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1. Introduction

Studies on terrestrial ecology indicate that about half of the land
surface of the Earth has changed in an unsustainable way due to
human activities (Vitousek et al., 1997). Man consumes 10–55% of
dry matter produced by vegetation photosynthesis per year
(Vitousek et al., 1986; Rojstaczer et al., 2001). DeFries et al.
(1999) estimated that the potential photosynthesis ability of global
ecosystems decreased by 5% due to land cover change in the past
two centuries. Recently, people have started to pay more attention

to the potential environmental problems caused by urbanization
(Berry et al., 1990; McDonnell et al., 1997). From an ecological
viewpoint, urbanization accompanied by land use changes has a
large impact on the ecosystem, altering its composition and
structure, and consequently affecting ecosystem processes and
functioning (Alberti, 2005). Land use and land cover changes alter
the natural matter and energy cycles of the ecosystem (Wack-
ernagel and Yount, 1998; Pielke et al., 1999; Imhoff et al., 2000). In
the course of urbanization, the conversion of land to urban use
notably decreases photosynthesis of the ecosystem in regions with
productive forests (Wear and Greis et al., 2001; Nizeyaimana et al.,
2001).

The world is undergoing urban sprawl and experiencing rapid
population growth, which is transforming regional natural land-
scapes. For example, large patches of fertile cropland and forests
tend to be fragmentized due to rapid urbanization (Imhoff et al.,
1997; Folke et al., 1997). In some regions, loss of cropland has an
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A B S T R A C T

China has made great economic achievements since the Reform and Opening policy implementation.

Shenzhen as the representative city has experienced rapid urbanization and population growth.

Urbanization strongly changes the nature of the land surface and has a large influence on the regional

ecosystems. In the process of urbanization, fertile cropland and original forest are often destroyed. It is

important to regularly monitor the effect of urbanization on the natural environment so as to allow us to

control the encroachment to a reasonable extent. Net primary productivity (NPP) is an important

productivity indicator of the ecosystem. We obtained land covers from Landsat TM images to quantify

urbanization of Shenzhen between 1999 and 2005. We used the Moderate Resolution Imaging

Spectroradiometer (MODIS-based) Normalized Difference Vegetation Index (NDVI) data, Landsat-based

land cover map, meteorological data and other field data to drive the CASA productivity model and

obtain net primary productivity for the study area. Finally, we estimated the effect of urban sprawl on

regional NPP. The study on Landsat-based land cover maps indicated that a move towards urban is the

most significant landscape change in Shenzhen City and urbanization has irreversibly transformed about

20.21% of Shenzhen’s surface during 1999–2005. NPP loss mainly resulted from urbanization during

1999–2005 and totaled to 321.51 Gg of carbon, an average annual reduction of 45.93 Gg of carbon. For

every square km of Shenzhen area, NPP was on average reduced by 0.0017 Gg of carbon during 1999–

2005. The loss of NPP is equivalent to a reduction in absorption of 520.85 Gg CO2 and release of 385.81 Gg

O2, so urbanization has a large influence on the regional net primary productivity.
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important influence on food security, climate conditions and the
environment (Yu et al., 2006). Researchers have carried out many
studies on the effect of urbanization on matter cycles, energy flow
and ecosystem service (Schimel et al., 2000).

Net primary productivity (NPP) is the amount of solar energy
converted to chemical energy through the process of photosynth-
esis (production minus respiration) and represents the primary
source of food for Earth’s heterotrophic organisms (organisms that
require preformed organic compounds for food energy) including
human beings (Imhoff et al., 2004). Quantitative investigations on
the influence of urbanization on NPP, net ecosystem productivity
(NEP) and net biosphere productivity (NBP) are important in the
context of earth system science and global change studies (Postel
et al., 1996). NPP loss may affect the composition of the
atmosphere (Pimm and Raven, 2000), fresh water availability
(Sala et al., 2000), biodiversity (DeFries et al., 1999; Field, 2001)
and the ecological adjusting mechanism of energy supply and
distribution (Houghton et al., 1999). Hence, NPP is a sensitive
indicator of climatic and environmental changes (Schimel et al.,
1995). Studying the impact of urbanization on NPP is crucial to
understand the change of ecosystem structure and function and to
predict future global carbon cycle trends.

