三江平原典型小叶章湿地土壤中硝态氮 和铵态氮的空间分布格局

孙志高^{1,2},刘景双²,陈小兵¹

(1.中国科学院 烟台海岸带可持续发展研究所,山东 烟台 264003;2.中国科学院 东北地理与农业生态研究所,吉林 长春 130012)

摘 要:运用地统计学方法对三江平原典型小叶章湿地土壤中硝态氮(NO₃ —N)和铵态氮(NH4 —N)的 空间分布格局进行了研究。结果表明,湿地土壤不同土层 NO₃ —N 和 NH4 —N 含量的变异性差异较大, 但均表现为 NO₃ —N > NH4 —N,原因主要与其物理运移特性的差异有关。两种土壤在不同土层或相同 土层中的 NO₃ —N 和 NH4 —N 含量差异均达到极显著水平(P < 0.01);湿地土壤不同土层 NO₃ —N 和 NH4 —N 的含量分布具有明显空间结构,符合不同变异函数理论模型,结构因素对空间异质性起主导作 用,随机因素的影响相对较少。微地貌特征是导致其空间异质性的一个重要随机因素,水分条件和土壤类 型则是两个重要结构因素;湿地土壤不同土层 NO₃ —N 和 NH4 —N 含量的空间变异性均以向洼地中心 倾斜方向最大。研究发现,水分条件是导致 NO₃ —N 含量在地势较低处形成低值区的主要原因,干湿交 替则是导致 NH4 —N 含量在地势较低处形成高值区的重要原因。

关键词:分布格局; 硝态氮; 铵态氮; 小叶章湿地; 三江平原

Spatial Distribution Patterns of Nitrate Nitrogen and Ammonia Nitrogen in Typical Calamagrostis Angustifolia Wetland Soils of Sanjiang Plain

SUN Zhi-gao^{1,2}, LIU Jing-shuang², CHEN Xiao-bing¹

(1. Yantai Institute of Coastal Zone Research for Sustainable Development, CAS, Yantai, Shandong 264003, China;
2. Northeast Institute of Geography and Agroecology, CAS, Changchun, Jilin 130012, China)

Abstract : The spatial distribution patterns of nitrate nitrogen (NO₃ –N) and ammonia nitrogen (NH₄⁺ –N) in typical *Calamagrostis angustif olia* wetland soils of Sanjiang Plain were studied by Geostatistics method. Results showed that the variability of NO₃ –N and NH₄⁺ –N contents in different soil layers had significant difference, with the order of NO₃ –N > NH₄⁺ –N, and the reasons were mainly correlated with the differences of their physical movement characteristics. Further analysis indicated that the differences of NO₃ –N and NH₄⁺ –N contents in differents oil layers or in same soil layer were much significant (P < 0.01). The distribution of NO₃ –N and NH₄⁺ –N contents in different soil layers or in same soil layers had significant spatial structure, which accorded with different semivariogram models. The structure factors had significant effects on there spatial variability , while the effects of random factors were relatively less. Micro-physiognomy characteristic was an important random factor to induce spatial heterogeneity , while water condition and soil type were two important structure factors. The maximum spatial variability of NO₃ –N and NH₄⁺ –N contents in different soil layers were observed in the direction leaning to the depression center. In addition , the studies also indicated that water condition was the main reason to induce the lower NO₃ –N content zones to be formed in the lower hypsography of depression , while the alternation of dry and wet was the import reason to induce the higher NH₄⁺ –N content zones to be formed in the lower hypsography of depression.

Keywords: distribution pattern; nitrate nitrogen; ammonia nitrogen; Calamgrostis angustifolia wetland; Sanjiang Plain

收稿日期:2008-09-18 修回日期:2008-12-09 基金项目:国家自然科学基金项目(40803023);中国科学院知识创新工程重要方向项目(KZCX2-YW-309) 作者简介:孙志高(1979→,男(汉族),山东省烟台市人,博士,副研究员,研究方向为湿地生物地球化学过程。E-mail:zgsun@yic.ac.cn。

