
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Figure 1. Sampling sites in the field campaign conducted at the Pearl River estuary of South
China in December 2006.
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Figure 2. Large variations in the near-infrared Rrs. One peak and two troughs are located near
815, 768 and 840 nm, respectively.

may also contribute to the peak. This issue, however, is beyond the scope of the present
study and will be explored separately in a further study. Based on this feature of an
Rrs peak in the near-infrared region, a conceptual model of the normalized peak area
(NPA) (figure 3) was proposed as follows: (1) calculate the area under the Rrs curve at
768–840 nm; and (2) obtain the NPA by subtracting the area under the straight line
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Figure 3. Conceptual model of the normalized peak area (NPA) in the near-infrared region
(see the shaded area).

between 768 and 840 nm from the area calculated in step 1. Hence the calculation of
the NPA is obtained from:

SNPA =
840∑
768

[Rrs(λ)B] − [Rrs(768) + Rrs(840)] × (840 − 768)
2

, (1)

where SNPA is the normalized peak area (sr–1 nm), Rrs(λ) is the remote sensing
reflectance at wavelength λ (sr–1) and B is the wavelength interval between two adjacent
bands (1 nm in this study). Using this method, SNPA values for the 28 water samples
were calculated.

Reed et al. (1994) used a similar strategy, using a time-integrated normalized dif-
ference vegetation index (NDVI) during the plants’ growing season as an important
surrogate measure of ecosystem characteristics. In this study, a wavelength-integrated
Rrs index was used to extract CTSM. Fresnel effects should be considered in the
measurements of the above-water reflectance. The skylight reflectance spectrum is gen-
erally flat at 750–850 nm (Xing 2007), so the normalizing method in the NPA model
can be expected to reduce the impact of reflected skylight at the water surface.

2.3 Estimation of TSM concentration using NPA

As shown in figure 4, CTSM values are linearly proportional to SNPA, with a coefficient
of determination (R2) of 0.83, so a simple linear regression model (equation (2)) was
established to retrieve CTSM from SNPA:

CTSM = 184.7 × SNPA + 3.5539, (2)

where CTSM is the retrieved TSM concentration. The root mean square error (RMSE)
between the retrieved values and the in situ measured concentrations was 4.07 mg l–1.
When the concentrations were lower than 30 mg l–1 (figure 4), there was a lower cor-
relation between CTSM and SNPA. This may be partly attributable to the larger error
that can be expected in measurements of low TSM concentrations when the weighing
method is used.
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Figure 4. Relationship between CTSM and SNPA.

3. Discussion

3.1 Comparison with other retrieval algorithms

To examine the retrieval precision of the NPA algorithm, single-band models and
multiple-band models were used for comparison.

3.1.1 Single-band models. Figure 2 presents all the 28 Rrs spectra measured in the
field campaign. The Rrs near 810 nm averaged 0.010 sr–1, with a standard deviation
of 0.004 sr–1. The signals of Rrs are strong in the near-infrared region, and could
not be neglected as is usual with Rrs spectra from Case-I waters. On the contrary,
the strong reflection is one of the important spectral characteristics in turbid waters
(Case-II), and may be used to retrieve the TSM concentration. The Rrs values near
810 nm ranged from 0.005 to 0.020 sr–1, and generally increased with an increase
in TSM concentration (7.96–44.86 mg l–1); for example, the top curve in figure 2
corresponds to the largest TSM concentration (i.e. 44.86 mg l–1) and the lowest
curve to a concentration of 8.96 mg l–1 (close to the lowest value of 7.96 mg l–1).
In addition, the peak appeared to be more prominent with increasing TSM
concentration.

