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a b s t r a c t

In this paper, the evolution of cooperation is studied by a spatially structured evolutionary game model
in which the players are located on a two-dimensional square lattice. Each player can choose one of the
following strategies: “always defect” (ALLD), “tit-for-tat” (TFT), and “always cooperate” (ALLC). Players
merely interact with four immediate neighbors at first and adjust strategies according to their rewards.
First, the evolutionary dynamics of the three strategies in non-spatial population is investigated, and
eywords:
ooperation
volutionary game model
patiotemporal dynamics
oexistence
arameter plane

the results indicate that cooperation is not favored in most settings without spatial structure. Next, an
analytical method, which is based on comparing the local payoff structures, is introduced for the spatial
game model. Using the conditions derived from the method as criteria, the parameter plane for two major
parameters of the spatial game model is divided and nine representative regions are identified. In each
parameter region, a distinct spatiotemporal dynamics is characterized. The spatiotemporal dynamics not
only verify that the spatial structure promote the evolution of cooperation but also reveal how cooperation

w tha
iversity is favored. Our results sho

. Introduction

Cooperation, which is ubiquitous on many levels of biologi-
al organization in nature, is essential for evolution to construct
ew levels of biological organization (Doebeli and Hauert, 2005;
owak, 2006, and references therein). Genomes, cells, multicellu-

ar organisms, social insects, and human society are all based on
ooperation (Nowak, 2006). However, within the classic Darwinian
ramework of evolutionary theory (the struggle for life and sur-
ival of the fittest), cooperation may be difficult to achieve under
he natural selection. Cooperators have to succeed in the struggle
or survival with defectors, who by definition have a certain fit-
ess advantage (Nowak and May, 1993). So the question of how
atural selection can lead to cooperation has fascinated evolution-
ry biologists for a long time. Maynard Smith and Price (1973)
ngeniously related the economic concept of players to biological
ndividuals and payoff function of a player to evolutionary fitness

hat describes the survivability and fecundity of an individual. Their
eminal work thus signified the advent of an entirely new game the-
retical approach to evolutionary ecology that evoked numerous

nvestigations successively (Doebeli and Hauert, 2005). In particu-
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t spatial structure is the keystone of the evolution of intraspecific diversity.
© 2009 Elsevier B.V. All rights reserved.

lar, evolutionary game theory has been used as a standard tool in
understanding the evolution of cooperation (Maynard Smith, 1982;
Weibull, 1995; Hofbauer and Sigmund, 1998; Nowak and Sigmund,
2004; Nowak, 2006; Doebeli and Hauert, 2005). Over the past few
decades, several mechanisms have been proposed to explain the
problem of cooperation. Nowak (2006) reviewed the related stud-
ies and categorized these mechanisms as five rules: kin selection,
group selection, direct reciprocity, indirect reciprocity and network
reciprocity.

Since the pioneering work of Trivers (1971), direct reciprocity
was embedded into evolutionary game theory by Axelrod and
Hamilton (1981). Their models are based on the Prisoner’s Dilemma
(PD) game, perhaps the single most famous metaphor for the
problem of cooperation (Doebeli and Hauert, 2005 and references
therein). The original PD includes two players, each of which may
choose either to cooperate (C), or to defect (D) in any encounter. If
both players cooperate, they will be rewarded with R points. If they
both defect, they get the punishment P. If one player defects while
the other cooperates, the defector gets the temptation payoff T,
while the other gets the sucker’s payoff S. Now, with T > R > P > S
and 2R > T + S we have an obvious dilemma, in any round, the

strategy D is unbeatable no matter what the opponent does. The
original PD has four parameters, which can be reduced for the
purpose of analytical simplicity. Particularly, they can be reduced
as R = 1, T = b(1 < b < 2), S = 0, P = 0, where only one parame-

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:zizhenlee@lzu.edu.cn
dx.doi.org/10.1016/j.ecolmodel.2009.06.005
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Table 1
Payoff matrix of the three strategies ALLD, TFT and ALLC in repeated PD.

ALLD TFT ALLC

ALLD P/(1 − w) T + wP/(1 − w) T/(1 − w)
TFT S + wP/(1 − w) R/(1 − w) R/(1 − w)
ALLC S/(1 − w) R/(1 − w) R/(1 − w)

In the two players PD game, if both cooperate, they get a payoff of magnitude R, if
both defect they get P. If one player defects while the other cooperates, the defector

1, 2, 3) as the fractions of ALLD, TFT and ALLC, respectively, then the
354 H. Zhang et al. / Ecological M

er b retains, and the parameter b characterizes the advantage of
efectors against cooperators (Nowak and May, 1992, 1993). This
arameter setting preserves the essentials of the PD, and is widely
ccepted as its simplicity and generality.

The game theoretic framework of direct reciprocity is the
epeated Prisoner’s Dilemma game (repeated PD), which is one type
f solution to the dilemma. Repeated PD is based on the memories
f an individual who remembers opponents’ actions in previous
ncounters and on the probability w > 0 of encountering simi-
ar actions again in the next round (Axelrod and Hamilton, 1981;
xelrod, 1984; Axelrod and Dion, 1988; Nowak and Sigmund, 1992,
993, 1994), thus cooperation may evolve in the context in which
uture behavior may be determined by current payoff. The most
amous strategy of this type is “Tit-for-Tat” (TFT), the most basic
onditional strategy, which consists of cooperating in the first round
f the interaction, and taking the opponent’s strategy in the pre-
ious round. In Axelrod’s seminal computer tournaments (1984),
FT was proven as the only successful strategy against a range of
ther strategies, such as the two extreme unconditional strategies,
always cooperate” (ALLC) and “always defect” (ALLD). However,
FT does not always perform well when erroneous behaviors are

ncorporated (Doebeli and Hauert, 2005). Needless to say, there
re a variety of modified versions of TFT strategies to improve
ts robustness. But we will not want to mention all of them in
his study. It is believed that the interplay of the three most basic
trategies, ALLC, ALLD, and TFT captures an essential aspect of
he evolutionary dynamics of cooperation, and of our instinct for
irect reciprocation. At the same time, we have known that in well-
ixed populations, ALLC is dominated by ALLD, ALLD is bistable
ith TFT if average number of rounds is sufficiently high, TFT

nd ALLC are neutral if there is no noise (Nowak and Sigmund,
004).

