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Soil organic matter is a major soil property that is extremely 
infl uential on soil physical, chemical, and biological process-

es, primarily soil fertility and plant growth. Water and nutrient 
holding capacity are enhanced and soil structure is improved 
with increasing SOM. Managing soil C can enhance produc-
tivity and environmental quality, and can reduce the severity 

and costs of natural disasters, such as drought, fl ood, and dis-
ease (Chen and Aviad, 1990; Stevenson and He, 1990; Blanco-
Canqui and Lal, 2004). In addition, increasing SOM can reduce 
atmospheric CO2 levels that contribute to climate change (Yadav 
and Malanson, 2007). Continued effi  cient use of our soils and 
protection of our environment requires a better understanding 
of SOM content and its spatial variability. To achieve this, we 
should know the spatial distribution and variability of SOM by 
means of soil survey and spatial prediction.

Th ere have been many studies using both remotely sensed 
images of bare soil and spectroscopic refl ectance of soil samples 
for soil survey, mapping, and quantitative soil property charac-
terization (e.g., Dalal and Henry, 1986; Agbu et al., 1990; Csillag 
et al., 1993; Ben-Dor and Banin, 1994, 1995; Chen et al., 2008). 
Studies have shown that SOM correlates signifi cantly with soil 
refl ectance in the visible and near infrared (NIR) region (Al-
Abbas et al., 1972; Mulders, 1987; Sudduth and Hummel, 1991; 
Schulze et al., 1993; Ben-Dor et al., 1999; Chen et al., 2000). 
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Spatial Prediction of Soil Organic Matter Content 
Using Cokriging with Remotely Sensed Data

Accurately measuring soil organic matter content (SOM) in paddy fi elds is important because 
SOM is one of the key soil properties controlling nutrient budgets in agricultural production 
systems. Estimation of this soil property at an acceptable level of accuracy is important; especially 
in the case when SOM exhibits strong spatial dependence and its measurement is a time- 
and labor-consuming procedure. This study was conducted to evaluate and compare spatial 
estimation by kriging and cokriging with remotely sensed data to predict SOM using limited 
available data for a 367-km2 study area in Haining City, Zhejiang Province, China. Measured 
SOM ranged from 5.7 to 40.4 g kg−1, with a mean of 19.5 g kg−1. Correlation analysis between 
the SOM content of 131 soil samples and the corresponding digital number (DN) of six bands 
(Band 1–5 and Band 7) of Landsat Enhanced Thematic Mapper (ETM) imagery showed that 
correlation between SOM and DN of Band 1 was the highest (r = −0.587). We used the DN of 
Band 1 as auxiliary data for the SOM prediction, and used descriptive statistics and the kriging 
standard deviation (STD) to compare the reliabilities of the predictions. We also used cross-
validation to validate the SOM prediction. Results indicate that cokriging with remotely sensed 
data was superior to kriging in the case of limited available data and the moderately strong 
linear relationship between remotely sensed data and SOM content. Remotely sensed data 
such as Landsat ETM imagery have the potential as useful auxiliary variables for improving the 
precision and reliability of SOM prediction.

Abbreviations: CV, coeffi cient of variation; DN, digital number; ETM, Landsat Enhanced Thematic 
Mapper; NDVI, normalized difference vegetation index; SE, standard error of the estimate; SOM, soil 
organic matter content; STD, standard deviation; TM, Landsat Thematic Mapper.
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Th erefore, SOM content can be estimated from soil refl ectance 
measurements if the relationship between SOM content and re-
fl ectance is strong. Th is approach has proven to be useful in areas 
with moderate to high SOM levels (about 10–50 g kg−1) but is 
ineff ective elsewhere (Sullivan et al., 2005). Th e relationship be-
tween refl ectance and SOM is not strong over large geographic 
regions due to confounding eff ects of moisture and underlying 
parent material (Sudduth and Hummel, 1991; Hummel et al., 
2001), extensive plant canopy over an area (Kongapai, 2007) and 
variations in surface roughness (Matthias et al., 2000). Although 
SOM can be estimated using remotely sensed image data such 
as Landsat Th ematic Mapper (TM) imagery (e.g., Frazier and 
Cheng 1989; Kongapai, 2007), this approach may yield an un-
acceptable level of accuracy due to the phenomenon of spectral 
confusion where dissimilar surface features have similar spectral 
responses or, conversely, where similar surface features have dif-
ferent spectral responses (Sudduth and Hummel, 1991; Hummel 
et al., 2001).

