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A B S T R A C T

In this paper, a discrete-time host–parasitoid model is investigated. Two biological phenomena, the Allee

effect of the host population and the aggregation of the parasitism, are considered in our mathematical

model. Through extensive numerical simulations, we gain some interesting findings related to Allee

effect from this research. Firstly, the ranges of parameter, in which the population dynamics is chaos, are

compressed when Allee effect is added. Secondly, the sensitivity to initial conditions of the host–

parasitoid system decreased after adding Allee effect. Thirdly, without Allee effect, we observed two

complicated dynamics, intermittent chaos and supertransients. However, when Allee effect is included,

these two phenomena are replaced by another kind of phenomenon-period alternation, where chaos is

eliminated. From above three novel findings, it can be concluded that dynamic complexities are

alleviated by Allee effect. This conclusion is crucial in resolving the discrepancy between real population

dynamics and theoretical predictions. Furthermore, the importance of this research is to help us

understand the mechanisms inducing the irregular fluctuations of the natural populations.

� 2009 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Ecological Complexity

journa l homepage: www.e lsev ier .com/ locate /ecocom
1. Introduction

The dynamics of natural populations are very complicated
(Hassell, 1971, 1975). For example, the size of a natural population
varies constantly and the variations may be small or large; some-
times regular, but in most cases irregular (Schaffer, 1985; Tilman
and Wedin, 1991; Hanski et al., 1993; Dennis et al., 1995;
Costantino et al., 1997). Understanding the population dynamics
and the underlying mechanisms that induce the population
variations is the central issue in population ecology (Royama,
1992). Some ecological models, although simple in mathematical
expressions, have been designed to study the population temporal
dynamics. In particular, the pioneering work in this field was
initiated by May (1974, 1976). The significance of May’s seminal
work is inducting a new research area dealing with the complex-
ities in the population dynamic models. Now, the theory of single-
population dynamics is quite well understood compared with the
dynamics of interacting populations. Traditionally, interacting
populations are usually described by continuous-time models,
where only simple dynamics such as stable equilibrium or limit
cycles are observed (May, 1972; Segel, 1984). However, for natural
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populations whose generations are non-overlapping, continuous-
time model is not the best choice. Conversely, discrete-time host–
parasitoid models, which are usually described by difference
equations, can produce a much richer set of patterns than those
observed in continuous-time model (Beddington et al., 1975).

Now, biological scientists have established many complex
non-linear mathematical models to account for the dynamic
behaviors of these interactions (Kaitala and Heino, 1996; Kaitala
et al., 1999). However, ecologists are usually frustrated by the
analytical intractability of these mathematical models since
the intrinsic non-linearity. An alternative method to resolve the
trouble is through numerical simulations. For different para-
meters and initial conditions, we can iterate the difference
equations for thousands time steps and analyze the time series of
population size to elucidate the regularity and mechanisms that
hidden behind the population dynamics. Recently, many authors
have investigated on the complexities of discrete-time host–
parasitoid models. Kaitala and Heino (1996) reported the dynamic
complexity of host–parasitoid interaction with immunized and
non-immunized host. Kaitala et al. (1999), Tang and Chen (2002)
showed that many forms of complex dynamics were observed in
host–parasitoid interaction model with Holling-type functional
response. Xu and Boyce (2005) also demonstrated the dynamic
complexity of a mutual interference host–parasitoid model. All
these researches relied on a Logistic growth function to analyze
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the dynamics of the host–parasitoid interaction and obtained
some intriguing results. However, to our knowledge, two impor-
tant phenomena are ignored in the previous studies, particularly
in this type of host–parasitoid models.

(1) None considers Allee effect that exists widely in natural world
(Allee, 1931). Allee effect indicates scarcity in reproductive
opportunities that cause negative growth rates below a critical
density threshold (lower bound), which may arise from a
number of sources such as difficulties in finding mates, social
dysfunction and inbreeding depressing (Dennis, 1989; Lewis
and Kareiva, 1993; Kunin and Iwasa, 1996; McCarthy, 1997).
Thus, it is meaningful to consider the kind of biological reality
in host–parasitoid interactions.