During the history of finding solutions to the dilemma, spatial
tructure of the interacting populations is also another an abso-
utely ineligible factor. In contrary to classical evolutionary game

odel, spatially structured evolutionary game model can be inter-
reted as, individuals only play against their nearest neighbors but
ot against random opponents (Brauchli et al., 1999). The biologi-
al interpretation of spatial game model corresponds to the issue
f kin selection and more generally group selection (Frank, 1998;
ober and Wilson, 1998). Axelrod (1984) had already pointed out
he potential role of spatial structure, but it was really the seminal
aper by Nowak and May (1992) that spawned a large number of

nvestigations of “games on grids” (Nowak and Sigmund, 2000), i.e.
volutionary games that are played in populations having a spatial
tructure, whose individuals located on a lattice only play locally
ith their neighbors (sometimes include themselves) (Nowak and
ay, 1992). Payoffs obtained are then used to update the lattice,

.e. to create subsequent generations in the evolutionary process.
he propagation of successful strategies to neighboring sites may
e interpreted either in terms of reproduction, or in terms of imi-
ation and learning (Nowak and Sigmund, 2004). An ambiguous
onclusion that has been reached from studies of the different
ypes of the spatial PD is that spatial structure promotes cooper-
tion (Nowak and May, 1992, 1993; Huberman and Glance, 1993;
owak et al., 1994; Killingback et al., 1999). Nowak and May (1992)
ave shown that a simplified spatial structure enables the mainte-
ance of cooperation for the simple PD, in contrast to the classical,
patially unstructured PD where defection is always favored. And
hey observed the perpetual coexistence of cooperative and defec-
ive players for a range of parameters, forming constantly changing

patial patterns. An interesting combination of repeated games and
patial structure, was studied by Lindgren and Nordahl (1994). Not
nly did they find that in structured populations there is more
ooperation, but also that different strategies are successful in spa-
ially structured populations than in non-structured populations
gets the payoff T, while cooperator gets S, w is the probability that the same two
players interact in the following step as well. In our study, the parameters are: R = 1,
T = b(1 < b < 2), S = 0, P = 0 (Nowak and May, 1992, 1993).

(Brauchli et al., 1999). Actually, there are plenty of spatial evolu-
tionary game models and we cannot list and review all of them. To
the best of our knowledge, the spatial effect on the evolutionary
game dynamics of the three strategies ALLD, TFT, and ALLC has not
been extensively investigated, and a systematic analysis about the
influences of parameters on the spatiotemporal dynamics is still
lack.

The aim of this study is to give a thorough analysis of the
spatiotemporal dynamics of the spatial evolutionary game, where
three types of players ALLD, TFT, and ALLC are included. The
ultimate goal is to answer the question, how spatial structure influ-
ences the evolution of cooperation and what impact it has on the
evolutionary dynamics of a spatially structured model. Before that,
we will first present the replicator dynamics of the three strate-
gies in completely well-mixed populations. The replicator equation
and mathematical analysis will be shown in Section 2. In Section 3,
the spatial evolutionary game model will be constructed, where
ALLD, TFT, and ALLC players are placed on a regular spatial lat-
tice. A systematic mathematical analysis for this model will be
given. Particularly, we will focus on two major parameters b and
w, then the plane of parameters b − w will be divided based on
comparing local occupation patterns, and the corresponding spa-
tiotemporal dynamics will be identified by computer simulations.
Lastly, the main results will be concluded, and a short discussion
will be given within the framework of Nowak’s five rules leading to
cooperation.

2. Replicator dynamics of non-spatial game models

Traditionally, evolutionary game model always assumes ran-
domly interacting populations, it does not include the effect of
spatial structure of populations. Replicator equation is introduced
as a corresponding mathematical tool to describe evolutionary
game dynamics in the deterministic limit of an infinitely large
and well-mixed population (Taylor and Jonker, 1978; Hofbauer et
al., 1979; Zeeman, 1980; Weibull, 1995; Hofbauer and Sigmund,
1998, 2003). Since w is the probability that the same two play-
ers interact in the following step as well, then wn−1(1 − w) will be
the probability that they interact exactly n times (n = 1, 2, 3 . . .).
The expected number of times that the two players interact is
1/(1 − w) (Nakamaru et al., 1997). The expected total payoff matrix
is shown in Table 1. For facility of comparison, we also assume
that parameters are R = 1, T = b(1 < b < 2), S = 0, P = 0 and set-
ting P = � with � positive but significantly below unity (so that
T > R > P > S is strictly satisfied) does not qualitatively change the
analytical results. In the following, the parameter setting keeps con-
stant except special declaration. Denoting {x1, x2, x3} (0 ≤ xi ≤ 1, i =
replicator dynamics are restricted in the simplex x1 + x2 + x3 = 1.
Substituting the payoff matrix into the classical replicator equa-
tion (Taylor and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980;
Weibull, 1995; Hofbauer and Sigmund, 1998, 2003), we get the
following dynamic system:
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Table 2
The stability of the equilibria of the replicator dynamics

Equilibrium b(1 − w) > 1 b(1 − w) < 1

x2 + x3 = 0 Stable Higher order odd points

x2 + x3 = 1
(

x2 > b−1
bw

)
Unstable Stable

x2 + x3 = 1
(

x2 < b−1
bw

)
Unstable Unstable

x3 = 1−b(1−w)x2
b−1 Non-equilibria Fixed points

If the parameters chosen satisfy b(1 − w) > 1, the evolutionary stable state is ALLD,
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Fig. 1. The replicator dynamics of the three strategies in the completely well-mixed
population. (a) Parameters are b = 9/5, w = 1/3, and b > 1/(1 − w); (b) parameters
hereas satisfy b(1 − w) < 1, the evolutionary dynamics is a bistable case depending
n initial state, except ALLD is still the evolutionary stable state, the mixed state of
FT and ALLC is also evolutionary stable while x2 > (b − 1)x3/(1 − b + bw) (x2 and
3 indicate the frequencies of TFT and ALLC, respectively).

dx1

dt
=x1

[
bx1 + b

1 − w
x3 − x1

(
bx2 + b

1 − w
x3

)
− 1

1 − w
(x2 + x3)2

]

dx2

dt
=x2

[
1

1 − w
(x2 + x3) − x1

(
bx2 + b

1 − w
x3

)
− 1

1 − w
(x2 + x3)2

]

dx3

dt
=x3

[
1

1 − w
(x2 + x3) − x1

(
bx2 + b

1 − w
x3

)
− 1

1 − w
(x2 + x3)2

]