In the past, researchers mainly focused on the impact of
urbanization on net primary productivity on a large scale. Cristina
et al. (2003) used the MODIS data, land cover map and night light
extent data, derived from the Defense Meteorological Satellite’s
Operational Linescan system (DMSP/OLS) to estimate the extent
of urban development and its impact on NPP in the southeastern
United States. Imhoff (2004) used nighttime images from the
DMSP/OLS data to portray the extent and spatial distribution of
the urbanized area and estimate urbanization impact on NPP by
using the NDVI data as the input to the Carnegie Ames Stanford
Application (CASA) productivity model in the United States. These
studies were conducted at coarse resolution (1 km or larger). The
methods are suitable for regions on a large spatial scale, but give
inaccurate NPP patterns for regions on a fine scale. So far, only a
small number of studies based on fine data resolution have been
carried out to study how the conversion of land to urban use
affects net primary productivity. This paper studies the influence
of urban sprawl on fine-resolution NPP in a rapid urbanization
region.

2. Study area

Shenzhen City, which is one of the important cities of the
Guangdong province, China, is located between 228270 N and
228520 N latitude and between 1138460 E and 1148370 E longitude.
Its location is shown in Fig. 1. The total area is approximately
1968.79 km2. It is located in the subtropical marine climate zone.
Annual temperature values for Shenzhen during 1990–2005 are
36.6 8C (average maximum), 22.4 8C (mean), and 1.4 8C (average
minimum). Mean annual precipitation and total sunshine hours
are 1933 mm and 2011 h, respectively. Its total mean annual solar
radiation is 5404.9 MJ m�2. The main soil types are yellow soil and
lateritic red soil. The dominant vegetation types of Shenzhen are
evergreen broad-leaved mixed forests, garden forests and crop-
land. Shenzhen was established in 1979 and is the first
experimental zone of Chinese Reform and Open-Door Policy. Its
astonishing development rate has made it famous throughout the
world. During the twenty-five years since its establishment,
Shenzhen’s economy has increased at an annual mean rate of 30%
and the total economy has increased by 1800 times (Shenzhen
Statistical Yearbook, 2006). In 2005, GDP of Shenzhen city was
495.1 billion RMB yuan and the permanent resident number
reached 8.28 million. As a result, Shenzhen experienced rapid
urbanization, with urbanization rates over 78% until 2005.

3. Methods

We chose the combination of satellite data, geo-spatial
meteorological data and ground observational data of NPP to
carry out the study. Except observational NPP, all other data were
reproduced at 30 m spatial resolution and projected to Universal
Transverse Mercator (UTM) zone 49, by using World Geodical
System-84 (WGS84) datum. We used land cover maps both to
track land cover changes due to recent urban sprawl in Shenzhen
and to guide the estimation of NPP from MODIS-based data. Two
30 m spatial resolution land cover maps obtained by Landsat
Thematic Mapper images (TM) for the year 1999 and 2005,
respectively, are used to portray the extent and spatial distribution
of land cover changes caused by urbanization in Shenzhen during
1999–2005. We downloaded the available MODIS albedo products
(the red-band and the near infrared-band for the year 1999 and
2005) from the EROS Data Center Distributed Active Archive Center
(EDC DAAC) to compute MODIS-based NDVI. These albedo data are
16-day composites of atmospherically corrected maximal values at
250 m spatial resolution. We produced a 32-day composite
product of the maximal value for a time series and reprojected
the composite to Universal Transverse Mercator (UTM), and
WGS84 datum from the original Integerized Sinusoidal Projection.
In this study, the period of a time series or monthly data means 32
days, so one year includes about 11 time series of composite
product of maximal value and other inputs. We calculated NPP by
using the MODIS-based NDVI data as the input to the CASA
productivity model to evaluate the effect of the conversion of land
to urban use.

3.1. NPP ecosystem model

Many models have been developed to estimate NPP, which can
be divided into three categories (Ruimy and Saugier, 1994): (1)
statistical models, (2) parameter models, (3) process-based
models. The CASA ecosystem model, based on estimating light
use efficiency (LUE), is a process-based model and appropriate to
estimate NPP on a global or regional scale. The CASA ecosystem
model is robust in describing spatial and temporal NPP patterns
(Potter et al., 1993).

