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Abstract: The objective of this study was to locate chromosomes for improving water and 
phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-
Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and 
Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of 
genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under 
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different water and phosphorus conditions. The results underlined that chromosomes 1A, 
7A, 7B, and 3A showed higher leaf water use efficiency (WUEl = Pn/Tr;  
Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with1/2P), 
-W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B 
may carry genes for positive effects on individual plant water use efficiency  
(WUEp = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), 
W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement 
under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A 
possibly has genes for controlling WUE and PUE simultaneously, which indicates that 
WUE and PUE may share the same genetic background. Phenotypic and genetic analysis 
of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr 
and WUEl showed significant positive and negative correlations under WP, W-P, -WP and  
-W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUEP, PUT (phosphorus 
uptake) all showed significant positive correlation under WP, W-P and -WP treatment. 
PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative 
correlation under the four treatments. The results might provide useful information for 
improving WUE and PUE in wheat genetics. 

Keywords: chromosomal location; phosphorus use efficiency; seedling stage; wheat; water 
use efficiency; drought; wheat breeding 

Abbreviations: CS, Chinese Spring; ER, Egyptian Red; WUE, water use efficiency; PUE, 
phosphorus use efficiency; WUEl, leaf water use efficiency; WUEp, individual plant water 
use efficiency; Pn, net photosynthetic rate; Tr, transpiration rate; DM, dry mass; PUT, 
phosphorus uptake; TWC, total water consumption; PEG, polyethylene glycol; WP, 
Hoagland solution; W-P, Hoagland solution with1/2P; -WP, Hoagland solution with  
10% PEG; -W-P, Hoagland solution with 1/2P and 10% PEG 

 

1. Introduction 

Drought stress is the most important and common environmental issues which limits agricultural 

production and decreases the efficiency of dry lands [1-3]. Irrigation is commonly applied to alleviate 

water deficiency, but with the increasing worldwide water resource crisis, no more water can be used 

for irrigation.  

Fertilizer is the second important element for enhancing crop yield. Phosphorus is often considered 

the most limiting nutrient for plant growth in soils, especially in dry land [4,5]. The main reason may 

be the lower phosphorus use efficiency (PUE) of crops, although total phosphorus (P) in the soil may 

be high, it is often present in unavailable forms or in forms that are only available outside of 

rhizosphere [6,7], meanwhile, large amounts of P fertilizer and poorly managed irrigation systems may 

lead to P accumulation and pollution of surface and ground waters. To obtain available P from soil, 

one method is by adding P fertilizer in soil, the second method is by planting high PUE crop  

varieties [8,9]. 
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In most arid and semi-arid areas, there is more poor land with water and nutrient stress, nutrient 

absorption cannot be maximized under water stress conditions, and poor nutrients also greatly limit 

crop water use efficiency (WUE) and yield. Therefore, wheat cultivars with high WUE and PUE are 

becoming a prerequisite for lowering production costs [10-14]. However, the definition of WUE and 

PUE differs according to the context in which it is considered, and it is variously defined by 

agronomists, experts of plant physiology, irrigation engineers and economists. WUE has been defined 

as the leaf WUE (leaf photosynthetic rate per transpiration rate), whole plant WUE (the ratio of 

aboveground biomass or dry matter per unit area, and water use by crop); yield WUE (crop grain per 

unit area, to the transpiration loss from the crop) [15]. P use efficiency (PUE) was classified as shoot 

(SPUE) or whole plant (WPUE) efficiency, shoot P uptake per plant (SPUT, value of shoot dry  

weight × total shoot P concentration) and shoot P use efficiency (SPUE, shoot dry weight produced by 

unit SPUT); whole plant P uptake per plant (WPUT, value of whole plant dry weight × total whole 

plant P concentration) and whole plant P use efficiency (WPUE, whole plant dry weight produced by 

unit WPUT) [16-18]. 

To make progress towards this objective, many studies related to WUE and nutrient use efficiency 

and their interactions have been done at both the physiological and molecular levels. The variable 

WUE and nutrient use efficiency of different crops or varieties under different water and nutrient level 

have been studied [19-22], and these reports showed that water and nutrient uptake are two 

physiological processes that interact with each other. There has also been much research done on the 

chromosomal location of these traits in different studies. Morgan used 21 cultivar substitution lines of 

Chinese Spring/Red Egyptian to locate a single recessive gene for high osmoregulation on 

chromosome 7A of Chinese Spring [23]. Chromosomes 3A, 3D, 4A and 4D carry genes with increased 

Pn in Lophopyrum elongatum (Host) A.L(o)ve in Chinese Spring background [24]. The genes 

associated with high leaf water use efficiency (WUEl ) were located on chromosomes 5A and 5D when 

the substitute line Chinese Spring-Egyptian Red was the tested material [25]. An effect of 1BL.1RS on 

drought tolerance was detected. ‘Mv5791-1B.1R’ and the sister line ‘Mv5791-1B.1B’ of rye were 

investigated, and the results showed that 1RS translocation line could increase HI and WUE under 

drought conditions [26]. The Pavon 1RS translocation lines had larger root biomass than Pavon 76 

bread wheat and could absorb more water–nitrogen solution [27]. 

The substitution lines derived from the triticale 'Presto' and 'Rhino' cultivars were tested in 

hydroponic culture for nitrogen and phosphorus uptake and utilization efficiency. The nitrogen 

utilization efficiency (NUE) was significantly increased in all substitution lines with the exception of 

1D(1R) ones, phosphorus utilizations were generally significantly positive only in the lines 2D(2R) 

and 6D(6R) [28]. Chromosomes 1D, 2D, 2B, 3A, 3D, 4A, 4B, 6A, 6B, 7D and 7A were associated 

with drought tolerance of Synthetic 6x in substitution lines of Chinese Spring (CS)-Synthetic 6x [29]. 