(1)

ith the restriction x1 + x2 + x3 = 1, system (1) can be reduced into
two-dimensional Lotka–Volterra system. Using the classic ana-

ytical method of dynamic system, we can easily find that the edge
1 = 0 consists of fixed points only. Clearly, a population of ALLC and
FT players will always cooperate, and none of the two strategies is
avored. When b > 1/(1 − w), if a random shock introduces a small
mount of ALLD, they will take over the whole population (some
etails have been shown in Appendix A). For b < 1/(1 − w), there

s another invariant line (1 − b + bw)x2/(b − 1) − x3 = 0. Once x2 >
b − 1)x3/(1 − b + bw), then ALLD will forthwith be eliminated, and
LLC and TFT players will coexist finally. Thus the dynamics is
istable, and the evolutionary stable states depend on the initial
ondition. Since (b − 1)x3/(1 − b + bw) is small when w is close to
, it means that a small TFT cluster is able to invade a population
f defectors. This is due to a sufficiently large w, which is inter-
reted as the “shadow of the future” (Axelrod and Hamilton, 1981).
able 2 concludes the results of the dynamics of system (1). As one
xample, Fig. 1 illustrates the evolutionary dynamics of the three
trategies on the phase plane.

. The spatial game model and analysis

.1. Spatial game model

Compared with non-spatial model, the most remarkable charac-
eristic of spatially structured model is that individuals will interact
ith neighbors selectively or assortatively, which is more realis-

ic for many ecological and social phenomena (Hui et al., 2005;
hang et al., 2006; Xiao et al., 2007). Spatial structure might influ-
nce the evolutionary outcome, therefore, evolutionary games in
patially structured populations have attracted the interest of evo-
utionary biologists (Nowak and May, 1992; Hauert and Doebeli,
004; Doebeli and Hauert, 2005 and references therein). Our spa-
ial game model is actually a cellular automaton (e.g. Balzter et
l., 1998; Ruxton and Saravia, 1998; Berec, 2002), where ALLD, TFT
r ALLC players are arranged on a two-dimensional spatial lattice
sing a deterministic and synchronized updating rule (Nowak and
ay, 1992). That is, in each round, every individual “plays the game”
ith the immediate neighbors; after this, the individual player will
ither insists its strategy or imitates one of its neighbor’s depend-
ng on who scores the highest total payoff, everyone’s total payoff is

easured by adding up the score from all encounters in that round;
nd so to the next round of the game. The biological interpreta-
ion of this updating rule is related to reproductive success, where
are b = 9/5, w = 2/3, and b < 1/(1 − w). The lines with arrows are the trajectories,
where the arrows indicate the direction of the trajectories. The solid lines without
arrows are stable fixed sets, while the dashed lines are unstable manifold. The dotted
line is an invariant set in (b).

more successful strategies have more offsprings. In this study, we
assume that each player only plays with its four immediate neigh-
bors, which is referred to as “Neumann” neighborhood. Using the
terminology of cellular automata, the lattices represent the play-
ers and the strategies are termed as states. In the following of this
study, we will not distinguish the appellations strictly.

3.2. Analysis

3.2.1. Payoffs for local configurations
As pointed out in the previous section, the change of player’s

“behavior” depends on the payoff of the players in the immediate
neighborhood, which in turn depends on the local occupation. In
order to derive the analytical conditions for the transition of state,
we thus have to look more closely at the local occupation patterns,
which includes the focal player and its four immediate neighbors.
We denote the local occupation pattern as Ks,p

�
. Here � ∈ {0, 1, 2}

represents the state of the focal player, where 0, 1 and 2 corre-

spond to ALLD, TFT and ALLC, respectively, and s, p ∈ {0, 1, 2, 3, 4}
give the total numbers of TFT, ALLC in the nearest neighborhood,
respectively. According to the above definition of local occupation
pattern, we can see that the relative positions of neighbors does not
affect the payoff of a focal player.
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For each possible realization of Ks,p
�

, the payoff of the focal player,
s,p
�

can be calculated. The results are given by Eq. (2) in terms of an
nalytical expression and for a particular realization of the payoff
atrix in the Table 1.

s,p
0 = sb + pb

1 − w
, as,p

1 = s + p

1 − w
, as,p

2 = s + p

1 − w
(2)

e notice that the payoff as,p
�

increases with the number of TFT
layers or ALLC players in the neighborhood, i.e., for a particular �

s,p
�

> as−1,p
�

(s ∈ {1, 2, 3, 4}, s + p ≤ 4) (3a)

s,p
�

> as,p−1
�

(p ∈ {1, 2, 3, 4}, s + p ≤ 4) (3b)

urthermore, we have

s,p
1 = as,p

2 (s, p ∈ {1, 2, 3, 4}) (4a)

t,q
0 > as,p

0 (s, p ∈ {1, 2, 3, 4}, s + p = t + q, s > t) (4b)

0,4
0 = max{as,p

0 , as,p
1 , as,p

2 }(s, p ∈ 1, 2, 3, 4) (4c)

0,0
1 = a0,0

2 = min{as,p
0 , as,p

1 , as,p
2 }(s, p ∈ 1, 2, 3, 4). (4d)

ased on these general considerations, we will discuss different
onditions that arise in the spatial case for the invasion or the
oexistence of the three strategies ALLD, ALLC and TFT.

.2.2. Conditions for invasion and coexistence
To derive the conditions for invasion and coexistence, it is nec-

ssary to concentrate on the border region between the domains of
LLD players, TFT players and ALLC players. To elucidate the dynam-
cs at the border, we will independently discuss the two possible
ases, (i) configurations Ks,p

0 “owned” by ALLD players invade into
eighboring configurations Ks,p

1 “owned” by TFT players and Ks,p
2

owned” by ALLC players. In this study, we should only pay atten-
ion to that Ks,p

0 invade into Ks,p
1 since the equality shown in Eq.

ig. 2. The parameter plane of {w, b} can be separated into 65 small areas according to th
xis is b. The definition of all the 20 lines indexed are shown in Appendix B.
ling 220 (2009) 2353–2364

(4a); (ii) configurations Ks,p
1 (Ks,p

2 ) invade into neighboring configu-
rations Ks,p

0 , Ks,p
2 (Ks,p

1 ), respectively. Note that the ALLD player and
TFT (ALLC) player are always on the adjacent sites. Some results are
explained below.