土壤是植物的营养库之一,植物除向大气摄取所 需的碳、氧等营养物质外,还必须从土壤中获得大部 分营养物质来满足其生存需要。湿地土壤是氮的重 要储库,发挥着源、汇或转化器的重要功能[1],其对于 湿地系统诸生态过程有着重要影响。湿地土壤氮的 时空分布特征,特别是无机氮含量的空间分布及时间 变化特征不仅可反映出湿地土壤的养分供给状况及 其可利用水平[2],而且还在一定程度上对湿地植物群 落组成,湿地系统生产力以及湿地系统的稳定与健康 等产生深刻影响[35]。湿地土壤是时空连续的变异 体,土壤的特性参数、土壤水分运动的某些参数以及 土壤中的有关状态变量等均具有高度的空间异质 性^[6]。经典统计方法在研究土壤特性参数变化时将 研究对象在空间上的变化看作是随机的、互相独立的 变化。但在一定范围内,不同地点的土壤参数存在一 定的空间结构性,不能视为完全独立,亦即样点的间 距超过一定距离时,各点的空间变化才可以认为是互 相独立的^[7]。地统计学是探讨自然环境要素空间分 布特征及其变异规律最为有效的方法之一,它以区域 化变量理论和变异函数为基础,适合研究那些在空间 分布上既有随机性又有结构性或空间相关性和依赖 性的自然现象[8]。湿地土壤养分为一区域化变量,同 时具有随机性和结构性特征^[9]。硝态氮(NO₃—N) 和铵态氮 $(NH_4^+ \rightarrow N)$ 含量是土壤的两个特征参数, 它在不同空间位置上存在明显的空间变异性。国外 关于土壤养分空间变异的研究自 20 世纪 80 年代特 别是 90 年代以来取得了长足进展,而国内在该领域 的研究较为薄弱,主要是90年代中期以后才开始进 行这一领域的研究[10]。目前,国内学者已对土壤养 分的空间变异进行了大量研究,但这些研究多集中于 农田[11-13]、草地[14-16]和森林生态系统[17]等的相关探 讨上,对湿地生态系统的相关研究还不多见。

三江平原是我国湿地面积较大、类型较齐全的地 区之一。小叶章湿地是三江平原主要的湿地类型 (34.45%)^[18]。小叶章湿地常分布于高河漫滩、一级 阶地和碟形洼地边缘,主要有典型草甸小叶章湿地 (地表无积水)和沼泽化草甸小叶章湿地(地表季节积 水)两种类型,分别发育着草甸沼泽土和腐殖质沼泽 土^[19]。两种小叶章湿地因处在同一样地的不同水分 带上,对水分变化的指示极为敏感。目前,国内关于 不同水分带上小叶章湿地土壤中 NO₅—N 和 NH⁴—N 含量的空间分布格局研究还未见报道。本 文对此进行了研究,目的在于揭示湿地土壤中 NO₅—N和NH⁴—N 含量的空间分布特征、分布格 局及其变异性,并探讨引起二者空间分布和空间变异 的主要结构因素和随机因素。研究结果不仅可为该 区湿地氮循环研究提供基础数据,还为湿地土壤质量 演变及湿地结构与功能等研究提供重要科学依据。

1 材料与方法

1.1 研究区概况

研究区选在黑龙江省东北部的三江平原腹 地典型沼泽湿地分布区,区内海拔高度55.4~ 57.9m,属温带大陆性季风气候,冬季严寒漫 长,夏季温暖湿润,冰冻期达5个月,最大冻深达 1.9 m。该区1月平均气温-18 ~ - 21 .7 月平均气温 21 ~ 22 , 年均气温 1.6 1.9 , 10 ○的年有效积温2 300 左右。该 区年蒸发量为 542.4~580 mm,年降水量为 565 ~600 mm,年内降水分配不均,60%以上集中在 6-9月。本研究的土壤样品于中国科学院三江 平原沼泽湿地生态试验站以东 12 km 洪河三区 野外试验场(47 35 16.6 N, 133 31 34.8 E)的 典型小叶章湿地内采集。试验场的地貌类型为 三江平原沼泽发育最为普遍的碟形洼地,坡降 1 5 000,面积约 20 hm²。自洼地中心到边缘分 布的主要植被有漂筏苔草(Carex pseudocuraica)、毛果苔草(Carex lasiocarpa)、乌拉苔草 (Carex meyeriana) 和小叶章(Calamagrostis angustifolia)。土壤类型主要为草甸沼泽土、腐殖 质沼泽土和泥炭沼泽土。