(2) A basic assumption in above papers is that the encounter
between host and parasitoid follows the Poisson distribution,
where the parasitoids are distributed randomly in space.
However, in the real world, there are seldom cases where the
distribution pattern of species individuals can be characteri-
zed by Poisson distribution (Pielou, 1969). Generally, a more
biological reasonable assumption is that the encounter
between host and parasitoid follows the negative binomial
distribution, which implies that the parasitoids are aggregated
distributed in space (Bliss and Fisher, 1953).

In this paper, we establish a discrete-time host–parasitoid
interaction model, in which both Allee effect and aggregated
parasitoid are incorporated. The population dynamics will be
extensively analyzed. In the next section, we will first propose
the host–parasitoid model and give the explanation of all the
parameters and variables. Then, a simple mathematical analysis
about the stability of the system will be presented. Next, the
population dynamics will be fully investigated through numerical
simulations. Some interesting findings will be shown as a separate
section. At last, we will conclude the results and give a short
discussion.

2. Host–parasitoid model

We assume that the growth of host population without
parasitoid follows Moran–Ricker dynamics (Moran, 1950; Ricker,
1954), which is given by

Htþ1 ¼ Ht exp r 1� Ht

K

� �� �
; (1)

where Ht stands for the population size at time t, r is the intrinsic
growth rate, and K is the carrying capacity of the environment.

Since the influence of Allee effect, once the population size is
below the lower bound, the species will die out (Allee, 1931). Thus,
it is necessary to consider the intraspecific interaction with a lower
bound (Lv and Zhao, 2006). Here starting from Eq. (1), we introduce
a single-species model with Allee effect. The model is described as

Htþ1 ¼ Ht exp
rð1� Ht=KÞðHt � cÞ

Ht þm

� �
; (2)

where Allee effect is denoted as a new term ðHt � cÞ=ðHt þmÞ. The
parameter c is the lower bound for the host and m can be defined as
‘‘Allee effect constant’’. When H is small and c equals zero, the
bigger m is, the stronger the Allee effect will be. Then the per capita
growth rate of the host population is slower (the per capita growth
rate of the host population is changed from r to rðHt=ðHt þmÞÞ).
When c 6¼0 and Ht < c, a simple calculation yields ððrð1� Ht=KÞ
ðHt � cÞÞ=ðHt þmÞÞ<0, that implies exp ½ððrð1� Ht=KÞðHt � cÞÞ=
ðHt þmÞÞ�<1. Then, we have Htþ1 <Ht . In other words, the host
population will go extinct, when its population size falls below the
lower bound c.

There are a number of factors that may affect the host–
parasitoid dynamics, such as Holling-type functional response and
mutual interference functional response (Tang and Chen, 2002; Xu
and Boyce, 2005). In many host–parasitoid models, the encounters
between host and parasitoid are random and can be represented by
Poisson distribution. The derivations of this kind of host–parasitoid
models are usually based on two assumptions (Misra and Mitra,
2006). (i) following the law of mass action, the number of
encounters He of the hosts by parasites is proportional to the
product of their densities, so that He ¼ aHtPt , Pt is the parasitoid
population size in generation t, a is the searching efficiency of the
parasitoid on the host; (ii) only the first encounter between a host
and a parasite is significant and the encounter is random. We
denote n as the random variable of encounters between the host
and parasitoid per unit time, which follows the Poisson distribu-
tion. In this paper, we do not want to repeat this derivation process
and the details can be found in Misra and Mitra (2006).

However, in natural world, most species are neither randomly
distributed nor evenly distributed in space. Particularly, parasites
are usually observed to be aggregated or clumped distributed, i.e.,
many hosts harbor a few or no parasites while a few hosts harbor
large number of parasites (Begon et al., 1986). Bliss and Fisher
(1953) reported that the number of parasitoid on a host usually
follows the empirical statistical distribution Negative binomial.
Walde and Murdouch (1988), according to the data collected by
Lessell (1985), reported that the diffusion and search for food of
parasitoid are closely related to their attacks upon the host. Then,
it is necessary for us to modify the assumptions that encounter
between host and parasitoid is random so as to establish a more
precise model. We confined our attention to the behavioral
responses made by parasitoids whose attacks become more
aggregated to host. Because encounters between host and para-
sitoid are assumed to be aggregated, the number of encounters
n can be approximated by Negative binomial distribution, where
the probability mass function is given by