Geostatistics is a powerful interpolation tool that quanti-
fi es and reduces the uncertainties of estimation and prediction 
and minimizes investigation costs (Ferguson et al., 1998). For 
over four decades, geostatistical methods, such as kriging, have 
been used to provide linear unbiased predictions at unsampled 
locations (Burgess and Webster, 1980; Odeh et al., 1995). With 
cokriging, additional covariates that are usually more intensively 
sampled can be used to assist in prediction. Studies have demon-
strated the superiority of cokriging to ordinary kriging (Stein et 
al., 1988; Stein and Corsten, 1991; Zhang et al., 1992, 1997; Istok 
et al., 1993; Wu et al., 2003). Other studies have demonstrated 
that cokriging was only minimally superior to ordinary kriging 
when auxiliary variables were not highly correlated to primary 
variables (Shouse et al., 1990; Martinez, 1996; Triantafi lis et al., 
2001). Th is suggests that use of an appropriate auxiliary variable 
is important to obtain successful results from cokriging and that 
cokriging is most eff ective when the covariates are highly corre-
lated. Yates and Warrick (1987) found that cokriging gave better 
predictions than kriging when sample correlations exceeded 0.5 
and when the auxiliary variable was oversampled.

Spatial variability in SOM content can be predicted by 
kriging from limited soil samples. Moreover, SOM also can be 
predicted by cokriging when a strong statisti-
cal relationship exists between SOM and eas-
ily measured auxiliary variables such as cation-
exchange capacity, soil texture, and remotely 
sensed data. Some studies found that SOM 
correlates with soil refl ectance signifi cantly 
over small to moderate geographic regions 
with low variation in moisture, parent material, 
and surface roughness (Al-Abbas et al., 1972; 
Mulders, 1987; Sudduth and Hummel, 1991; 
Schulze et al., 1993; Ben-Dor et al., 1999; Chen 
et al., 2000). Th us, remotely sensed data such as 
TM imagery may be useful auxiliary variables 
for SOM prediction. To our knowledge, only a 
limited number of studies have used geostatis-
tical methods with remotely sensed data as 
auxiliary variables for predicting SOM (Bhatti 
et al., 1991; Ishida and Ando, 1999). Th e ob-
jectives of our study were to investigate the ef-

fectiveness of using remotely sensed data as auxiliary variables for 
SOM prediction and to compare ordinary kriging and cokriging 
for SOM estimation.

MATERIALS AND METHODS
Study Area Description

Th e study area is part of Haining City located in the Hang-
Jia-Hu Plain, northeastern region of Zhejiang Province, China 
(Fig. 1). Th e study area is bounded by east longitude between 
120°18′ and120 o45′ and north latitude between 30°22 ′and 30 
o31′ with a total area of 367 km2. Th e study area is in the north-
ern subtropical zone of monsoonal climate with a temperate and 
humid climate throughout the year with four distinct seasons. 
Th e average annual temperature is 15.9°C and the mean annual 
precipitation is approximately 1190 mm. Paddy rice fi elds and 
bare soil are the main land use/land cover types of arable land 
in the area.

Sampling Design and Soil Analysis
A total of 131 soil samples (0–15 cm) were collected from 

paddy fi elds in November 2003 with consideration of land use uni-
formity and soil types to ensure all samples were located in paddy 
fi elds and a soil sample was collected from each soil type (Fig. 1).

Soil organic matter content was analyzed using the Dry Ash 
Method (Boyd, 1995). Air-dried soil samples were placed in an 
oven at 105°C for 24 h. Aft er cooling the samples in a desiccator 
and weighing, they were placed in a muffl  e furnace at 305°C for 
8 h and then reweighed. Finally, SOM was computed as:

( )
SOM 1000 10

( )
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W W

-
= -

-
 [1]

where SOM is soil organic matter content in g kg−1, WF, weight 
of crucible and soil aft er ashing (g), WT, weight of crucible (g), 
WTS, weight of crucible and oven dry soil (g).