1.2 样品采集与分析

2005年5月,在洪河三区野外试验场按照"典型 性、代表性'的原则设置小叶章湿地样区(根据两种小 叶章湿地的分布范围,样区 80%以上面积位于典型 草甸小叶章湿地内(分区),不足 20%面积位于沼 泽化草甸小叶章湿地边缘的过渡带上(分区)),并 沿碟形洼地东西方向随机建立 49 m ×49 m 的取样 小区。取样区内均匀设置 7 m ×7 m 的采样网格,并 于网格交叉点处采集土壤样品。土壤采样深度为 20 cm,每10 cm 一层,共采集样品 72 个。将采集的土 壤样品及时带回实验室自然风干后,用球磨机磨碎, 过 100 目筛后装袋待测。土壤样品的分析项目包括 NH⁴—N 和 NO⁵—N。其中,NH⁴—N 采用氯化钾 浸提—靛酚蓝比色法测定,NO⁵—N 采用酚二磺酸 比色法测定。

1.3 数据处理与分析

运用 SPSS10.0 和 Origin7.5 等软件对数据进行 Kolmogorov — Smironov(K—S)正态检验和基本统

mg/ kg

计分析,运用地统计学软件包 GS + for Windows 5.1 进行半方差函数 *r(h)*的计算,运用 Surfer 7.0 软 件进行克立格内插局部估计。

湿地土壤养分为一区域化变量,同时具有随机性 和结构性(空间自相关性)特征^[9],当土壤养分变量满 足二阶平稳和本征假设,且样本空间足够大时,其半 方差函数理论变异函数 *r(h)*的计算式为^[8]。

$$(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [Z(x_i) - Z(x_i + h)]$$

式中:h——两样点的空间距离;r(h)——所有空间相 距h的点对的平方均差;N(h)——在空间上具有相同 间隔距离h的点对数目; $Z(x_i)$ 与 $Z(x_i + h)$ ——分别 为区域化变量Z(x)在空间位置 x_i 和 $x_i + h$ 处的实测 值i=1,2,...,N(h)。r(h)反映了不同距离间的方差 变化,可用于揭示区域化变量在整个尺度上的空间变 异格局。r(h)通常有4个重要参数,即块金值(G)、基 台值(G+C)、变程(a)和分形维数(D)^[8]。

2 结果与分析

2.1 统计分析与正态分布检验

表1为湿地土壤不同土层 NO₃ —N 和 NH⁴ — N 含量的描述性统计结果。从表1 中可知,不同土层 NO₃ —N 和 NH⁴ —N 的平均含量均自表层向下依 次降低,但其变异性则因氮素形态而异。总的来说, 两土层不同形态氮的变异性均表现为 $NO_3^{\circ} -N > NH_4^{\circ} -N$,原因可能主要与其物理运移特性的差异 有关。 $NO_3^{\circ} -N$ 带负电荷 ,易于被土壤胶体排斥 ,进 而易于淋溶 ,而也正是由于 $NO_3^{\circ} -N$ 较为活跃的物理 运移特性使得其在较深土层中也呈现出较高的变异 性。与之相比 , $NH_4^{\circ} -N$ 带正电荷 ,易于被土壤胶体 吸附而不易淋失 ,而也正是由于 $NH_4^{\circ} -N$ 较差的物理 运移特性使得其在上层中的变异性明显高于下层。方 差分析表明 , $NO_3^{\circ} -N$ 和 $NH_4^{\circ} -N$ 含量在不同土层 或相同土层中的差异均达到极显著水平 (P < 0.01)。

另外,由于半方差函数可通过区域化变量分割等 距离样点间的差异来研究变量的空间相关性和空间结构,所以进行空间相关分析的变量必需满足正态分布, 并且由随机抽样的方式获得。数据的非正态分布会使 方差函数产生比例效应,抬高基台值和块金值,降低估 计精度,使某些潜在的特征表现不明显,甚至会掩盖其 固有的结构。为了检验数据是否符合半方差函数分析 的条件,采用 Kolmogorov—Smironov(K-S)正态分布 检验概率(P_{K-S})对其进行检验。检验时取显著性水平 =0.05,若 $P_{K-S} > 0.05$,则认为数据服从正态分布。 由表 1 可知,湿地土壤不同土层的 NO₅—N 和 NH4 —N 含量在 0.05 水平上均表现为正态分布,可 以进行空间相关分析,并且 0—10 cm 土层 NO₅ —N 和 NH4 —N 的 P_{K-S}明显优于 10—20 cm 土层。