The ALLD players can definitely invade the whole spatial popu-
lation, if the lowest possible payoff of ALLD player is larger than
the highest possible payoff for collaborators. According to Eqs.
(3a) and (3b), this leads to the necessary condition for the com-
plete invasion of ALLD player into the domain of TFT player, a1,0

0 >

max
(s+p=4)

{as,p
1 }. Actually, the payoff a0,0

0 can be ignored here, because

in the configuration K0,0
0 , there is no TFT player left to adopt the

ALLD strategy. It is also required that a0,1
0 > max

(s+p=4)
{as,p

2 } as the

same reason. Then all the above inequalities are concluded as the
necessary condition for the complete invasion of ALLD behavior,
min{a1,0

0 , a0,1
0 } > max

(s+p=4)
{as,p

1 , as,p
2 }. That is b > 4/(1 − w). Obviously,

it contradicts to our requirement 1 < b < 2, 0 < w < 1. Similarly,
the TFT behavior can definitely invade the whole spatial popula-
tion, if min{a0,0

1 , a0,1
1 } > max

(s+p=4)
{a0,4

0 , as,p
2 }. And, for the ALLC players,

the condition is min{a0,0
2 , a1,0

2 } > max
(s+p=4)

{a0,4
0 , as,p

1 }. Both of the two

equalities contradict to the requirement referred above. Combined
with the analysis of ALLD behavior, we derive the conclusion that
there is no strategy can invade the whole spatial population, if the
three strategies all initially exist. It is obvious that TFT player and
ALLC player are neutral without ALLD player according to Eq. (4a).

The above analysis is only a sketch illustration to the invasion
process, however, some detailed analyses are also required. For
example, for the ALLD strategy, we notice that Ks,p

0
(s+p=3)

could always
invade neighboring configurations Ks,p
1

(s+p≤3)

or Ks,p
2

(s+p≤3)

because the

necessary condition min
(s+p=3)

{as,p
0 } > max

(s+p≤3)
{as,p

1 , as,p
2 } always holds

(3b > 3/(1 − w)). But this kind of invasion does not happen, if

e possible payoffs of the three strategies. The horizontal axis is w and the vertical
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max
s+p=3)

{as,p
0 } < 4/(1 − w) is valid. In contrast, the configuration

Ks,p
0

s+p=3)

cannot invade neighboring configurations Ks,p
1

(s+p≤3)

or Ks,p
2

(s+p≤3)

ecause of the higher payoff of configuration Ks,p
1

(s+p=4)

or Ks,p
2

(s+p=4)

that

backs” them from the other side, so the border remains at its
urrent position. However, to fully analyze the invasion and coex-
stence patterns is a difficult task because the local occupation
onfigurations are intricate. Whereas we know that the change of
layer’s behavior only depends on the payoffs of the players in the

mmediate neighborhood, and the possible payoff as,p
�

only depends
n the two variables w and b, therefore, we will mainly focus on
hese two parameters. The mathematical analysis will divide the
arameter plane according to the different payoff conditions. More-
ver, as the payoffs as,p

�
in Eq. (2) is known, we can derive all of the

onditions and list them in Appendix B (the same equation has been
eleted). Additionally, we always have 0 < w < 1 and 1 < b < 2.
s long as the spatiotemporal dynamics, it need further computer
imulations. The detailed division and results are shown in the next
ection.

.3. Results

The {w, b} parameter plane can be divided into 65 areas (Fig. 2),
here all lines coincide with front restrictions marking the different

oundaries between areas. One the other hand, what really inter-
sts us is the spatiotemporal dynamics in these different areas. We
arry on computer simulations for different parameters selected in
ach area, the lattice size is N = 100 × 100 with fixed boundary con-
itions (the qualitative character of our results is unchanged if we

nstead choose periodic boundary conditions), the initial frequency
f strategies is equal and individuals are randomly distributed. In

rder to introduce a time scale, we define a generation G to be
he time in which each player has interacted with its four nearest
eighbors one time (also referred to as a one-shot game). Through
n extensive simulation and careful identifications, nine different
ynamic regions, each characterized by a distinct spatiotemporal

ig. 3. Based on computer simulation, we can summarize the 65 parameter areas in Fig.
ynamics and a corresponding final distribution. The horizontal axis is w and the vertical
ing 220 (2009) 2353–2364 2357

dynamics and a corresponding final distribution, are confirmed (see
Fig. 3). Next, we will introduce all of them one by one. And each will
be summarized in the following subtitles in bold.

Case 1. There is stable coexistence state with large domains of
ALLD players in a background of TFT players and ALLC players.

{(w, b)|3/(2 − 2w) < b} ∩ {(w, b)|0 < w < 1/4, 2/3 < b < 2}.

The above set is denoted as region 1 in Fig. 3. For parameters located
in this region, ALLD players cluster with static large domains in
the sea of TFT players and ALLC players. The frequency of the three
strategies is approximately stable within a very short time, and the
values are f (0) = 0.6, f (1) = 0.2 and f (2) = 0.2, respectively. These
results are robust and are not sensitive to the initial distribution.

Case 2. ALLC players form stable small domains, but movement
at the boundary between clusters of ALLD players and TFT play-
ers can always be observed.

{(w, b)|4/(3 − 3w) < b < 3/(2 − 2w)} ∩ {(w, b)|3/2 < b < 2}.

The above set is denoted as region 2 in Fig. 3. The movement at the
boundary between clusters of TFT players and ALLD players can
always be observed, therefore, the frequencies of ALLD players and
TFT players will fluctuate slightly all the time. There will be a few
small compact clusters of ALLC players that like islands in the sea of
ALLD players, and the relative frequency of ALLC players will reach
a stationary state after a short transient period. The spatiotemporal
dynamics of TFT players is similar to ALLC players but the relative
frequency will be higher. We give an example in Fig. 4(a)–(c).

Case 3. There is unstable coexistence state between large
domains of ALLD players and the background of ALLC players.
And TFT players will disappear. Spatiotemporal chaos arises.

{(w, b)|4/(3 − 3w) < b} ∩ {(w, b)|0 < w < 1/9, 4/3 < b < 3/2}.