PðnÞ ¼ Gðkþ n� 1Þ
n!Gðk� 1Þ

pnq�k�n; n ¼ 0;1;2;3; :::;

in which k is clumping parameter. When k!1, Negative binomial
distribution becomes Poisson distribution, while k!0, it is a
logarithmic series. The smaller k is, the stronger the aggregation
parasitism is. For our host–parasitoid system, p is actually aP=k. But
q does not satisfy q ¼ 1� p in Binomial distribution, instead, q ¼
1þ p here. P is the number of parasitoid population, n is the
number of encounters per unite time, and aP is the mean of
encounters per unite time. So the fraction of the host that remain
uninfected can be described as

Pð0Þ ¼ q�k ¼ ð1þ pÞ�k ¼ 1þ aP

k

� ��k

:

Here n ¼ 0, since only the first encounter of the host is assumed to
be significant and is considered to be enough for a successful
transfer of the parasite egg. Thus, function response takes the form
of ð1þ ðaPt=kÞÞ�k that indicate that parasitism following the
Negative binomial distribution function proposed by May (1978).
Then, the host–parasitoid model with Allee effect for the host and
with clumping effect for the parasitoid can be described as

Htþ1 ¼ Ht exp
rð1� Ht=KÞðHt � cÞ

Ht þm

� �
1þ aPt

k

� ��k

Ptþ1 ¼ Ht 1� 1þ aPt

k

� ��k
" #

:

(3)



Fig. 1. Bifurcation diagram of parasitoid population in model (3) without Allee

effect(c ¼ 0;m ¼ 0): (a) respect to the searching efficiency a, the parameters

r ¼ 3; K ¼ 5; k ¼ 1:5, and the initial values H0 ¼ 5; P0 ¼ 2:5; (b) respect to the

clumping index k, the parameters r ¼ 3; a ¼ 2;K ¼ 5, and the initial values

H0 ¼ 5; P0 ¼ 2:5.
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Here we attempt to analyze the stabilizing and destabilizing effects
of Allee effect of host and clumping effect of parasitoid in terms of
the lower bound c, the searching efficiency a, the intrinsic growth
rate r, and the clumping degree k.

3. Stability analysis

In this section, the existence and local stability analysis of the
non-negative equilibria of system (3) are investigated. There are
two non-negative equilibrium points for system (3). The total
extinction solution whereby no species is able to survive is E0 ¼
ð0;0Þ (trivial equilibrium) and the coexistence solution for the two
species is E� ¼ ðH�; P�Þ (non-trivial equilibrium).

Once the steady-state solutions are obtained, we can study
what happens to the dynamic variables H and P when a steady-
state solution is slightly perturbed. Such knowledge is obtained by
calculating the Jacobian matrix. System (3) can be rewritten in the
form:

Hðt þ 1Þ ¼ F1ðHt; PtÞ
Pðt þ 1Þ ¼ F2ðHt; PtÞ;

for which the Jacobian matrix is given by

@F1

@H

@F1

@P
@F2

@H

@F2

@P
:

0
B@

1
CA (5)

The Jacobian matrix of system (3) at the equilibrium point E0 ¼
ð0;0Þ is

Jð0;0Þ ¼ e�ðcr=mÞ 0
0 0:

� �

Accordingly, we find eigenvalues are l1 ¼ e�ðcr=mÞ, l2 ¼ 0. From
this, it can be concluded that E0 ¼ ð0;0Þ is a stable node (jl1j<1).

The equilibrium point E� ¼ ðH�; P�Þ satisfies the following
equations:

H� ¼ QkðQ1=k � 1Þ
aðQ � 1Þ

P� ¼ kðQ1=k � 1Þ
a

;

(6)

where Q is the net rate of the increase in the host per generation,
which in this model is

Q ¼ exp
rð1� H�=KÞðH� � cÞ

H� þm

� �
: (7)

Note that the equilibrium point E� ¼ ðH�; P�Þ can not be solved in a
closed form.