									00
土层/ cm	项目	均值	标准差	变异系数	最大值	最小值	偏度 Sk	峰度 Ku	P _{K-} s
0-10	NO ₃ –N	4.80	5.00	104. 30	22. 18	1E-3	1. 692	3. 493	0. 256
	$N H_4^+ - N$	18.93	9.97	52.68	56.53	2.45	1. 749	5. 084	0.416
10-20	NO3 —N	3. 48	4.07	117.06	14.30	1E-3	1. 198	0. 457	0.124
	$N H_4^+ - N$	11. 22	5. 55	49. 43	29.94	2.15	1. 850	4. 685	0.074

表1 不同土层硝态氮和铵态氮含量的描述性统计

2.2 硝态氮和铵态氮含量的空间异质性

区域化变量的结构分析是以 *r*(*h*) 模型为基础, 这是 *r*(*h*) 的主要功能之一。表 2 为不同土层 NO₃ — N 和 N H[‡] —N 含量在各向同性下的变异函数理论 模型及相关参数。

从表 2 中可知,不同土层 NO₅ →N 和 N H[‡]→N 含量的基台值均远远大于块金值,表明在全方向上两 种形态氮含量均具有明显空间结构。其中 0 → 10 cm 土层 NO₅ →N 的半方差函数与步长 h 的关系符合高 斯模型,N H[‡]→N 则符合球状模型。不同的是,10 → 20 cm 土层的 NO₅ →N 和 N H[‡]→N 分别符合球状 模型和高斯模型。决定系数 R²和 RSS 是用来说明 模型对被研究对象的解释效率。除 0 → 10 cm 土层 NO₃ —N 的半方差函数与步长 h 关系的理论模型解 释效率较低外 ,0 —10 cm 土层 NO₃ —N ,10 —20 cm 土层 NO₃ —N 和 N H[‡] —N 的半方差函数理论模型 的解释效率均较高。

区域化变量的空间异质性 S_{HZ} 由两部分组成,即 $S_{HZ} = S_{HR}$ (随机误差引起) + S_{HA} (空间自相关引起)。 块金值 G_0 表示随机部分的空间异质性,而 C表示空 间自相关部分引起的空间异质性,所以基台值 G_0 + C就表示区域化变量的最大变异。基台值越大,区域化 变量的空间异质性越高。 $C/(G_0 + C)$ 反映了结构因 素 S_{HA} 对空间异质性 S_{HZ} 的贡献程度,而 $G_0/(G_0 + C)$ 则反映了随机部分 S_{HR} 引起的空间异质性占总空 间异质性 S_{HZ} 的比例。

表 2 各向同性下变异函数理论模型及参数									
项目	土层/ cm	理论模型	块金值 <i>C</i> 0	基台值 Co + C	$C' C_0 + C$	变程 a	决定系数 <i>R²</i>	残差 RSS	分维数 D
NO3 —N	010	高斯模型	25. 59	51.19	0. 500	81.00	0. 097	17. 900	1. 998
	10-20	球状模型	10. 20	25. 23	0. 596	81.00	0.809	4. 050	1. 874
N H ₄ ⁺ —N	0-10	球状模型	47.10	177. 20	0. 734	81.00	0. 979	28. 000	1. 792
	10-20	高斯模型	25. 10	71.20	0. 647	72.40	0. 588	17. 700	1. 936

由表 2 可知,不同土层 NO_3^{-} —N 和 NH_4^{+} —N 的 空间变异程度存在明显差异,其中 0-10,10-20 cm 土层 N H₄⁺ — N 的 $C'(C_0 + C)$ 值均较高,说明结构因 素对于其空间异质性的贡献率分别高达 73.4%和 64.7%, 而 NO3 —N 的 C/(C0+C) 值相对较低, 说明 结构因素对于其空间异质性的贡献率仅为 50.0%和 59.6%。比较而言,10-20 cm 土层 NO3 -- N 的 C/ (C₀ + C) 值要高于 0 ---10 cm 土层, 说明结构因素对 于上层土壤空间异质性的贡献率比下层土壤要低 9.6%。与之相反,上层土壤 NH[↓]→N的 C/(C₀ + C) 值明显高于下层土壤, 说明结构因素对于上层土 壤空间异质性的贡献率比下层土壤要高 8.7%。按 照区域化变量空间相关程度的分级标准,当 G/(G + C < 25 %时,变量具有强烈的空间相关性;当 25 %