To predict SOM in the study area using remotely sensed data 
as auxiliary variables, we selected a Landsat Enhanced Th ematic 
Mapper (ETM) image acquired on 23 Dec. 2003. Normalized 
diff erence vegetation index (NDVI), a widely used indicator in 
remote sensing showing abundance of vegetation cover (Chen 

Fig. 1. General location, distribution of 131 sample sites, and dominant land use/cover in study 
area (Other land use types include water bodies, orchards, built-up land, and upland crops).
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and Brutsaert, 1998), was calculated. Negative NDVI values 
were dominant in the study area indicating that the study area 
was comprised mostly of bare soil when the image was acquired. 
To use remotely sensed data as an auxiliary variable for SOM pre-
diction, we sampled an additional 470 pixels using a grid-based 
sampling scheme with a spacing of 1 km (east-west) and 0.75 km 
(north-south) in addition to the 131 soil samples described 
above (Fig. 2).

Multiple Regression Analysis
Th e general purpose of multiple regression is to character-

ize the relationship between several independent or predictor 
variables and a dependent or criterion variable. Our goal was to 
estimate the correlation between SOM and remotely sensed data 
and build a predictive model of SOM. Multiple linear regression 
was conducted for SOM of the 131 soil samples with DN of 
Bands 1–5 and 7 of the Landsat ETM image (raw and natural-
log-transformed) as the independent variables.

Kriging and Cokriging
Geostatistical methods can be used in unbiased predic-

tion with minimum variance for the soil properties of interest 
(Stein and Corsten, 1991). Kriging and cokriging are two typi-
cal geostatistical prediction methods. Th e semivariogram and 
cross-semivariogram, main components of kriging or cokriging, 
are eff ective tools for evaluating spatial variability (Boyer et al., 
1991; Cahn et al., 1994). Th e estimator for the semivariogram 
and cross-semivariogram is

( )

1

( ) {[ ( ) ( )][ ( ) ( )]}/2 ( )
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ij i k j j k j
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h z x h z x z x h z x n hγ
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= + - + -å  [2]

where γij is the semivariance (when ji = ) with respect to ran-
dom variable zi, h is the separation distance, n(h) is the number 
of pairs of zi(xk) and zj(xk) in a given lagged distance interval of 
(h + dh).where γij is the cross-semivariogram (when i≠j), which is a 
function of h (Yates and Warrick, 1987).

Th e semivariogram was fi t using a spherical model (Eq. [3]), and 
the cross-semivariogram was fi t using a Gaussian model (Eq. [4]):
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where C0 is the nugget variance, C1 is the sill, a is the range, and 
h is the lagged distance.

Th e spatial distribution of SOM was predicted by applying 
the best-fi t mathematical functions of the semivariogram and 
cross-semivariogram. Soft ware version 7.0 of GS+ Geostatistics 
for the Environmental Sciences (Gamma Design Soft ware, 
Plainwell, MI) was used to perform all the geostatistical compu-
tations and model validations.

Assessing Kriging and Cokriging Performance
Descriptive statistics and coeffi  cient of variation (CV) were 

used to compare observed (measured) concentrations of all 131 
soil samples with their predictions based on the two spatial in-
terpolation methods. All the descriptive statistics were calculat-
ed using version 8.7 of ERDAS IMAGINE (Leica Geosystems, 
Atlanta, GA).

Maps of kriging STDs can provide information concerning 
the confi dence associated with the kriging estimates and inter-
preting such maps is an important step toward quantifying reli-
ability in spatial estimation (Olea, 1999). Th e larger the STD, 
the lower the reliability of the estimate having greater uncertain-
ty. In this study, we compared the reliability in SOM estimation 
by the methods of kriging and cokriging based on maps of krig-
ing STDs. We also used cross-validation as another method of 
validating kriging predictions (Cressie, 1993; Myers, 1997). We 
removed one sample from the data set, and used the remaining 
samples in the data set for each prediction, and repeated the pro-
cess until all samples had been removed individually. We then 
calculated the mean prediction as the last prediction for each 
sample in the process of cross-validation.