2 into 9 different dynamic regions, each characterized by a distinct spatiotemporal
axis is b. All the nine regions are indicated in bold numbers.
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Fig. 4. The spatial game can generate nine qualitatively different spatiotemporal dynamics, depending on the parameters b and w. Simulations are performed on a 100 × 100
square lattice with fixed boundary conditions, and start with 1/3 ALLD, 1/3 TFT, and 1/3 ALLC players located randomly. This figure shows an example for b = 1.6, w = 0.1
i empor
i The s
i etation
v

players are encircled by ALLD players with relative fixed borders
n region 2, and the following others give examples in some other regions. (a) The t
ndicates ALLD, dashed line indicates TFT and dotted line indicates ALLC. (b) and (c)
s as follows: blue is an ALLD, green is a TFT, and red is an ALLC player. (For interpr
ersion of the article.)

The above set is denoted as region 3 in Fig. 3. Parameters in this
region correspond to mutual invasion process between ALLD play-
ers and TFT players, or between ALLD players and ALLC players. TFT
and ALLC players can easily form big clusters only after a short
period. These initial clusters of ALLC players then split up into
smaller clusters, which grow, split up again and may disappear.
As these TFT clusters grow, they will collide and joint as a large
cluster. In the following steps, these smaller clusters of TFT will be
taken over by ALLD, and bigger clusters of TFT will become smaller
because of the neutrality with ALLC, and the more ALLC players
surround a ALLD player, the bigger payoff of the ALLD player gets
according to Eq. (4b). All these reasons cause to the extinction of
TFT players. After TFT player disappears, the frequency of ALLD
players still shows light fluctuations, so does that of ALLC play-
ers (see Fig. 5(a)). And we always observe the spatial domains of
ALLD players are separated by regions of ALLC players. This leads
to a non-stationary spatial distribution even in the long run, it has
been already argued by Nowak and May (1992) that this region can
be characterized as spatiotemporal chaos. A fixed configuration of
the system is shown in Fig. 5(b) and (c).

Case 4. There is stable percolation network of ALLD players in a

background of TFT players, ALLC players either form few small
clusters or disappear.

{(w, b)|4/(3 − 2w) < b < 4/(3 − 3w)} ∩ {(w, b)|4/3 < b < 3/2}.
al dynamics of frequencies of the three strategies over 1000 generations, solid line
patial patterns at generations G = 100 and G = 1000, respectively. The color coding

of the references to color in these figure legend, the reader is referred to the web

The above set is denoted as region 4 in Fig. 3. ALLC players either
form few small clusters or disappear for parameters located in this
region. And ALLD player can invade the domain of TFT players along
diagonal direction, or then form a pattern of glider (stable propa-
gating structures) (Nowak and May, 1993) in the background of TFT
players. An irregular but static pattern that percolation network of
ALLD players occurring in a background of TFT players takes on as
illustrated in Fig. 6.
Case 5. There is stable coexistence state with a majority of TFT
players and a minority of ALLC players.

{(w, b)|(3b − 4)/2b < w < (b − 1)/b, 4/3 < b < 2}
∪{(w, b)|(3b − 4)/3b < w < (3b − 4)/2b, 3/2 < b < 2}.

The above set is denoted as region 5 in Fig. 3. For parameters
located in this region, ALLD players invade TFT players along diag-
onal direction, then a long strip of ALLD players arises on the grid,
or they occur as a single cell, or two or three isolated cells in a back-
ground of TFT players. We can also find four or five ALLD cells form
a cross or types of glider in the sea of TFT players. aggregated ALLC
and most of them distribute on the boundary of grid. The time
needed to reach stable state decreases with increasing of b. And
the final spatial patterns bear a strong resemblance to region 4,
it always shows stable coexistence state of the three kind players
with a majority of TFT players and a minority of ALLC players.
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F dynam
o patter
r

F
t

ig. 5. Spatiotemporal dynamics for b = 1.45, w = 0.08 in region 3. (a) The temporal
f lines is the same as in Fig. 4(and throughout this paper). (b) and (c) The spatial
egion. The color coding is the same as in Fig. 4(and throughout this paper).

Case 6. There is unstable coexistence state with both a majority
of TFT and ALLC players. “Evolutionary kaleidoscope” arises.

{(w, b)|1/(1 − w) < b} ∩ {(w, b)|0 < w < 1/4, 1 < b < 4/3}.
The above set is denoted as region 6 in Fig. 3. ALLD players form
stable squares or stripes in the background of TFT players and
ALLC players within extremely short generations. The movement

ig. 6. Stable percolation network characterizes region 4. The spatial pattern of the
hree strategies at G = 1000 for b = 1.45, w = 0.1 in this region.
ics of frequencies of the three strategies over 1000 generations, the representation
ns at G = 100 and G = 1000, respectively. Spatiotemporal chaos characterizes this

between the border in clusters of TFT players and ALLC play-
ers can be observed, and the small cluster of TFT players will
be replaced by ALLC players. Eventually most cells will be occu-
pied by TFT and ALLC players. Fig. 7(a) gives us an illustration of
the temporal dynamics. The spatial game can generate an “evo-
lutionary kaleidoscope” such as shown in Fig. 7(b) and (c). This
spatial structure evolves forever, single-players domains appear
and grow indefinitely, and the process exhibits coarsening. In other
words, equilibrium is never attained, instead, an irregular network
of domains develops. And the domain patterns are self-similar, i.e.,
the structures differ only by a global change of scale between at
later times and at earlier times. Such a behavior is a signature of
dynamical scaling.

Case 7. There is unstable coexist state with both a minority
of ALLD players and ALLC players. Irregular frozen state (with
some ALLC enclosed by ALLD players) arises.

{(w, b)|1/2 < w < 1, 4/(3 − w) < b < 1/(1 − w)}
∪{(w, b)|(b − 1)/b < w < 3(b − 1)/2b, 1 < b < 3/2}
∪{(w, b)|(3b − 4)/b < w < (3b − 2)/3b, 3/2 < b < 2}.
The above set is denoted as region 7 in Fig. 3. If parameters are cho-
sen in this region, we can observe that isolated ALLD players and
clusters of ALLC players appear in TFT players. Eventually most cells
will be occupied by TFT players. Irregular frozen state (Lindgren
and Nordahl, 1994) will be observed with some ALLC enclosed by
ALLD players. Fig. 8(a) and (b) show us a specific case.
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Fig. 7. Spatiotemporal dynamics for b = 1.2, w = 0.1 in region 6. (a) the temporal dynamics of frequencies of the three strategies over 2000 generations. (b) and (c) are the
spatial patterns at G = 100 and G = 2000, respectively. “Evolutionary kaleidoscope” characterizes this region.