G/(G+C) 75%时,变量具有中等程度的空间 相关性;当 $G_{0}/(C_{0} + C)$ 75%时,变量的空间相关性 很弱。结合该分级标准以及表 2 可知,不同土层 NO_{3} — N 和 N H₄⁺ — N 的 C₀/(C₀ + C) 值 [1 - C/(C₀) + C))介于 26.6% ~ 50.0% 之间,均具有中等程度的 空间相关性。总的来说,在各向同性结构下,自然结 构因素(如气候、母质、水分、地形和土壤类型等)对于 $NO_3^+ \rightarrow N 和 N H_4^+ \rightarrow N$ 的空间异质性起主导作用,而 随机因素的影响相对较小。研究样地影响 NO3 —N 和 N H⁺ ----N 空间异质性的随机因素主要与微地貌 特征、不同土层微域水分条件及其引起的无机氮物理 运移、有机氮矿化以及植物根系分布与吸收作用等 有关。

变程 a 可较好地反映区域化变量的空间影响范 围。由表 2 可知,10 -- 20 cm 土层 NH⁺ -- N 的变程 (72.40 m)相对较低,说明其在相对较短距离内存在 空间结构异质性。与之相比,0---10 cm 土层 NH4 ---N和0-10,10-20 cm 土层 NO₃ --N 的变程均为 81.00 m, 说明其在相对较长距离内存在空间结构异 质性,而当超过相应变程时,区域化变量的空间相关 性开始消失。

分维数 D 的大小可表示变异函数的曲率,而 D 值之间的比较可以确定空间异质性的程度。一般而 言,D 值越大,其所表现的空间分布越复杂。由表 2 可知,0-10 cm 土层 NO3-N 的 D 值较大(1.998), NH⁴→N 最小(1.792), 而 10 → 20 cm 土层则以 NH₄→N的D值较大(1.936), NO₃→N最小 (1.874),说明 0 ---10 cm 土层 NO3 ---N 的分布明显 比 10 ---20 cm 土层复杂 .而 0 ---10 cm 土层 N H⁺ ---N 的分布则较 10-20 cm 土层简单。

为了研究 NO3 —N 和 NH4 —N 含量的半方差 函数在不同方向上的特点,即各向异性,对不同方向 的半方差函数进行了计算。计算时将全方位平均分 层 NO₃ — N 和 N H⁴ — N 含量在各向异性下的变异 函数理论模型及相关参数。从表 3 中可知,不同土层 两种形态氮含量的基台值均远远大于块金值、表明在 不同方向上二者均具有明显空间结构。其中 0→10 $cm \pm E N H_4^+$ —N 的半方差函数与步长 h 的关系符 合线性模型,NO3→N符合高斯模型,而10-20 cm 土层 NO_3^{-} —N 和 NH_4^{+} —N 的半方差函数与步长 h 的关系分别符合线性模型和高斯模型。

从 R²和 RSS 对模型解释的效率可知,不同土层 $NO_3^{-} \rightarrow N 和 NH_4^{+} \rightarrow N$ 的半方差函数理论模型的解 释效率均较高,其中前者在60%以上,后者则在70% 以上。另外,通过分析表 3 中的 C(G + C 值可知,不 同土层两种形态氮在各方向上的空间变异程度存在明 显差异,其中 0-10 cm 土层 NH⁺ -N 的 C (G + C) 值较高(0.799),NO3 —N 较低(0.636),10 —20 cm 土 层则以 NO₃ —N 较高(0.714), NH[↓] —N 较低 (0.687)。比较而言,两种形态氮的 C (G + C) 值在不 同土层的变化与各向同性基本一致(表 2,3)。而从区 域化变量空间相关程度的分级来看,除 0---10 cm 土层 NH_4^+ — N 的空间相关性较强外, 10 — 20 cm 土层 NH4⁺ ---N 以及 0 ---10 ,10 ---20 cm 土层 NO3⁻ ---N 均具 有中等程度的空间相关性。总之,在各向异性结构下, 自然结构因素对于 NO3 —N 和 NH4 —N 含量的空间 异质性起主导作用(>60%),而这也与在各向同性结 构下分析的结果相一致。

表 3 各向异性下变异函数理论模型及参数

项目	土层 cm	理论模型	块金值 <i>C</i> 0	基台值 C ₀ + C	$C' C_0 + C$	变程 ai	变程 ゐ	决定系数 <i>R²</i>	残差 RSS
NO ₃ —N	0-10	高斯模型	26.09	71.67	0. 636	273. 80	82.40	0. 614	368. 380
	10-20	线性模型	9.90	34. 64	0.714	84. 23	84. 23	0. 639	171. 240
N H4 ⁺ —N	0-10	线性模型	47.50	235. 90	0. 799	114. 20	51.40	0. 705	13 736 350
	10-20	高斯模型	24.44	78.09	0. 687	72. 37	65.62	0.750	1 026. 530