The stability of the steady state at E� ¼ ðH�; P�Þ will now be
examined. Using Eqs. (6) and (7), one can calculate the Jacobian
matrix (5) of system (3) at ðH�; P�Þ:

@F1

@H

����
E�
¼ 1þ Q2kðQ1=k�1Þ

QkðQ1=k�1ÞþmaðQ �1Þ
rþ rc

K
�2QrkðQ1=k�1Þ

aKðQ �1Þ �lnQ

" #
;

@F1

@P

����
E�
¼Qkð1�Q�1=kÞ

1�Q
;

@F2

@H

����
E�
¼ 1� 1

Q
;

@F2

@P

����
E�
¼ kð1�Q�1=kÞ

Q �1
:

Consider the matrix

A ¼ G11 G12

G21 G22;

� �
where

G11 ¼
@F1

@H

����
E�
; G12 ¼

@F1

@P

����
E�
; G21 ¼

@F2

@H

����
E�
; G11 ¼

@F2

@P

����
E�
:

The characteristic equation is

G11 � l G12

G21 G22 � l

����
���� ¼ 0;

which may be rewritten in the form

l2 � Blþ C ¼ 0; (8)

where

B ¼ G11 þ G12; C ¼ G11G22 � G21G12:

The roots of Eq. (8) are

l1;2 ¼
1

2
ðB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p
Þ:

Both eigenvalues are real for (lR) and jl1;2j<1 if

B2 � 4C>0 and � 1<
1

2
ðB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4C

p
Þ<1;

which yields

4C<B2 <4C þ 4: (9)

The eigenvalues jl1;2j<1 become complex (lC) and are inside the
unit circle in the complex l-plane for

B2 � 4C<0 and B2 þ ð4C � B2Þ<4;
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which yields

B2 <4C<4: (10)

If conditions (9) or (10) is satisfied, positive equilibrium point
E� ¼ ðH�; P�Þ is stable.

4. Bifurcation analysis

System (3) is a transcendental equation, therefore, we can not
obtain the solutions explicitly. Alternatively, to gain preliminary
insight into the properties of the dynamical system, we conducted
a one-dimensional bifurcation analysis. One-dimensional bifurca-
tion diagrams give information about the dependence of the
dynamics on a certain parameter. The analysis is expected to reveal
the type of attractor to which the dynamics will ultimately settle
down after passing an initial transient phase and within which
the trajectory will then remain forever. In this paper, for each
numerical simulation, the first 4000 steps are omitted to remove
the initial transients, and only the next 1000 steps are used to draw
the bifurcation diagrams.

Firstly, we will show the bifurcation diagrams for the two major
parameters a and k, where Allee effect is not included
(m ¼ 0; c ¼ 0). Fig. 1(a) is plotted as a function of the bifurcation
parameter a, while Fig. 1(b) is a bifurcation diagram of parasitoid
population with respect to the clumping index k. These two
bifurcation diagrams are similar to classical bifurcation diagrams,
where the routes to chaos is through periodic-doubling and crisis.
Particularly, for a large range of these parameters, the host and
Fig. 2. Bifurcation diagram of parasitoid population with respect to the lower

bound c in model(3). (a) parasitoid population size P and (b) gives details of (a).

The parameters r ¼ 3; a ¼ 2; K ¼ 5; k ¼ 1:5; m ¼ 0:0002, and the initial values

H0 ¼ 5; P0 ¼ 2:5.
parasitoid can coexist, although the system dynamics are chaotic
and non-periodic. The first question that we are interested in is
what the dynamics is when Allee effect is incorporated. In other
word, whether these chaotic attractors persist or disappear when
Allee effect is included? In the following paragraphs, our major
concern is to elucidate the influence of Allee effect in this host–
parasitoid system.

Our first aim is to illustrate how the system dynamics respond
to the principle parameter-the lower bound c. As Fig. 2 shows, it
seems that the lower bound is an important factor affecting the
host–parasitoid dynamics. From Fig. 2(a), we see the host–
parasitoid system begins with period-4 fluctuations. As c app-
roaches to 0.02913, system experienced a period-doubling, from
period-4 to period-8. Unlike the common period-doubling route to
chaos, here we observe period-8 within a small region. Then it
experienced a period-halving bifurcations, from period-8 to
period-4 at c ¼ 0:05315. When the parameter c further increases,
the system suddenly changes into quasiperiodic at c ¼ 0:05688. In
the phase plane this appearance of a closed curve, where the points
never coincide, is an indication of quasiperiodic. After that, from
Fig. 2(b) (details plotted in Fig. 2(a)), quasiperiodic attractor
abruptly disappears and goes period-5 at c ¼ 0:12352, thus
constituting a type of attractor crisis. Lastly, parasitoid suddenly
vanishes at c ¼ 0:15964. As we can see, when the parameter c