In the CASA model, NPP is the product of modulated absorbed
photosynthetically active radiation (APAR) and a light use
efficiency factor, namely (Potter et al., 1993):

NPPðx; tÞ ¼ APARðx; tÞeðx; tÞ (1)

where NPP(x, t) represents NPP in the geographic coordinate of a
given location x and time t. APAR(x, t) (MJ m�2 mon�1) is the APAR
absorbed by the vegetation. e(x, t) is the light use efficiency
(g C MJ�1) of the vegetation. The algorithm of light use efficiency
can be expressed as:

eðx; tÞ ¼ Te1ðx; tÞTe2ðx; tÞWeðx; tÞemax (2)

where Te1 (x, t) and Te2 (x, t) are temperature stress coefficients;
We(x, t) is a moisture stress coefficient and emax is a biome-specific
light use efficiency factor that is estimated from daily meteor-
ological conditions. emax means the maximal light use efficiency of
the specific biome under ideal conditions (minimum temperature
and vapor pressure deficit). In this model, the moisture stress
coefficient (We(x, t)) is simultaneously related to many soil
parameters such as field moisture capacity, wilting coefficient,
the percentage of soil sand and clay particles, depth of the soil, etc.
However, these parameters are difficult to obtain in Shenzhen
because of the lack of fundamental soil data. In this study, we used
monthly meteorological data (monthly total solar radiation,
monthly average temperature and monthly total precipitation)
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and used the regional evapotranspiration model of Zhou and Zhang
(1995, 1996) to estimate the regional moisture stress coefficient. It
has been proved that its accuracy is over 90%. The regional
moisture stress coefficient (r) can be defined by:

r ¼ E1ðx; tÞ
E2ðx; tÞ

(3)

where E1 (x, t) is the estimated evapotranspiration (see Eq. (4)) and
E2 (x, t) is potential evapotranspiration.

E1ðx; tÞ ¼
Pðx; tÞ � Rðx; tÞ � ½Pðx; tÞ2 þ ðRðx; tÞÞ2 þ Pðx; tÞ � Rðx; tÞ�

Pðx; tÞ þ Rðx; tÞ� � ½Pðx; tÞ2 þ Rðx; tÞ2

(4)

In Eq. (4), R(x, t) expresses net solar radiation (MJ m�2 mon�1)
and P(x, t) is monthly precipitation (mm mon�1). The potential
evapotranspiration is given by:

E2ðx; tÞ ¼
E1ðx; tÞ þ E0ðx; tÞ

2
(5)

where E0ðx; tÞ ¼ 16� ½10� Tðx; tÞ=IðxÞ�aðxÞ. a(x) and I(x) can be
computed by the following Eq. (6):

aðxÞ ¼ ð0:675IðxÞ3 � 77:1IðxÞ2 þ 17920IðxÞ þ 492390Þ � 10�6

with IðxÞ ¼
X12

i¼1

½Tðx; tÞ=5Þ�1:514
(6)

where I(x) is the total heat index in a year and T(x, t) is the monthly
average temperature per area.

This method does not only keep the plant physiological and
ecological basis of the original CASA ecosystem model, but also
simplifies the input parameters and widens its applicability.

Potter et al. (1993) assumed that vegetation has maximal light
use efficiency (emax) under ideal conditions. However, in reality it is
easily affected by actual temperature and moisture conditions.

Many researchers (Potter et al., 1993; Field et al., 1995, 1998;
Jeffrey, 2006) set emax to a sole value for different vegetation types.
However, the maximal light use efficiency, which is mainly
affected by temperature, water availability, soil type, plant
nutrition, diseases, individual development, gene difference and
energy distribution (Prince, 1991), differs greatly in the real
situation (Goetz and Prince, 1996; Paruelo et al., 1997; McCrady
and Jokela, 1998). In the current paper, according to the principle of
minimal error between the modeled NPP and the observed NPP,
Eq. (7) is used to model the maximal light use efficiency for
different vegetation types. The observed NPP data related to seven
major biomes were provided by the former Ministry of Forestry of
China. Latitude, longitude, elevation, leaf area index, total biomass,
and total NPP are documented for each observed site. emax can be
estimated in three steps: (1) by computing for each pixel the values
of APAR, temperature and water stress factors; (2) by selecting
observed NPP data; (3) development of an equation (see Eq. (7))
and computing emax for different vegetation types. For each
vegetation type, the error between the observed NPP and the
estimated NPP can be expressed by:

EðxÞ ¼
Xj

i¼1

ðmi � niemaxÞ2; emax 2 ½l;u� (7)

where i expresses the sample number of the vegetation, mi is the
observed NPP and ni is the product of APAR, temperature and water
stress factors. emax is the maximal light use efficiency modeled for
the vegetation. l and u are the lower and the upper light use
efficiency of the vegetation, respectively. Eq. (7) can be expanded as:

EðxÞ ¼
Xj

i

n2
i e2

max � 2
Xj

i¼1

miniemax þ
Xj

i¼1

m2
i ; x2 ½l;u� (8)

Eq. (8) is a hyperbolic equation, so it must have a minimum
value between l and u. In this case, the error between the observed

Fig. 1. The location of Shenzhen city (c) in China (a) and Guangdong province of China (b), respectively. Shenzhen city is divided into six districts: Yantian, Nanshan, Luohu,

Longgang, Futian and Baoan.
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NPP and the estimated NPP is at its minimum and emax is just the
estimated maximal light use efficiency for the vegetation.

The flow chart of the CASA model algorithm used to calculate
NPP is shown in Fig. 2.

3.2. Input requirements and data processing for the NPP model

3.2.1. Mapping Shenzhen land cover

We chose two cloud-free Landsat TM images representative of
the growing season to describe Shenzhen land cover in 1999 and
2005. One image was taken in September 1999 and the other one in
August 2005. We used global positioning system (GPS) instru-
ments to obtain the exact location of ground control points (GCPs)
while at the same time investigating the features of different land
covers at these locations. One hundred and ninety-six evenly
distributed GCPs were used to make geometric corrections of each
TM image, with a root mean square error (RMSE) of less than 0.5
pixel. The TM images were masked using the geographical
boundary of Shenzhen County. Visual interpretation of remote
sensing images is an effective way to map regional land cover/land
use types (Wilson and Sader, 2002). A supervised classification
approach was chosen for mapping the land cover using the
maximum likelihood method. The classification result was verified
and modified according to ground survey. Finally, land cover maps
for 1999 and 2005 were classified into five categories: (1) urban,
(2) cropland, (3) forests, (4) water body, (5) wetland. Accuracy of

the images was assessed using the ground truth data collected
during field survey. The overall accuracy was 90.2% for the 1999
map and 89.5% for the 2005 map.

3.2.2. MODIS-based NDVI

Compared to Landsat TM images, the spatial resolution of
MODIS red-band or near-infrared-band albedo images
(250 m � 250 m) is crude. A MODIS image pixel is equivalent to
about 69 Landsat TM pixels, which belong to different land covers.
At a 250 m resolution, most of the MODIS pixels are corresponding
to a mosaic of trees with grass underneath, buildings or other land
covers. If these Landsat TM pixels are allocated the same albedo
value, this may cause more systematic errors. We used a linear
model to decompose MODIS albedo image pixels to the Landsat TM
scale. A linear equation group is used to derive the red-band or
near-infrared-band MODIS-based albedo value for the five land
covers corresponding to a pixel of MODIS image data:

N1 ¼ N11P11 þ N12P12 þ N13P13 þ N14P14 þ N15P15%
N2 ¼ N21P21 þ N22P22 þ N23P23 þ N24P24 þ N25P25%
N3 ¼ N31P31 þ N32P32 þ N33P33 þ N34P34 þ N35P35%
N4 ¼ N41P41 þ N42P42 þ N43P43 þ N44P44 þ N45P45%
N5 ¼ N51P51 þ N52P52 þ N53P53 þ N54P54 þ N55P55%

8>>>><
>>>>:

(9)

where Nm (m = 1, 2, . . ., 5) is the red-band or near-infrared-band
albedo value of the mth pixel of the MODIS image data and Nmn is
the red-band or near-infrared-band albedo value of the n (n = 1, 2,

Fig. 2. The flow chart of the CASA model used to estimate NPP. The CASA model has three key inputs: (1) remote sensing inputs (land cover, NDVI), (2) monthly surface

meteorological inputs (monthly solar radiation (SOL) which is used to estimate APAR; monthly average temperature and monthly total precipitation which are used to

estimate temperature stress coefficients (Te1, Te2) and moisture stress coefficient (We)), (3) biome-specific coefficients (observed NPP, emax and e). Based on the land cover,

observed NPP, temperature stress coefficients and moisture stress coefficient, the maximal light use efficacy (emax) of the vegetation type is estimated to produce light use

efficiency (e) of the vegetation type, which is then used with the absorbed photosynthetic active radiation (APAR) to predict monthly net primary productivity (NPP), namely,

NPP = APAR � e, where APAR = SOL � FPAR � r and r is the ratio of the solar radiation (with wavelength range of 0.38–0.71 mm) that can be utilized by the vegetation with the

total solar radiation. Final estimation of annual NPP is obtained by adding the 11 time series of NPP in a year.

Y. Deyong et al. / Agricultural and Forest Meteorology 149 (2009) 2054–2060 2057
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. . ., 5) types of land covers of TM image included in the mth pixel of
MODIS data. Pmn% stands for the area percentage of the nth land
cover to the mth pixel of the MODIS image. Each group of five
MODIS pixels can build a linear equation group as in Eq. (9) and can
be used to compute the red-band or near-infrared-band albedo
value of different land covers. We can obtain new red-band or
near-infrared-band albedo values for different land covers after
linear decomposition by a 5 � 5 MODIS-pixel slide window that
floats across the whole MODIS image. In the overlap area, the
original albedo values are replaced by the calculated albedo values.
A NDVI map was generated for all the images by using:

NDVI ¼ Red� NIR

Redþ NIR
(10)

where Red and NIR represent the red-band and near-infrared-band
MODIS albedo after pixel decomposition.

In theory, the value of NDVI of a water body should be zero.
Urban generally means very little vegetation, so NDVI values of
water bodies and urban areas were set to zero when they were
used to calculate NPP.

3.2.3. Monthly meteorological data

The meteorological data required as input for the CASA
ecosystem model are the monthly mean air temperatures, monthly
total precipitation and monthly total solar radiation, in 1999 and
2005. These data were recorded by seven weather stations of
Shenzhen and nearby regions. They were bilinearly interpolated
into an image with 30 m � 30 m resolution to match MODIS-based
NDVI data and Landsat TM image data.

3.2.4. Selecting the observed NPP from NPP databases

The observed NPP data are mainly used to estimate the maximal
light use efficiency and verify the estimated NPP. The observed NPP
data were compiled from two sources: (1) the former Ministry of
Forestry of China, (2) by continuous measurement of NPP on 48
sample plots from 1999 to 2005 for the vegetation types under study.

4. Results and discussion

4.1. Land cover changes based on remote sensing images during the

process of urban sprawl

The surface area and percentage change in each land cover per
district between 1999 and 2005 is shown in Table 1. Compared to
the other land covers, the increase area of urban land is the largest
with the biggest increase being 11,045 hm2, or 15.89% of the total
land cover change in the Baoan district. The area occupied by crops
was reduced in all the districts, with the largest decrease having
taken place in the Baoan district. Forested area increased by
1473 hm2 in Longgang district; this may be caused by the urban
green land increase. It decreased in all other districts between 1999
and 2005. The area covered by water bodies decreased in all the
districts indicating that many river tributaries were sacrificed in

the process of urban sprawl. Wetland occupies a small percentage
only of the total surface area, and changed minimally. Land covers
of the Baoan district showed the most substantial change, with
about 33.04% of its surface having changed its land use during the 7
years of our study. Urban area increased by 18,841 hm2, or 9.78% of
the total surface in Shenzhen city, it being the most significant
landscape change for this district. Cropland, forest and area
occupied by water bodies all decreased during the seven years.
Between 1999 and 2005, land development irreversibly trans-
formed about 20.21% of Shenzhen’s surface. About half of this is
due to new urban developments (48.4%) and about 31.7% is due to
cropland reduction. All these indicated the substantial increase in
human activity.