2.3 硝态氮和铵态氮含量的空间分布格局

图 1 为不同土层 NO³ —N 和 NH⁴ —N 含量的 空间分布特征。据图 1 可知,0 —10,10 —20 cm 土层 的 NH⁴ —N 含量均表现出相似的分布特征,即沿着 样地东 —西方向(向洼地倾斜方向)一般形成较为明 显的斑块高值区,边缘则一般形成斑块低值区。不同 的是,NO³ —N 在向洼地倾斜方向一般形成较为明 显的斑块低值区,而在边缘则一般形成斑块高值区。 另外,从图 1 还可看出,0 —10 cm 土层 NO³ —N 含 量的等值线较其在 10 —20 cm 土层稠密,说明 NO³ —N 在 0 —10 cm 土层中的空间异质性要强于 10 —20 cm 土层。与之相比,0 —10 cm 土层 NH⁴ — N 含量的等值线较 10 —20 cm 土层稀疏,说明 NH⁴ —N 在 0 —10 cm 土层中的空间分布及其异质 性较 10 —20 cm 土层简单,而这一结果正好与前面半 方差函数中参数 *D* 的变化趋势及分析结论相一致。 为了进一步探讨不同土层 NO₅ —N 和 NH⁴ —N 的 空间分布格局,本项研究将两种形态氮含量以 2 mg/ kg 和 7 mg/kg 为界点划分为高、中和低 3 个等级(详 见表 4)。

从表 4 可知,0 —10 cm 土层 NO₃ —N 的中等含 量区和高含量区所占比例(79.50%和 14.81%)要高 于 10 —20 cm 土层(56.25%和 0.21%),但低含量区 所占比例(5.69%)则较 10 —20 cm 土层低 37.85%。 与之相比,0 —10,10 —20 cm 土层 NH[↓] —N 的 3 个 含量等级区所占的比例均比较接近。

表 4 硝态氮和铵态氮含量的空间分布格局

	土层/ cm	2 mg/ kg		2~7	mg/ kg	7 mg/ kg	
		面积 / m ²	百分比/%	面积 / m ²	百分比/%	面积/ m ²	百分比/%
NO ₃ —N	0-10	69. 73	5. 69	973. 87	79. 50	181. 40	14.81
	10-20	533. 39	43. 54	689.11	56.25	2.51	0. 21
$N H_4^+ \longrightarrow N$	0-10	2.25E-02	1. 63 E - 03	1. 42	0.12	1 223. 56	99.88
	10-20	0. 00	0. 00	1. 13	0. 09	1 223. 87	99. 91

3 结果分析

总的来说,导致不同土层 NO5 —N 和 NH4 —N 上述空间分布特征及其差异的原因可能主要取决于以 下两方面因素。(1)随机因素(如样地微地貌特征引 起的微域水分条件和局域无机氮物理运移等)。如前 所述,研究样地的东 —西方向整体上是向洼地倾斜方 向,因此,样地的微地貌特征使得不同土层的微域水分 条件可能产生一定差异,进而影响着 NO5 —N 和 NH4 —N 在土层中的物理运移。(2)结构因素。前述 研究可知,沿着样地东 —西方向由于微地貌的存在而 形成一个较为明显的水分交错带,而水分交错带的存 在又使得沼泽湿地发育的土壤类型不尽一致。其中位 于碟形洼地边缘地势相对较高的样区,地表无积水但 常年保持湿润,发育着草甸沼泽土,而位于碟形洼地边 缘向洼地倾斜的过渡带,其地势相对较低,地表在生长 季的一些时期常存在季节积水,这样的环境条件发育 着腐殖质沼泽土。如前所述,研究样区面积的80%以 上(分区)位于碟形洼地边缘,而只有不到20%的面积 (分区)位于上述过渡带的边缘上。

位于过渡带边缘样区的土壤发育特点既不同于草 甸沼泽土,也不同于腐殖质沼泽土,而是位于二者的过 渡状态。相对于草甸沼泽土而言,其矿质土层的潜育 化、潴育化过程更为明显,并且土壤的通气状况较差, 质地更为黏重。表 5 为研究样地 ,分区各土层中不 同形态氮含量的对比。