F rizes r
b

ig. 8. Irregular frozen state (with some ALLC enclosed by ALLD players) characte
= 1.3, w = 0.25 in this region.

Case 8. ALLD players may disappear or exist with only few reg-
ular small stable domains or single cells.

{(w, b)|3(b − 1)/2b < w < (4b − 3)/4b, 1 < b < 2/3}
∪{(w, b)|(3b − 2)/3b < w < (3b − 2)/2b, 3/2 < b < 4/(3 − w)}

∪{(w, b)|(4b − 3)/4b < w < (3b − 2)/3b, 4/(4 − w) < b < 4/3}
∪{(w, b)|(3b − 2)/3b < w < (2b − 1)/2b, 3/(3 − w) < b < 4/3}.

The above set is denoted as region 8 in Fig. 3. ALLD players may
disappear or exist with only few regular small stable domains and
egion 7. (a) and (b) the spatial patterns at G = 100 and G = 1000, respectively for

single cells in this region. Fig. 9 gives us an example that ALLD play-
ers enclose some clusters of ALLC players in their border regions.

Case 9. ALLD players disappear.

{(w, b)|(3b − 2)/3b < w < 1, 3/2 < b < 2} ∪ {(w, b)|(2b − 1)/2b

< w < 1, 1 < b < 4/3} ∪ {(w, b)|(4b − 3)/4b < w < 1, 4/3
< b < 3/2} ∪ {(w, b)|(3b − 2)/3b < w < (2b − 1)/2b, 1 < b

< 3/(3 − w)} ∪ {(w, b)|(4b − 3)/4b < w < (3b − 2)/3b, 1

< b < 4/(4 − w)}.
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or through space-time chaos. Then we clearly obtain cooperation
ig. 9. The spatial pattern of the three strategies at G = 1000 for b = 1.65, w = 0.7
n region 8.

The above set is denoted as region 9 in Fig. 3. ALLD players dis-
appear in this region. And it can be taken as the homogeneity
of cooperative state because of neutrality between TFT and ALLC
strategy.

And we always observe that ALLD players take over a lot of cells
fter one generation no matter what parameter region is in the sim-
lations. There are only single ALLC player, single TFT player, small
quare of ALLC players, and small square of TFT players left. The
ingle ALLC players and single TFT players almost disappear while
= 2, but the small square of ALLC players and small square of

FT players which have formed in G = 1 tend to grow bigger in the
ollowing generations. Different parameter regions own different
ransient period for clustering. For example, it is obvious that ALLC
nd TFT players form clusters much faster in regions 7 and 8 than the
thers. And we notice stationary spatial configuration appears once
lusters of ALLC players are all enclosed by ALLD players. Although
LLC is dominated by ALLD in well-mixed populations, ALLC players
an build clusters which resist invasion of ALLD while only consid-
ring local spatial interactions. Otherwise, non-stationary spatial
tate emerges once ALLC players surpass the enclosure. On the one
and, ALLD player would invade these disadvantageous ALLC play-
rs, on the other hand, ALLD players can be indirectly invaded by
FT players who seems far from them now, but these TFT players
ay approach them sooner or later due to the neutrality between

LLC and TFT.
So far, we have investigated the spatiotemporal dynamics in

hese nine pure parameter regions, however, the question arising
s how the system behaves if we choose parameters on the border
etween two regions. From the above conclusions, we have already
nown that there must be some border regions which mark the
ransition from stable coexistence to invasion thus leads to the non-
tationary state (such as the transitional border 5|6 from region 5
o region 6). Next, we also give some investigation to them. And we
otice not both frequencies and spatial patterns of a border all hold
he same dynamics as one of its neighboring regions. For instance,
n the case of 1|2 border, the frequencies are the same as in region

once reaching stationary state. But spatial dynamics always only
how the movement between the border domains of ALLD players
nd TFT players, while the light invasion dynamics between ALLD

layer and ALLC player in region 1 can not arise. In the case of 2|5
order, the movement between the border domains of ALLD players
nd TFT players like region 2 can be observed, but the final spatial
attern is similar to region 5, that the respective separated domains
ing 220 (2009) 2353–2364 2361

of their’s own cannot be seen. A strange phenomenon arises in the
2|3 border where ALLC players disappear instead of TFT players,
which seems counter-intuition because it is TFT players disappear
in region 3. Actually, the outcome in the border is expected because
there is only a minority of ALLC players in the region 2. Thus, the 2|3
border gives an obvious segregation between the two regions. 5|7
and 6|7 hold the analogous dynamics to their common neighboring
region 7, but a much faster invasion speed of TFT players in the 6|7
border can be observed. We also find the frequencies and spatial
pattern of 5|6 are all the same as in region 6. There are still other
border regions but we do not list all of them one after another, since
their behavior are trivial and not worthy of interest.

Furthermore, we know Nowak and May (1992, 1993) have
obtained the detailed division for their unique parameter b based
on the simple spatial PD by means of computer simulations. Let
w = 0 and make only cooperator and defector left in the initial pop-
ulations, our work can be verified with theirs, and the consistent
conclusions can be obtained clearly.

4. Conclusions and discussion

Repeated Prisoner’s Dilemma is the game theoretic frame-
work of reciprocity (Trivers, 1971), which is a mechanism for the
evolution of cooperation. While network reciprocity is another
mechanism for the evolution of cooperation, and it is actually the
generalization of spatial reciprocity (Nowak and May, 1992) to evo-
lutionary graph theory (Lieberman et al., 2005). In this paper, we
have constructed a spatial game model combining direct and spatial
reciprocity together to investigate how evolution of cooperation is
influenced in spatially structured populations. The spatiotemporal
dynamics of the three strategies ALLD, TFT, and ALLC were investi-
gated by both mathematical analysis and computer simulations.
Remarkably, our results confirm that spatial structure promotes
cooperation, echoing Nowak and May (1992, 1993), Huberman and
Glance (1993), Nowak et al. (1994), Killingback et al. (1999). In
line with some previous studies, it was observed that the sur-
vival of cooperators was based on forming clusters, which allowed
them to persist despite exploitation by defectors along the cluster
boundaries (Doebeli and Hauert, 2005). Meanwhile, nine differ-
ent spatiotemporal dynamic regimes were concluded with the
division of parameter plane. The spatial game model gave rise to
amazing evolutionary diversity where cooperation could be pro-
moted.