RESULTS
Relationship between Landsat Enhance 
Thematic Mapping Digital Number and Soil 
Organic Matter Content

Output from correlation analysis between the six indepen-
dent variables (Landsat ETM DN for Bands 1–5 and Band 7) 
and the dependent variable SOM content revealed low to moder-
ate negative correlation except for the DN of Band 4, which may 
have been infl uenced by the presence of vegetative cover in some 
regions of the study area (Table 1). Th e absolute correlation was 

the strongest between SOM and the 
DN of Band 1 (r = −0.587). Aft er 
natural logarithmic transformation 
of SOM content (lnSOM) and the 
DN values (lnETM1…), stronger 
negative correlations were found 
between SOM content and Landsat 
spectral refl ectance with the excep-
tion of lnETM4 which resulted in 
a slightly lower positive correlation 
with lnSOM compared with ETM4 
with SOM. Th e correlation between 
lnSOM and lnETM 1 remained the 
highest among all spectral bands at 

−0.629 (Table 1).
Fig. 2. Distribution of 470 auxiliary remotely sensed data locations in the study area (location of 
associated 131 soil samples not shown).
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When the independent variables were used in a mul-
tiple stepwise regression analysis, the results indicated that 
only ETM1 remained as a statistically signifi cant predictor 
variable (P < 0.05):

lnSOM 27.62 5.421lnETM1= -  [5]

(R2 = 0.396, SE = 0.287) 

where lnSOM and lnETM1 are the natural logarithmic 
forms of SOM and ETM1, respectively. Th e coeffi  cient of 
determination (R2) of the model was 0.396, and the stan-
dard error of the estimate (SE) was 0.287, which means that only 
39.6% of the variation of SOM content in the study area can be 
explained by ETM1 spectral refl ectance with high prediction 
error. Th is high error of prediction may be due to variations in 
moisture, parent material, and surface roughness in the study area. 
Given the high error of predicting SOM with ETM spectral data, 
we did not directly compare this remote sensing model with the 
prediction of SOM using the kriging and cokriging models.

Spatial Prediction of Soil Organic Matter
Th e SOM content of 131 soil samples were in the range of 

5.7 to 36.4 g kg−1, with a mean of 19.5 g kg−1 and an STD of 
6.36 g kg−1. Th e data set had low skewness (0.17) and kurtosis 
(−0.08), thus meeting the requirement of a normal distribu-
tion for kriging and cokriging prediction. Th e semivariogram of 
SOM provided a clear description of its spatial structure with 
some insight into possible processes aff ecting its spatial distribu-
tion. Th e semivariograms of both SOM and DN of ETM1 were 
well fi tted with a spherical model. Th e nugget/sill ratios of the 
fi tted semivariogram models for 
SOM and DN of ETM1 were as low 
as 0.19 and 0.11, respectively. Th e 
cross-semivariogram was fi tted well 
by a Gaussian model, with a nugget/
still ratio of 0.12.

From the maps of predicted 
SOM content developed by both 
kriging and cokriging with remotely 
sensed data (Fig. 3), we found that 
the SOM content had strong spatial 
variability in the study area, and the 
SOM content in the central region 
of the study area was generally lower. 
Th ere was a large diff erence in the 
local variability of predicted SOM 
content in the two prediction maps, 
however, with the predicted SOM 
map by kriging being less spatially 
detailed (more uniform) than that 
by cokriging in certain local areas 
such as the central part of the study 
area, as shown in the SOM predic-
tion map (Fig. 3).

Comparison of Spatial 
Predictions by Two Methods

Th e minimum and maximum 
values of SOM prediction by kriging 

were 10.1 and 27.3 g kg−1, respectively; and the minimum and 
maximum values of SOM prediction by cokriging with remotely 
sensed data were 5.9 and 36.2 g kg−1, respectively. Whereas, the 
minimum and maximum values of SOM derived from the 131 
soil samples were 5.7 and 40.4 g kg−1, respectively. Th e mean and 
CV of SOM prediction by the two methods were 19.2 g kg−1 
and 23.4% for kriging; 19.1 g kg−1and 28.2% for cokriging, 
respectively; and the mean and CV of SOM from the 131 soil 
samples were 19.5 g kg−1and 32.6%, respectively. Interpreting 
the descriptive statistics, we found that the variances of predicted 
SOM by both kriging and cokriging were less than that of the 
131 soil samples, and the variance of predicted SOM by kriging 
was less than that by cokriging.

From the kriging error maps (Fig. 4), we found that STDs 
of SOM by cokriging were signifi cantly less than that by kriging 
throughout the study area. Th e range of kriging STD of SOM 
by kriging was 1.6 to 3.3 g kg−1, with a mean of 2.2 g kg−1, and 
the range of cokriging STD was 0.0 to 2.4 g kg−1, with a mean 
of 0.5 g kg−1.