从表 5 中可知, 区 0 —10 cm 土层的 NH⁴ —N 含 量均明显高于 区,而 10 —20 cm 土层的 NH⁴ —N 含 量一般也相对于 区有一定降低,原因主要与 NH⁴ —N 物理运移特性有关。 区土壤相对较高的黏粒含量使 得 NH⁴ —N 的物理运移即使在相对较好水分条件下 也仅发生在 0 —10 cm 土层而不易淋失到较深土壤中。 35

30

Ę ²⁵

20

15 10

5

东西距离

NO,

____N, 0___10 cm

 $(\bigcirc$

图 1 不同土层硝态氮和铵态氮的空间分布特征

不同的是,NO³ —N 在 区各土层中的含量均明 显低于 区的相应土层,这主要与 NO³ —N 不易被土 壤胶体吸附易于随水发生物理运移有关。 区相对较 好的水分条件使得 NO³ —N 更易随水向洼地过渡带 方向及更深土层迁移。因此,水分条件和土壤发育类 型可能是导致各形态氮素空间异质性的两个重要结构 性因素。

可见,导致 NO₅ —N 和 NH⁴ —N 上述空间分布 特征及其差异的原因主要与微地貌引起的微域水分条 件和局域无机氮运移等随机因素以及 ,分区水分条 件和土壤发育类型及其引起的较大范围无机氮物理运 移特性差异等结构因素共同作用的结果有关。相对于 NO₅ —N ,NH⁴ —N 的物理运移特性相对较差 ,上述 随机因素和结构性因素共同作用的结果使得其在整体 上向东 —西方向和较浅土层(0—10 cm ,10—20 cm) 迁 移 ,并易于在地势相对较低处发生累积 ,进而形成斑块 高值区。比较而言 ,NO₅ —N 更易于在水分条件较好 的样区(地势相对较低)发生深层垂直淋失 ,进而形成 斑块低值区。当然 ,研究样地 NO₅ —N 和 NH⁴ —N 含量高值区和低值区的形成还与 ,分区的水分变 化 ——干湿交替这一重要因素有关。干湿交替通过影

7

响土壤的氧化还原状况及微生物群落的交替,进而影响着有机质的分解和腐殖化过程,而这些过程又影响着湿地氮的持留能力。

已有研究表明,较短的干湿交替周期将有利于湿 地脱氮,而长期淹水或较长干湿交替周期则不利于湿 地脱氮。Verhoeven等的研究也表明,湿地在干湿交替 作用下的脱氮作用较长期淹水条件下强的多。研究样 地的 分区处于过渡带的边缘,其水分条件要优于 分 区,而这也就使得其干湿交替周期一般较 分区长 的多。

依次类推,分区较长的干湿交替周期使得其脱氮 作用较分区差的多,而这可能也是导致NH⁴—N在 分区易于出现斑块高值区的重要原因之一。比较而 言,不同土层NO₅—N和NH⁴—N含量的空间分布 斑块效应及分布格局存在明显差异,0—10 cm 土层 NO₅—N的空间分布斑块效应明显高于10—20 cm 土 层,而 10—20 cm 土层 NH⁴—N 的空间分布斑块效应 则明显高于0—10 cm 土层,主要表现为,分区中的高 值区和低值区斑块数量增多且分布大都表现出较强的 随机性,而这种较强的随机性可能主要与引起上述两土 层 NO₅—N 和 NH⁴—N 空间异质性的随机因素有关。

表 5 两分区不同土层硝态氮和铵态氮含量对比

	分区	(<i>n</i> = 24)	分区 (n=12)		
工/云/ cm	NO ₃ —N	$N H_4^+ - N$	NO ₃ —N	$N H_4^+ - N$	
0-10	5. 26 ±4. 97	15.56 ±5.84	3.86 ±5.13	25. 66 ±13. 08	
10-20	3. 90 ±4. 17	11. 40 ±5. 86	2. 63 ±3. 89	10.87 ±5.10	

注: 表中数据为均值 ±S.D。

4 结论

72

(1) 湿地土壤不同土层 $NO_3^- \rightarrow N$ 和 $NH_4^+ \rightarrow N$ 的 平均含量均自表层向下依次降低,但其水平变异性差 异较大 均表现为 $NO_3^{-} - N > NH_4^{+} - N$ 原因主要与其 物理运移特性的差异有关。二者在不同土层或相同土 层中的含量差异均达到极显著水平(P<0.01)。