increases, although the steady states were replaced by some
unstable dynamics, there is not evidence of occurrence of chaos.
Meanwhile, we also frequently observed the sudden changes of
attractors (crisis), where multiple attractors coexist (see the
following section).
Fig. 3. Bifurcation diagram of parasitoid population and host population with respect

to the searching efficiency a in model (3). (a) parasitoid population size P and (b) host

population size H. The parameters r ¼ 3; K ¼ 5; k ¼ 1:5; c ¼ 0:1; m ¼ 0:0002, and

the initial values H0 ¼ 5; P0 ¼ 2:5.
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Now, we are in position to show how the bifurcation diagrams
in Fig. 1 are changed, when Allee effect is included. For the purpose
of comparison, we will draw the bifurcation diagrams for both a

and k. In order to illustrate the system dynamics explicitly, the
bifurcation diagrams will also be given here.

(1) Fig. 3 illustrates the bifurcation diagram of model (3) for the
parasitoid and the host population dynamics. The bifurcation
diagrams are almost similar except the left part, where
parasitoid goes extinct and host is 3-period dynamics, so only
parts of Fig. 3(a) is magnified in Fig. 4. The parasitoid
population size is plotted as a function of the bifurcation
parameter a and the parameter values are c ¼ 0:1; m ¼ 0:0002.
From Fig. 3(a), we see that the system experiences a period-
doubling reversal from chaotic dynamics at a ¼ 0:3335 to
Fig. 4. Magnification of part of Fig. 3(a): (a) 0:32< a<0:44; (b) 2:2< a<2:202;

and(c) 2:375< a<2:42.

Fig. 5. Bifurcation diagram of parasitoid population with respect to the clumping

index k in the host–parasitoid model (3) for (a) parasitoid population size P and (b)

give details of (a). The parameters r ¼ 3; a ¼ 2; K ¼ 5; c ¼ 0:1; m ¼ 0:0002, and the

initial values H0 ¼ 5; P0 ¼ 2:5.
period-32, period-16, period-8 and then period-4, period-2,
and at a ¼ 0:4134 stable coexistence (details plotted in
Fig. 4(a)). When the parameter a further increases, the system
dynamics will quasiperiodic through a Hopf bifurcation (the
Fig. 6. Bifurcation diagram of parasitoid population with respect to the intrinsic

growth rate r in the host–parasitoid model (3).The parameters a ¼ 2; K ¼ 5; k ¼ 1:5;

c ¼ 0:1; m ¼ 0:0002, and the initial values H0 ¼ 5; P0 ¼ 2:5.
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critical value is a ¼ 1:6362). Generally, frequency-lockings
usually accompany with quasiperiodicity. Here, this phenom-
enon is also observed. As the bifurcation diagram Fig. 4(b)
shows, when a is slightly increased beyond 2.2003, the
quasiperiodic attractor abruptly disappears, thus constituting
a type of attractor crisis. At the same time, period-5 attractor
arises. When a increases beyond 2.394, crisis occurs again
(details plotted in Fig. 4(c)).

(2) For the parameter k, bifurcation diagrams for model (3)
illustrates the stabilizing effect of the aggregation of parasitoid
attacks. Fig. 5(a) shows that the system will first experience a
period-doubling reversal from chaotic dynamics with periodic
windows to period-32, period-16, period-8, period-4, period-2,
and then becomes stable at k ¼ 0:2568. It can be clearly
observed that host and parasitoid can coexist stably in the
range of ½0:2568; 1:4349�. As the parameter increases from
1.4349, the model (3) goes through quasiperiodicity with
Fig. 7. Magnification of part of Fig. 6: (a) 2:42< r<2:5; (b) 3:15< r<3:17;and(c)

3:2< r<3:3.
frequency-lockings that includes period-50, period-41, period-
32, attractor crisis. Fig. 5(b) illustrates an example of periodic
window within the region of quasiperiodicity. Finally, para-
sitoid goes extinct at k ¼ 1:9147. Through extensive numerical
simulations, we find that the clumping effect can be considered
as a stabilizing factor, especially for moderate clumping level.