Lv et al. (2005) found that Rrs(810) was sensitive to CTSM in their work at the Tai
Lake waters (typical inland Case-II waters), and that the linear regression model was
the best among the regression models. However, in our work at the Pearl River estuary,
the best correlation between single bands and CTSM was found at 740 nm, and the
corresponding maximum of R2 was 0.83. With the single-band model (equation (3)),
the precision of TSM retrieval in the Pearl River estuary was 4.07 mg l–1 in the RMSE,
close to that of the NPA model. However, this also means that the single-band model
may be not robust: for different waters, we have to choose a different band. Because
the signals come from many sources, we know that the variations in Rrs are not only
related to the TSM concentration. There was a curve-intersecting phenomenon in Rrs

(figure 2), especially at wavelengths longer than 840 nm, which might also be caused
by the effects of ambient light and complex water constituents.

CTSM = 2740.9 × Rrs(740) − 0.1704. (3)
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3.1.2 Multiple-band models. Multiple-band models link different bands and/or
band combinations to TSM concentrations. A popular multiple-band model with high
precision was originally applied to retrieve CTSM at the Mediterranean Sea by Tassan
(1994); this model has been widely applied to coastal waters to retrieve TSM. Tang
et al. (2004) modified the Tassan model and applied it to the Yellow Sea and the East
China Sea for the retrieval of TSM. In this study, the improved linear model, as shown
in equation (4), was tested for comparison:

log10(CTSM) = 1.106 + 11.035 × [Rrs(555) + Rrs(670)] − 0.685 ×
[

Rrs(490)
Rrs(555)

]
. (4)

The coefficient of determination of the improved linear model was 0.75, which was
lower than that in the NPA model. In the test of retrieval, the NPA model showed bet-
ter performance, compared with the RMSE of 6.11 mg l–1 from the improved Tassan
model.

Finally, the reflectance peak line height model was also used to validate the NPA
model. As mentioned earlier, there was one reflectance peak near 815 nm (figure 2)
that could be used to retrieve CTSM. For details of the peak line height, refer to Liu
et al. (2004). A regression model (equation (5)), was applied to retrieve CTSM:

CTSM = 7157.7HRrs + 5.1916, (5)

where HRrs is the peak line height at 815 nm. The coefficient of determination
(R2 = 0.82) and the RMSE (4.16 mg l–1) were both close to those from the NPA model.
This is because the two models have a similar strategy of using the peak Rrs near 815
nm together with the Rrs at the wings (768 and 840 nm, respectively). We should note
that the NPA model is a multi-band model too.

3.2 Retrieval precision

The retrieved CTSM values using the NPA model (presented by equations (1) and (2))
were in good agreement with the in situ measurements (RMSE = 4.07 mg l–1), with an
R2 of 0.83. The NPA model showed better performance than the other single-band or
multi-band models. The water salinity and temperature have much more influence on
absorption and reflection in the near-infrared region than in the visible region (Pegau
et al. 1997), so changes in these parameters may bring additional errors. Compared
with other retrieval models of TSM, all the above-mentioned models had relatively
higher retrieval precisions except for the improved Tassan model. In general, the NPA’s
performance was comparable to or even better than those popular models used in this
study. The NPA model may be the new method of choice in the retrieval of TSM
concentration.

4. Conclusions

In the visible spectral region, the ideal wavelengths for TSM retrieval are not robust
in different regions because of the impact of phytoplankton pigments and coloured
dissolved organic matter (CDOM). However, the characteristic wavelengths respond-
ing to TSM in the near-infrared region are relatively fixed, in comparison to those in
the visible region (Teodoro et al. 2007a). Taking into account the spectral properties
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Using NPA to estimate TSM 7485

of TSM in the near-infrared region, an NPA model was proposed to retrieve CTSM.
The NPA was calculated according to the peak Rrs(815) and two troughs Rrs(768) and
Rrs(840). Our study in the Pearl River estuary has demonstrated that the NPA method
is an efficient retrieval algorithm for TSM on the basis of a local empirical model.

However, the reasons for the peak near 815 nm are not fully known, and will be
investigated in future studies. TSM concentrations may vary by season and region.
Xing (2007) reported that the TSM concentration can be up to 150 mg l–1 at the river
channel near the Pearl River estuary. The current NPA model was obtained for lim-
ited TSM concentrations (figure 4), that is less than 50 mg l–1, and so it needs to be
validated for a wide range of TSM concentrations.
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