First, we will focus our interest on the differences between
non-spatial and spatial game models. From analysis in well-mixed
populations in Section 2, we can easily obtain that, under the ini-
tial equal frequency condition, the parameter groups which satisfy
b < 2/(2 − w) coincide with the evolutionary end points of cooper-
ation, whereas it will be defection if inverse parameter conditions
were chosen. Hence, the third line b = 2/(2 − w) in Fig. 2 forms
the boundary between the two evolutionary stable state. If param-
eters are chosen above it in non-spatial game, the evolutionary
outcome is ALLD, otherwise is cooperation under it. But for the
spatial game, we have obtained some new findings comparing with
the non-spatial game model. The most important is that the state
where all individuals adopting ALLD strategy can be fully elimi-
nated for each parameter setting while only considering the local
spatial interactions. Refer to Fig. 3, the spatiotemporal dynamics
can give rise to coexistence with defectors (see regions 1–7 above
the third line). For example, this could happen if the system goes
to a fixed point containing stable spatial domains of cooperators,
is prompted in regions 1 –7 under the spatial setting. Region 9
(below the third line) still shows pure cooperation state in spatial
setting. Therefore, space no longer plays a role in the determination
of the evolutionary state if parameter values are chosen from region
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, that is the same regardless of whether interaction occurs only
etween nearest neighbors or between all players in the system.
he transition region 8 (from coexistence state to the homoge-
eous cooperator state) which takes on ALLD disappear or exist
ith only a few of single cells, is a special case, not all of the areas

ncluded in is above or under the third line. Why? It is only the
tochasticity in finite population size. All in all, the fact that spa-
ial structure facilitates evolution of cooperation can be verified in
ur study. And spatial structure tends to allow more diversity than
revails in well-mixed populations (Nowak and Sigmund, 2004),
hich can also be realized once again. These different coexistence

atterns of multiple strategies can be interpreted as the evolution of
ntraspecific diversity (meaning here players with different behav-
or strategies).

From the above discussion, we have known the spatial struc-
ure facilitates the evolution of cooperation in our model, and the
uestion arising naturally is that how cooperation is promoted

n spatially structured populations. There has been a common
iew about the main effect of spatial structure is that coopera-
ive strategies can build clusters of similar individuals due to local
eproduction in which the benefits of mutual cooperation outweigh
osses against defectors. Thus, clusters of cooperative players can
nvade into populations of defectors that constitute an evolution-
ry stable strategy (ESS) in non-spatial populations (Axelrod and
amilton, 1981; Nowak and May, 1992; Killingback and Doebeli,
996; Brauchli et al., 1999). No doubt, our study is not an exception.
ut the significance of our study is not merely to confirm some pre-
ious common view but to reveal the impact of geometry of cluster
ormation to the spatiotemporal dynamics in spatially structured
opulation. In particular, simulations have shown the coexistence
f strategies might be achieved by forming stable spatial domains.

t was observed that cooperative TFT and ALLC players could form
cattered domains and survive in the background of ALLD players.
n general, any compact domain formation would be preferable for
FT players and ALLC players, however, the ALLD players make them
ecome rare. Domain formation is inevitably changed by competi-
ion between these mutual invasion processes of the three kinds of
layers, which varies in different regions of parameter space. For
xample, the TFT players and ALLC players can invade the terri-
ory of ALLD players along straight borderlines, while ALLD players
ain along irregular boundaries for some given intervals of b and
, due to the discrete nature of total payoffs. Visualizing the time-
ependent configurations, we can observe how the domains try to
pread out. Domain walls move randomly. Their center, size, shape
nd location change continuously and a segregated domain may
isappear without any trace. Two domains can unite which pro-
ides a better opportunity for their survival. Or inversely, a domain
an be separated into two (or more) parts. While the same proce-
ure repeatedly, stable domains may gradually organize if there is
trade-off between these competition strength, thus coexistence

tate becomes true. And it will be shown that the transitions from
he active state (coexistence of the three kinds of players) to the
bsorbing ones (homogenous cooperators) exhibit universal behav-
or.

Finally but very importantly, Doebeli and Hauert (2005)
eviewed that most models of spatial evolutionary game theory
re generally difficult to obtain analytical results, because they can
xhibit very complicated dynamics (e.g. Killingback and Doebeli,
998; Hauert, 2001). Some analytical results have been obtained
hrough geometrical arguments about cluster formation analysis
Nowak and May, 1992; Killingback et al., 1999; Hauert, 2001).

ecently, Schweitzer et al. (2002) derived the critical conditions for
he invasion or the spatial coexistence of cooperators and defectors.

eanwhile, interesting phase transitions can occur between the
ifferent dynamic regimes of spatial games, which were reported

n some previous studies (Szabo and Toke, 1998; Szabo and Hauert,
ling 220 (2009) 2353–2364

2002). In this study, the idea of local payoff structures analysis is
similar to that of Schweitzer et al. (2002). However, it is not easy
to derive similar analytical results as Schweitzer et al. (2002) since
three strategies game is much more complex than the original PD.
Fortunately, we find that the critical conditions for invasion and
coexistence are only determined by the payoff structure. Then the
problem can be solved by comparing the payoff differences of local
patterns. A rough partition for the plane of parameters b − w can be
obtained firstly. Then based on extensive computer simulations that
reveal the distinct spatiotemporal dynamics and the correspond-
ing final spatial patterns, the parameter plane can be divided and
each of them can be identified. Although the method does suffer
the drawback of time consuming, but its accuracy and usefulness
to the partition of the parameter region is undoubted.