Table 1. Pearson correlation coeffi cients† between soil organic matter 
content (SOM) and the digital number (DN) of Landsat ETM imagery‡.

ETM 1 ETM 2 ETM 3 ETM 4 ETM 5 ETM 7
SOM −0.587 −0.532 −0.547 0.273 −0.271 −0.431

lnETM 1 lnETM 2 lnETM 3 lnETM 4 lnETM 5 lnETM 7
lnSOM −0.629 −0.574 −0.597 0.235 −0.290 −0.454
† All correlation coeffi cients listed are signifi cant at P < 0.01 level (n = 131).
‡ ETM 1, ETM 2,…, ETM 7, the digital number of Band 1, Band 2, …,Band 7 of 
Landsat ETM imagery; lnSOM, the natural logarithm of soil organic matter content; 
lnETM 1, lnETM 2, …, lnETM 7,the natural logarithm of ETM spectral bands.

Fig. 3. Predicted soil organic matter content (g kg−1) by (a) kriging and (b) cokriging.
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Th e mean of predictions and 
mean squared prediction errors from 
cross-validation by the two methods 
were 19.5 and 4.8 g kg−1 for kriging 
and 19.5 and 2.7 g kg−1 for cokrig-
ing. We found that the predicted 
SOM content by cokriging was more 
similar to that of the 131 soil samples 
than that by kriging (Fig. 5).

DISCUSSION
Th e correlation coeffi  cients 

between SOM and visible bands 
(Band 1–3) were higher than that 
between SOM and NIR bands 
(Band 4–5 and Band 7) of ETM 
imagery in study area. Th is is con-
sistent with the results of Krishnan 
et al. (1980), who reported there 
was no absorption apex caused by 
organic matter in the NIR region 
(800–2400 nm), and SOM content 
was better measured with visible 
bands than NIR bands. Several stud-
ies (Coleman et al., 1991; Curran et 
al., 1990; Henderson et al., 1992) 
found that the refl ectance of visible 
wavelengths (0.425–0.695 mm) had 

a strong correlation with SOM for soils with the same parent ma-
terial. However, the correlation coeffi  cients were only moderate 
in this study. Th is may be attributable to the diff erences in soil 
parent material, moisture, and land use/land cover conditions at 
the time the ETM imagery was acquired.

Th e remote sensing model of SOM prediction had a relative-
ly low coeffi  cient of determination (R2 = 0.396) and moderate 
standard error (SE = 0.287). Th is means that SOM prediction by 
our remote sensing-based model had low reliability over a mod-
erately sized geographic region, and the model did not estimate 
SOM with reasonable accuracy at unobserved sites in study area. 
Th e CV of soil pH and cation-exchange capacity in study area 
were 9 and 22%, respectively (data not presented here), which 
indicates some variation in soil properties related to SOM within 
the study area. Interpretation of soil survey and terrain maps also 
indicated that there are diff erences in parent material and surface 
roughness in the study area. Th is variation in environmental co-
variates may be an important factor that aff ected the reliability of 
SOM prediction using the remote sensing model.

Th e semivariogram and its parameters quantitatively refl ect 
the spatial variability of SOM in the study area. Th e nugget/sill 
ratio was assumed to be a criterion to classify the spatial depen-
dence of soil properties. Ratio values lower than 25% and higher 
than 75% corresponded to strong and weak spatial dependence, 
respectively, while the ratio values between 25 and 75% corre-
sponded to moderate spatial dependence (Chang et al., 1998; 
Chien et al., 1997). In this study, both the nugget/sill ratio of the 
kriging semivariogram and that of the cokriging cross- semivar-
iogram of SOM lower than 25%, demonstrating strong spatial 
dependence of SOM and importance of quantifying spatial vari-
ability for spatially predicting SOM in study area.

Fig. 4. (a) Kriging and (b) cokriging prediction error maps of soil organic matter content (g kg−1).

Fig. 5. Measured soil organic matter (SOM) content (g kg−1) vs. the 
predicted SOM content from cross-validation by (a) kriging and (b) 
cokriging, respectively.
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Th e minimum and maximum values of predicted SOM by 
cokriging were more similar to the minimum and maximum val-
ues of SOM for all 131 soil samples than the prediction by krig-
ing. Th e CVs from the two prediction methods were less than 
that of the 131 soil samples, with cokriging CV closer in value 
to that of the 131 soil samples. Descriptive statistics of the two 
predictions methods, including minimum, maximum, and CV 
(exclusive of the mean value), illustrate that spatial prediction by 
cokriging with remotely sensed data was an improvement over 
spatial prediction by ordinary kriging. Th is demonstrates that 
remotely sensed data as auxiliary variables can improve the preci-
sion of SOM prediction in similar landscapes as investigated in 
this study.