Next, we will shed light on another important parameter r. In
Fig. 6, the parasitoid population is plotted as a function of intrinsic
growth rate r, and the initial values are H0 ¼ 5; P0 ¼ 2:5. Fig. 7
gives details of Fig. 6, and it shows a complex dynamical structure
containing bifurcation phenomena. Fig. 7(a) shows a periodic
window with a cascade of periodic attractors. Fig. 7(b) shows the
window, which is not a periodic window with a cascade of periodic
Fig. 8. Multiple attractors coexist in system: (a) r ¼ 3; a ¼ 2; K ¼ 5; k ¼ 1:5;

m ¼ 0:0002: point equilibrium, period-5 and quasiperiodic attractors at

c ¼ 0:1236; (b) a ¼ 2; K ¼ 5; c ¼ 0:1; m ¼ 0:0002: point equilibrium, quasiperiodic

and chaotic attractors at r ¼ 3:167; (c) a ¼ 2; K ¼ 5; c ¼ 0:1; m ¼ 0:0002: point

equilibrium and chaotic attractors at r ¼ 3:27336.
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attractors in the range of r 2 ½3:1563; 3:1683�, includes other
complex dynamic patterns. Fig. 7(c) shows another complex
dynamics of attractor crisis. As r increases from 3.231 to 3.2812,
quasiperiodicity attractor abruptly disappears and parasitoids
go extinct. But for several concrete r, such as r ¼ 3:27136;
r ¼ 3:27137, parasitoid persist in the form of chaos. Another
strange phenomenon that attracts our interest is the coexistence of
multi-attractors, where system are sensitive to initial conditions.
When initial conditions are slightly changed, the system dynamics
will be qualitatively different. We will give more detailed des-
criptions in the next section.

After a tedious bifurcation analysis, we can draw a short
conclusion without further excessive discussions. By comparing
the bifurcations diagrams with and without Allee effect, we notice
that the chaotic parameter range shrinks, although complicated
dynamics are not thoroughly removed. As we know, sensitivity to
initial conditions is another important characteristic of complex
dynamics (Kaitala and Heino, 1996). Actually, many interesting
phenomena are also observed in the host–parasitoid system with
Allee effect and aggregation. In the next section, we will investigate
the influence of Allee effect on host–parasitoid system from the
perspective of dynamic complexities.
Fig. 9. The basins of attraction for Non-unique attractors (r ¼ 3; a ¼ 2; K ¼ 5; k ¼ 1:5): th

scopes of initial values: (a and d) (0, 10]; (b and e) (0, 1]; (c and f) (0, 0.1]. (a–c) host–par

areas are the basins of attraction for period-4 and non-trivial equilibrium. (d–f) host–par

is same as (a–c)): the red area: the basins of trivial equilibrium; white area: the basin
5. Non-unique attractors and period alternation

First, we will give an example of coexistent attractors. Revising
Fig. 2, there are sensitive ranges where multiple attractors coexist.
As Fig. 8(a) shows, trivial equilibrium and period-5 coexist with
quasiperiodic attractors at c ¼ 0:1236. Another example comes from
the bifurcation diagrams (Fig. 7(b) and (c)) with respect to the
parameter r, there are also several ranges where multiple attractors
coexist. In the range of ½3:1563; 3:1683� [ ½3:231; 3:2812�, two or
more attractors coexist, i.e., trivial equilibrium, quasiperiodic and
chaotic attractors at r ¼ 3:167 (Fig. 8(b)), trivial equilibrium and
chaotic attractors at r ¼ 3:27336 (Fig. 8(c)). Here, the equilibrium
point is trivial, which means that the population goes extinct. There
are so many examples of coexistent attractors in the host–parasitoid
system that we can not illustrate all of them explicitly. In fact, what
we are really interested is the basins of attraction, especially
complex structure of basins of attraction (Grebogi et al., 1983; Testa
and Held, 1983; Peitgen et al., 1992; Kaitala and Heino, 1996; Kaitala
et al., 1999).