Nowak and May (1992) have shockingly revealed that simple,
and purely deterministic spatial version of the PD can generate
chaotically changing spatial patterns, in which cooperators and
defectors both persist indefinitely. In their following work (Nowak
and May, 1993), they found that spatial chaos and dynamic fractals
were typical features of spatial evolutionary game (i.e., evolutionary
games played with neighbors on spatial lattices). Through analysis
based on the fate of a single isolated defector or cooperator and
combined with computer simulations, they did more extensively
and carefully investigations for different spatial geometry structure
and local interaction neighborhood structures. However, it should
be kept in mind that, individual cells do not have memory or elab-
orate strategies in their models. And, another parameter w arises
naturally while considering direct reciprocity in our work. Thus,
the dynamics depends on the two parameters w and b. Specifi-
cally, Nowak and May (1993) also derived the parameter division
of b for the four neighborhood structure which was investigated in
this paper. They are, respectively, coexistence with large domains
of cooperators if 1 < b < 4/3; coexistence with spatial chaos if
4/3 < b < 3/2; and coexistence with small clusters of cooperators
if 3/2 < b < 2. As illustrated in Fig. 2, the lines 19 and 20 indicate
b = 3/2 and b = 4/3, respectively. It clearly gives the phase divi-
sion as shown in Fig. 3. We find parameters in regions 1–6 where
w close to zero (can be approximately taken as the simple PD)
produce nearly the same spatiotemporal dynamics. For instance,
the interesting region 3 also represents spatial chaos which satis-
fies 4/3 < b < 3/2. Therefore, the accuracy of the method can be
verified again.

Doebeli and Hauert (2005) have pointed out, the overall con-
clusion that spatial structure is beneficial for the evolution of
cooperation has been obtained mainly for the PD model in which
spatial structure was incorporated by using regular square lattices,
in which interaction and reproduction (imitation) was limited to
either the four or the eight nearest neighbors. However, so far
as we know, regular square lattices, the nearest local interaction
and reproduction neighborhood structure are not necessary. Some
research results have indicated that the lattice topology does affect
the dynamics of cooperation, and interestingly, relaxing the rigid
purely local neighborhood structure of lattices seems to benefit
cooperation (Abramson and Kuperman, 2001; Masuda and Aihara,
2003; Ifti et al., 2004; Hauert and Szabo, 2005). And much atten-
tion has been given to “evolutionary graph theory” recently, which
aims at investigating the impact of graph topology on the evolution
of cooperation (Lieberman et al., 2005; Ohtsuki and Nowak, 2006;
Ohtsuki et al., 2006; Grafen, 2007; Lehmann et al., 2007; Taylor
et al., 2007). For example, Santos et al. (2006a) have demonstrated
that cooperation can be favored in heterogeneous populations, such

heterogeneity can result from the joint evolution of graph topol-
ogy and cooperation (Santos et al., 2006b, c). In this paper, we only
investigated four neighborhood structure using deterministic syn-
chronous updating. In fact, many variants are possible in terms of
lattice geometry neighborhood structure, deterministic or stochas-
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ic updating, synchronous or asynchronous, and so on. It deserves
urther investigation in future.
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ppendix A.

dx2

dt
= x2(1 − x2 − x3)

[
1

1 − w
(x2 + x3) − (bx2 + b

1 − w
x3)

]
= x2(1 − x2 − x3)P

dx3

dt
= x3(1 − x2 − x3)

[
1

1 − w
(x2 + x3) − (bx2 + b

1 − w
x3)

]
= x3(1 − x2 − x3)P

he points on the invariant line x2 + x3 = 1 are not hyperbolic
ecause one of the eigenvalue of the jacobian matrix is zero. There-

ore, the linearization tells us nothing about the stability properties
f these fixed points in the original system. We can consider the
elative entropy function V = 1 − (x2 + x3), defined for allowable
tates of the system close to these points x̄ = (x2, x3) with x2 + x3 =
. Such that, V(x̄) = 0, V(x̄) > 0 for any points x ∈ O(x̄).

dV

dt
= −(ẋ2 + ẋ3)

he derivative of V about t is

dV

dt
= −{x2(1 − x2 − x3)

[
1

1 − w
(x2 + x3) − (bx2 + b

1 − w
x3)

]

+ x3(1 − x2 − x3)
[

1
1 − w

(x2 + x3) − (bx2 + b

1 − w
x3)

]
}

= −{(x2 + x3)(1−x2 − x3)
[

1
1 − w

(x2 + x3) − (bx2 + b

1 − w
x3)

]
}

> −{(x2 + x3)(1 − x2 − x3)
[

1
1 − w

(x2 + x3) − (bx2 + bx3)
]
}

= (b − 1
1 − w

)(x2 + x3)2(1 − x2 − x3)

ince 0 < x2 < 1, 0 < x3 < 1, 1 < b < 2, 0 < w < 1, therefore,
hen b(1 − w) > 1, we have dV/dt > 0 for any points x ∈ O(x̄). Thus
e can obtain that x2 + x3 = 1 is an unstable manifold.

ppendix B.

1 : 4b ≷ 4
1 − w

⇒ b= 4
4 − 4w

2 : 3b+ b

1 − w
≷ 4

1 − w
⇒ b= 4

4 − 3w

3 : 2b + 2b

1 − w
≷ 4

1 − w
⇒ b= 4

4 − 2w
4 : b + 3b

1 − w
≷ 4

1 − w
⇒ b= 4

4 − w

5 : 4b ≷ 3
1 − w

⇒ b= 3
4 − 4w

6 : 3b+ b

1 − w
≷ 3

1 − w
⇒ b= 3

4 − 3w

7 : 2b + 2b

1 − w
≷ 3

1 − w
⇒ b= 3

4 − 2w
8 : 4b ≷ 2

1 − w
⇒ b= 2

4 − 4w

9 : 3b + b

1 − w
≷ 2

1 − w
⇒ b= 2

4 − 3w
10 : 3b ≷ 4

1 − w
⇒ b= 4

3 − 3w

11 : 2b + b

1 − w
≷ 4

1 − w
⇒ b= 4

3 − 2w
12 : b + 2b

1 − w
≷ 4

1 − w
⇒ b= 4

3 − w

13 : 2b + b

1 − w
≷ 3

1 − w
⇒ b= 3

3 − 2w
14 : b + 2b

1 − w
≷ 3

1 − w
⇒ b= 3

3 − w
15 : 3b ≷ 2
1 − w

⇒ b= 2
3 − 3w

16 : 2b+ b

1 − w
≷ 2

1 − w
⇒ b= 2

3 − 2w

17 : 2b ≷ 3
1 − w

⇒ b= 3
2 − 2w

18 : b + b

1 − w
≷ 3

1 − w
⇒ b= 3

2 − w

19 :
2b

1 − w
≷ 3

1 − w
⇒ b= 3

2
20 :

3b

1 − w
≷ 4

1 − w
⇒ b= 4

3

ing 220 (2009) 2353–2364 2363
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