It was diffi  cult to assess the performance of kriging and 
cokriging with remotely sensed data in SOM prediction for soil 
samples that were sparsely distributed. Assessing the performance 
of kriging and cokriging with remotely sensed data, through the 
use of descriptive statistics, kriging STD, and cross-validation for 
each interpolation method had its merits and shortcoming. Th e 
predictions by kriging and cokriging had high prediction errors 
when samples for prediction were few and some independent 
samples were used for validation and not for prediction. Th e 
process of cross-validation is based on a systematic comparison 
of the observed and predicted values of samples calculated along 
with the kriging variance from a sample data set leaving one sam-
ple out for each iteration. Th e removal and prediction process 
is repeated using the remaining samples in the data. Th is assess-
ment had limitations, however, due to changes in the geometry of 
sample locations when a point was removed for cross-validation 
(Davis, 1987). Given this limitation, the cross-validation result 
might be considered as a conservative assessment with the expec-
tation that the fi nal result would be an improvement when all 
the data points were included (Kishnė et al., 2003). Kriging STD 
could be a valid method for assessing the reliability of kriging 
predictions, though this method lacks the function of verifi ca-
tion (Olea, 1999).

Th e STDs of SOM by cokriging were signifi cantly less than 
that by kriging throughout the study area. Th e result of cross-
validation also showed cokriging with remotely sensed data was 
better than kriging in SOM prediction. Cross-validation indi-
cated that cokriging was better than ordinary kriging in describ-
ing spatial variability. Th e cross-validation also demonstrated 
that remotely sensed data such as Landsat ETM imagery have 
the potential as good auxiliary variables for improving reliability 
of SOM prediction.

In general, the correlation between SOM content and re-
motely sensed data is reduced when spatial variation of environ-
mental covariates infl uences the distribution of SOM content 
within the area of study. Th is results in less accurate predictions 
of SOM content over moderate to large geographic region 
when using remote sensing-based models (Hummel et al., 2001; 
Kongapai, 2007; Sudduth and Hummel, 1991), which was also 
demonstrated in this study. Conversely, remotely sensed data 
have the potential to be robust auxiliary variables for improv-
ing the accuracy and reliability of SOM prediction when eff ort 
is made to reduce the infl uence of confounding environmental 
covariates such as land use/land cover conditions and soil prop-
erties that may negatively infl uence refl ectance properties unas-
sociated with SOM content.

CONCLUSIONS
Th e SOM content in our study area had moderate nega-

tive correlation in the visible spectral region (Bands 1–3) and 
short-wave infrared spectral region (SWIR; Bands 5,7), and 
low positive correlation in the NIR spectral region (Band 4) 
using Landsat ETM data. Th e correlation coeffi  cient between 
the SOM and ETM Band 1 was the largest in absolute value. 
Although the SOM data display moderate correlation with the 
DN of visible, NIR, and short-wave infrared (SWIR) bands, the 
regression model had a low coeffi  cient of determination (R2 = 
0.392) and moderate standard error (SE = 0.287). Th us, we were 
unable to obtain a satisfactory SOM prediction using a remote 
sensing-based model.

Th e predicted SOM map by cokriging with remote sensing 
covariates was an improvement over that by ordinary kriging 
and that by the remote sensing-based model in terms of describ-
ing spatial variability and reliability of the spatial estimation of 
SOM. Th e cokriging approach indicated that remotely sensed 
data such as Landsat ETM imagery have the potential as robust 
auxiliary variables for improving the accuracy and reliability of 
SOM prediction.

Th e SOM content in the study area had a strong spatial de-
pendency, and the SOM content in the central region was gener-
ally lower (<10 g kg−1) and the SOM content in the eastern re-
gion was generally higher (>20 g kg−1). To improve soil quality 
and agricultural production, land management options should be 
developed to enhance SOM content in this area. Predicting and 
mapping SOM content based on methods used in this study can 
provide useful information for improving soil quality and manag-
ing nutrient budgets for agricultural production in the region.
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