Now, we will give an example to illustrate the basins of
attractions with and without Allee effect. Fig. 9(a)–(c) show the
basins of attraction of two coexisting attractors. Through magnify
e step-size in the initial values: (a and d) 0.02; (b and e) 0.002; (c and f) 0.0002. The

asitoid model without lower bound for the host(c ¼ 0; m ¼ 0): the white and black

asitoid model incorporating Allee effect(m ¼ 0:0002; c ¼ 0:1236, others parameters

s of period-5.



Fig. 10. Period alternation of Parasitoid population dynamics for r ¼ 3; K ¼ 5; k ¼ 2;

c ¼ 0:1; m ¼ 0:0002; a ¼ 1:4, and the initial values H0 ¼ 5; P0 ¼ 2:5.
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a corner of the basin step by step, we found that the structure of the
these basins are similar. Although we do not test the fractal strictly,
the self-similarity is obviously. However, when Allee effect is
added, the property of self-similarity is disrupted. Fig. 9(d)–(f) give
the basins of attraction with the same parameters in (a)–(c) except
c and m. Unlike the left column (a)–(c), the basin boundaries of
attractions are almost simple sets. Although the non-ubiquity of
attractors are not totally eliminated, the structure of the basin
of attraction is altered. The example here gives us an clue about the
influence of Allee effect on dynamical complexity of host–
parasitoid system. Strictly speaking, we can not arbitrarily declare
that self-similarity is eliminated by Allee effect. But at least, we can
say that the sensitivity of the population dynamics to initial
conditions is reduced. In one word, Allee effect still plays an
positive role in stabilizing host–parasitoid system in a broad sense.

Another dynamical complexities in many host–parasitoid
system are intermittent chaos and Supertransients (Kaitala and
Heino, 1996; Kaitala et al., 1999; Tang and Chen, 2002; Xu and
Boyce, 2005; Lv and Zhao, 2006; Zhu and Zhao, 2007). Inter-
mittency is characterized by switches between apparently regular
and chaotic behavior. The behavior is completely aperiodic and
chaotic. Supertransients are used to denote an unusually long
convergence to an attractor. Intermittent chaos and Supertransi-
ents are two routes leading to chaos. When Allee effect is not
incorporated, both the two phenomena are observed. Here, we do
not want to give these examples as figures. However, we find both
these phenomena are eliminated when Allee effect is included.
Unexpectedly, we indeed find another important property–abrupt
changes of periodic attractors over the long time-scale. Fig. 10
shows the abrupt alternation of period. We can see that after about
700 generations 4-period fluctuation is suddenly changed to 8-
period. The changes of attractor is from one periodic attractor to
another periodic attractor, which is inconsistent with intermittent
chaos or Supertransients. Even though the abrupt change is also
one kind inconsistency of attractors, the dynamical complexity is
more or less reduced. At least, chaos is eliminated in the process of
change. Similarly, we notice that the dynamical complexity of
host–parasitoid system is reduced in a sense by Allee effect.

6. Conclusion and discussion

In this paper, we established a brand-new discrete-time host–
parasitoid model, in which both Allee effect for the host and
aggregated parasitoid are simultaneously incorporated. Generally
speaking, our model is more biological reasonable than some
previous host–parasitoid models. Since the strong non-linearity,
we can hardly obtain any meaningful information about the
stability of the equilibrium from mathematical analysis. However,
an extensive bifurcation analysis trough numerical simulations
still elucidate all possible dynamics that the system can exhibit.
Particular, we can gain some basic imagination about the role of
Allee effect on host–parasitoid system. Now, we will give a short
discussion based on the conclusions obtained from this study.

Our first conclusion is about the relationship between
dynamical complexity and Allee effect. First, we have to admit
that the host–parasitoid model can exhibit many kind of complex
dynamics. However, through comparing the bifurcation diagrams
without and with Allee effect, we find that the range of chaos are
compressed, when Allee effect is included. Therefore, Allee effect
can be considered as one stabilizing effect to some extent.
However, another inharmonious phenomenon, in this study is
the occurrence of quasiperiodicity the bifurcation diagram with
respect to parameter c. Although the dynamics is unstable, there is
not evidence of occurrence of chaos. We notice that the occurrence
of quasiperiodicity does not qualitatively change the conclusion.