Fig. 3(a) indicates the change in urbanization during 1999–
2005 in the Shenzhen district. The darker the area, the larger the
change. Many previously scattered urban patches became con-
nected with each other and urban patches are increasing in size. It
is clear that in the seven years the intensity and frequency of
human activities have greatly increased, much beyond the original
urban fringe. The population of Shenzhen city increased by almost
100%, from 4.32 million in 1999 to 8.28 million in 2005. Fig. 3(a)
shows that urbanization greatly sprawled in the region. However,
the lower right region in Fig. 3(a) changed relatively little and this
is the main forest region. During the seven years, urbanization
encroached on cropland and forested area, thereby impacting on
the regional NPP values.

4.2. The effect of urban sprawl on net primary productivity

Table 2 shows the estimated value of mean and total NPP for
Shenzhen as calculated using the CASA model. The estimated mean
NPP for cropland, forest and wetland decreased considerably
between 1999 and 2005. Absolute values of mean forest NPP
decreased most, about 184.52 g C m�2 per year. The largest
percentage change in mean NPP was found for wetland, a change
of 30%.

Total NPP of Shenzhen in 1999 was 1811.0 Gg C (1 Gg = 109 g)
per year and 1489.49 Gg C per year in 2005. Total cropland NPP
exhibited the highest decrease, only being 68.36% of that in 1999.
Total NPP of Shenzhen decreased by 321.51 Gg of carbon, in which
cropland NPP makes up 44.4% and forest NPP occupies 55.6% of the
reduction. As a result of the area increasing by 644 hm2, although
mean wetland NPP decreased, total wetland NPP slightly increased
by 0.26 Gg of carbon. Total NPP in Shenzhen decreased by 17.75 %
compared to that in 1999.

The difference of Shenzhen NPP derived from CASA model
between 1999 and 2005 is shown in Fig. 3(b). Urban sprawl in the
region caused an evident decline in NPP. Fig. 3(b) also indicated
that NPP decreased more in those regions that had no significant
urban patches. By overlaying the difference map of land cover
between 1999 and 2005 with Fig. 3(b), it can be concluded that NPP
reduction mainly resulted from natural forest being transformed to
fruit garden and shrub land. Although fruit tree and shrub fall into

Table 1
Change in land cover area expressed in hm2 and as a percentage of total area changed (numbers in parentheses), between 1999 and 2005.a.

District Urban Cropland Forest Water body Wetland Total change

Baoan 11,045 (15.89) �5,380 (�7.74) �1294 (1.86) �4777 (�6.87) 471 (0.68) 22,967 (33.04)

Futian 638 (8.6) �75 (�1.01) �479 (�6.45) �73 (�0.99) �11 (�0.15) 1,277 (17.19)

Longgang 5,097 (5.99) �5,934 (�6.97) 1473 (1.73) �743 (�0.87) 107 (0.13) 13,355 (15.69)

Luohu 366 (4.67) �163 (�2.08) �166 (�2.12) �65 (�0.83) 28 (0.36) 789 (10.07)

Nanshan 1,433 (9.36) �764 (�4.99) �99 (�0.65) �600 (�3.92) 31 (0.2) 2,929 (19.11)

Yantian 260 (3.51) �33 (�0.44) �169 (�2.27) �73 (�0.98) 14 (0.19) 549(7.4)

Shenzhen 18,841 (9.78) �12,350 (�6.41) �734 (�0.38) �6364 (�3.3) 640 (0.33) 38,929(20.21)

a Negative values mean a decrease between 1999 and 2005.
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the forest category, their productivity is far lower than that of
natural forest.