(2) 湿地土壤不同土层 NO₃ —N 和 NH⁺ —N 的含量分布具有明显空间结构,符合不同变异函 数理论模型。二者在不同土层中的含量具有中等 程度的空间相关性,但差异明显。结构因素对二 者空间异质性起主导作用,而随机因素的影响相 对较少。

(3) 湿地土壤不同土层 NO₃ —N 和 NH⁺ —N 含量的空间变异性均以向洼地中心倾斜方向最大、其 中 N H⁺ ---N 在洼地倾斜方向一般形成明显斑块高 值区,边缘一般形成斑块低值区,而 NO3 — N 的空间 分布特征正好相反。微地貌特征是导致二者空间异 质性一个重要随机因素,水分条件和土壤类型则是两 个重要结构因素。

(4) 水分条件是导致 NO3 —N 在地势相对较低 处易于形成斑块低高值区的主要原因,干湿交替则是 导致 N H⁺ ---N 在地势相对较低处易于形成斑块高 值区的重要原因。不同土层 NO3 —N 和 N H4 —N 含量的空间分布斑块效应及分布格局存在明显差异, 高值区或低值区的斑块数量及分布可能主要与随机 因素有关。

[参考文献]

- [1] Mistch W J, Gosselin J G. Wetlands [M]. New York: Van Nostrand Reinhold Company Inc. 2000:89-125.
- [2] Brinkley D, Hart SC. The component of nitrogen availability assessment in forest soil [J]. Advances in Soil Science, 1989, 10: 57-112.
- [3] Vitousek P M, White P S. Process studies in succession [C] // West D C, Shugart H H, Botkin B. Forest succession: concepts and application. New York: Springer-Verlag. 1981:267-276.
- [4] Tilman D. The resource-ratio hypothesis of plant succession[J]. American Naturalist, 1985, 125:827-852.

[5] 李贵才,韩兴国,森林生态系统土壤氮矿化影响因素研 究进展[J]. 生态学报, 2001, 21(7):1187-1195.

- [6] 白军红,余国营,王国平.地统计学在湿地土壤养分空 间异质性研究中的应用[J]. 农业环境保护, 2001,20 (5):311-314.
- [7] 雷志栋,杨诗秀,土壤水动力学[M],北京:清华大学出 版社, 1988:330-340.
- [8] 徐建华. 现代地理学中的数学方法[M]. 北京:高等教 育出版社,2002:105-121.
- [9] 孙志高, 刘景双, 姜艳艳, 等. 基于地统计学和¹⁵N 技 术的湿地土壤氮素空间运移理论探讨[J]. 中国农学通 报,2005,21(6):347-351.
- [10] 黄绍文,金继运.土壤特性空间变异研究进展[J].土 壤肥料,2002(1):8-14.
- [11] 秦松, 樊燕, 刘洪斌, 等. 地形因子与土壤养分空间分 布的相关性研究[J]. 水土保持研究, 2008, 15(1): 46-52.
- [12] 方华军,杨学明,张晓平,等. 坡耕地黑土有机碳空间 异质性及其格局[J].水土保持通报,2005,25(3): 20-24.
- [13] 王淑英, 路苹, 王建立, 等. 北京市平谷区土壤有机质 和全氮的空间变异分析[J].北京农学院学报,2007, 22(4):21-25.
- [14] 龙训建,钱鞠,张春敏,等. 高寒草甸区典型景观单元 土壤养分空间变异性研究[J].冰川冻土,2008,30 (1):139-146.
- [15] 杜峰,梁宗锁,徐学选,等.陕北黄土丘陵区撂荒群落 土壤养分与地上生物量空间异质性[J]. 生态学报, 2008.28(1):13-22.
- [16] 王海涛, 何兴东, 高玉葆, 等. 油蒿演替群落密度对土 壤湿度和有机质空间异质性的响应[J]. 植物生态学 报,2007,31(6):1145-1153.
- [17] 张伟,陈洪松,王克林,等.桂西北喀斯特洼地土壤有 机碳和速效磷的空间变异[J]. 生态学报, 2007, 27 (12):5168-5175.
- [18] 何琏. 中国三江平原[M]. 哈尔滨: 黑龙江科学技术 出版社,2000.
- [19] 张养贞. 三江平原沼泽土壤的发生、性质与分类[C]// 黄锡畴. 中国沼泽研究. 北京:科学出版社, 1988:135-144.
- [20] 王政权. 地统计学及其在生态学中的应用[M]. 北京: 科学出版社,1999.

(部分参考文献略)

mg/ kg