Moreover, as long as the stabilizing effect of Allee effect, there
exist supporting evidence from two aspects. The first is related to
basins of attraction. The basins of attraction were defined as the
set of the initial conditions whose trajectories asymptotically
approach that attractor as time increases. The properties of self-
similarity and fractal basin boundaries of the basins of attraction
were found in many other models (Kaitala and Heino, 1996; Kaitala
et al., 1999; Tang and Chen, 2002; Xu and Boyce, 2005) except
host–parasitoid model with Allee effct. Fractal basins of attraction
implies the dynamics of the host–parasitoid system will change
alternately among different attractors, when a small external
perturbation is induced. However, in this study, a comparison
between the basins of attraction with and without Allee effect
shows that the sensitivity to initial conditions was reduced. In
other word, population dynamics become resistable to external
disturbances. The second evidence is in relevance to the changes of
attractors. Two kinds of change of attractors changes are included:
intermittent chaos and Supertransients. Intermittent chaos and
Supertransients are two approaches from stable period to chaos
and were also reported in discrete-time single-species models
(Murdoch and Oaten, 1975), epidemiological models (Koella and
Doebeli, 1999), spatially structured ecological models (Hastings
and Higgins, 1994), and Holling-type functional response host–
parasitoid models (Kaitala et al., 1999; Tang and Chen, 2002).
However, we find that all these two kinds of changes are altered
when Allee effect is considered. The new kind of change of attractor
in this study is from periodic attractor to periodic attractor. It
means Allee effect in host exclude the presence of chaos in the
dynamics. Natural populations usually fluctuate irregularly in both
period and amplitude. The mechanisms leading to this irregular
fluctuations include two aspects-internal and external. The
internal mechanism is referred to as the intrinsic interactions,
such as interspecific and intraspecific interactions. The most
important feature of internal mechanisms is non-linearity, which
caused many complex dynamics in deterministic models. The
external mechanism is referred to as the disturbance from the
environment, which is also called as environmental noises. The
debate between these mechanisms last for a true long time, and we
do not intend to mention this topics too much here. Our intention
is to link the real data and the mathematical models together.
Generally, the dynamics predicted from these mathematical
models is usually very intrigued, while the dynamic behavior of
real data is much simpler. Since this obvious discrepancy, many
ecologists refused to accept the predictions from the deterministic
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mathematical models and prefer to accept environmental noise
as the major driving force. However, our deterministic model,
where Allee effect is added, can produce more simpler dynamics.
Our result, although can not fully solve the discrepancy, can at
least strengthen the utility of mathematical models in exploring
populations.

Dynamic complexities are the common characteristics in a
variety of population models. Identifying the complex dynamics in
natural population data has remains a major challenge in ecological
studies. For example, chaos is usually observed in mathematical
models, but detecting chaos from real population data is a tough
work. There is no clear evidence that chaos actually exists in natural
populations. As far as chaos in natural populations, there are two
controversial viewpoints. On the one hand, some scientists insisted
that chaos does exist in natural world, but can not clearly detected
from short time series of real data (May, 1972; May and Oster, 1976).
One the other hand, other scientists proposed that, as one outcome
of non-linear density dependence, chaos can be eliminated by the
interspecific interactions, such the mutual interaction within a food
web, immigration, omnivory and habitat-heterogeneity (Turchin
and Taylor, 1992; Ellner and Turchin, 1995; Patten, 1997; Xu and Li,
2002a, b). However, besides chaos, a variety of other dynamic
complexities are observed in many population models (Kaitala and
Heino, 1996; Kaitala et al., 1999; Tang and Chen, 2002; Xu and Boyce,
2005). The increasing number of potential complexities predicted
by the theoretical models causes investigating natural popula-
tion dynamics more difficult. From our study, we verified that
dynamic complexities are reduced by incorporating one intraspe-
cific mechanism-Allee effect. Our finding suggests that dynamic
complexities might be eliminated through some balancing efforts in
the nature, that is the reason why the data from the natural
population looks simpler. This conjecture is more or less similar to
some previous viewpoints (Turchin and Taylor, 1992; Ellner and
Turchin, 1995). From this perspective of linking real data and
theoretical predictions, we speculate that the task in modeling
population dynamics is to avoid dynamic complexities rather to
introduce them.
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