There are many factors that can influence NPP, such as soil type,
climate (solar radiation, precipitation, temperature) and human
disturbance, etc. During a short period (in our case seven years),
the soil type tends to be unchanged and in a stable status, but the
meteorological conditions may fluctuate. In order to filter the
influence of climate fluctuations on NPP, we use the 7 years of
average monthly total solar radiation, temperature and precipita-
tion during 1999–2005 to drive the CASA ecosystem model with
the other inputs unchanged. The results showed that total NPP of

Shenzhen was 1859.71 Gg of carbon in 1999 and 1434.08 Gg of
carbon in 2005, overestimating by 2.69% and underestimating by
3.72% compared to that in 1999 and 2005, respectively. Therefore,
climate fluctuation only has a slight influence on regional NPP
variation in a short period. It was also proved by Elmore et al.
(2008) that, compared to climate factors, land use change has a
larger impact on NPP in China. So, NPP reduction of Shenzhen is
mainly caused by human disturbance, especially urban sprawl
encroaching on forests and cropland.

According to the reaction equations of photosynthesis and
respiration, vegetation absorbs 1.62 g CO2 to produce 1 g carbon of
dry matter and releases 1.2 g O2 in the process. Between 1999 and
2005, the ecosystems of Shenzhen lost 321.51 Gg of carbon that is
equivalent to reducing absorption of CO2 by 520.85 Gg and a
reduction in release of 385.81 Gg O2. The heat contained in 1 g
carbon of dry matter equals that contained in 0.00067 g standard
coal, so 321.51 Gg NPP is equivalent to the heat loss contained in
2.15 � 106 ton of standard coal. This is a considerable loss in NPP
and hence in carbon sequestration potential. This loss is
accompanied by an increase in emissions of CO2 due to the
significant growth in population, rapid development of industry
and fossil fuel combustion. Hence, the total carbon release in the
area must have increased in the 7-year period. The sharp reduction
in cropland area and productivity must weaken food and fruit
supply. According to Shenzhen’s 2005 statistical reports, over 95%

Fig. 3. The difference of urban area (a) and NPP (b) for Shenzhen between 1999 and 2005.

Table 2
Estimated value of mean and total NPP in 1999 and 2005, for Shenzhen.

Cropland Forest Wetland Total

Mean NPP (g C m�2 yr�1)

1999 1086.99 1764.95 187.91

2005 961.33 1580.43 131.72

Unit change in NPP (g C m�2) �125.66 �184.52 �56.19

Percent change (%) 11.56 10.45 29.90

Total NPP (Gg C)

1999 209.03 1600.03 1.94 1811.00

2005 66.14 1421.15 2.20 1489.49

Total change in NPP (Gg C) �142.89 �178.88 0.26 �321.51

Percent change (%) 68.36 11.18 13.61 17.75
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of food was imported from other regions. Urbanization also
weakens the ability of ecosystems to mitigate natural disasters. In
recent years, with vegetation destroyed by urban sprawl, flood
frequency has evidently increased in Shenzhen (Gao et al., 2005). It
is fortunate that Shenzhen now recognizes the situation, and many
remediation policies are being put into place.

5. Conclusions

China has made great economic achievements since the Reform
and Opening policy implementation. Shenzhen, as a representative
city, has experienced rapid urbanization and population growth.
Urbanization intensely changes the status and nature of land
surface. NPP is an important productivity indicator of ecosystems.
Studying the change of NPP in the process of urbanization is helpful
to understand the feedback mechanism of the ecosystem to human
activities and to ensure that the natural resources are used as
efficiently as possible. This paper provides a method for under-
standing the regional effects of urbanization on net primary
productivity.

Urbanization is the most significant landscape change for
Shenzhen. Land development has irreversibly transformed about
20.21% of Shenzhen’s surface; 80.1% of the surface variation is due
to the urban increase and cropland reduction. The intensity and
frequency of human activities have greatly increased much beyond
the original urban fringe.

The estimated total NPP for Shenzhen was 1811.0 Gg C in 1999
and 1489.49 Gg C in 2005, respectively. Total NPP of Shenzhen
decreased by 321.51 Gg C during 1999–2005. For every square km
of Shenzhen land, NPP was, on average, reduced by 0.0017 Gg of
carbon that was not sequestered during 1999–2005. Crop NPP
makes up 44.36% and forest NPP is responsible for 55.64% of the
reduction. During the seven years, urban sprawl, not climate
fluctuation, was the main cause of regional NPP reduction, again
underlining that urbanization has a large influence on the regional
net primary productivity.
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