These results indicated that WUE and NUE may share the same genetic background at a molecular 

level. It is possible to improve drought and nutrient-deficiency tolerance of wheat through genetic 

approaches [30]. 

Wheat (Triticum aestivum L.), one of the most important crops in the world, is mainly cultivated in 

arid and semi-arid areas, and always suffers from water and nutrient deficiency [31-33]. Therefore, 

understanding the genetic control of P-deficiency tolerance and drought resistant is very important to 

provide strategies for development of higher water and nutrient-efficient cultivars. To our knowledge, 



Int. J. Mol. Sci. 2009, 10             

 

 

4119

there is a little information about the simultaneous chromosomal location concerning WUE and PUE 

in wheat under different treatments. In this study, the substitution lines derived from Chinese Spring 

and Egyptian Red were selected to locate genes associated with WUE and PUE on the specific 

chromosomes under different water and nutrient conditions with the following objectives: (i) to 

understand the differences of location results of PUE and WUE under different treatments; (ii) to 

assess the chromosomes simultaneously associated with WUE and PUE; (iii) to determine the 

relationships between traits; (iiii) to provide information useful for genetically improving WUE and 

PUE in wheat. 

 

2. Results and Discussion  

 

2.1. Chromosomal location of the genes associated with Pn (photosynthetic rate) and  

Tr (transpiration rate)  

 

Pn and Tr values of the considered substitution lines for every treatment are shown in Table 1. Most 

genotypes showed higher Pn and Tr under WP treatment, a slight decrease under -WP conditions and 

greatly reduced values under W-P, -W-P treatment. 

Under WP (control) treatment, all the A genome and chromosomes 7D, 3D, 6D, 7B, 5D, 6B, 2D, 

4D, 1B showed significantly increased Pn compared to the two parents, and the parent CS had the 

lowest Pn among all the tested materials. Chromosomes 7A, 4A, 1A, 2A, 6A, 3A, 5A, 6D, 4D, 7D, 1D, 

5D showed significantly higher Tr, but chromosomes 5B and 3B showed lower Tr than that of the  

two parents. 

Under -WP treatment, chromosomes 7A, 6A, 3A, 5A, 4A, 6D, 7D, 2D, 2A, 3D, 4D had significant 

increased Pn than that of the two parents, chromosomes 5B, 4B, and 2B had a little lower Pn value 

compared with the two parental strains. Chromosomes 7A, 1A, 3A, 6A, 5A, 5D, 6D, 2D, 4A, 7D, 2A 

showed significant increased Tr and chromosomes 5B, 2B, and 4B had lower Tr than that of  

two parents. 

 

Table 1. Photosynthetic rate (Pn) and transpiration rate (Tr) of the wheat substitution lines 

under different conditions (data are means ± SD of three replicates). 

Genotypes 
Pn (μmol·m2·s-1) 

WP -WP W-P -W-P 

1A 5.2 ± 0.8AB 3.8 ± 0.8a 1.4 ± 0.1B 3.1 ± 0.03 

2A 6.8 ± 0.4AB 5.2 ± 1.1Ab 1.4 ± 0.4B 3.9 ± 0.5 
3A 7.9 ± 1.2AB 6.9 ± 1.2AB 1.7 ± 0.2B 2.7 ± 1.1 
4A 9.5 ± 0.6AB 5.8 ± 0.2AB 2.1 ± 0.5B 3.5 ± 0.04 
5A 7.2 ± 0.6AB 6.3 ± 0.4AB 1.9 ± 1.0B 2.2 ± 0.03b 
6A 7.9 ± 0.03AB 8.1 ± 1.4AB 3.8 ± 0.9A 3.5 ± 0.2 
7A 8.9 ± 0.3AB 8.8 ± 0.8AB 2.7 ± 0.4a 4.7 ± 0.8A 
1B 4.4 ± 0.6Ab 3.9 ± 1.1 1.9 ± 0.7B 0.6 ± 0.AB 
2B 2.5 ± 0.4 2.2 ± 0.4 1.8 ± 0.9B 1.9 ± 0.5B 
3B 1.4 ± 0.1 2.5 ± 1.0 0.4 ± 0.1aB 1.5 ± 0.3aB 
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Table 1. Cont.  

4B 2.0 ± 0.3 1.7 ± 0.01 1.7 ± 1.0B 1.6 ± 0.1aB 
5B 1.8 ± 0.2 1.1 ± 0.2 1.7 ± 0.8B 1.1 ± 0.5AB 
6B 4.5 ± 1.0Ab 4.2 ± 0.7 1.4 ± 0.3B 2.4 ± 0.02 
7B 4.6 ± 1.0Ab 4.5 ± 0.2a 1.0 ± 0.1B 2.5 ± 0.9 
1D 4.3 ± 0.5A 4 ± 0.3a 2.2 ± 0.4B 1.3 ± 0.5AB 
2D 4.5 ± 0.7Ab 5.2 ± 0.6Ab 1.7 ± 0.7B 2.1 ± 0.2b 
3D 5.9 ± 2.1AB 4.7 ± 0.9ab 1.8 ± 0.3B 0.7 ± 0.1AB 
4D 4.4 ± 0.4Ab 4.7 ± 1.3ab 3.4 ± 0.6AB 0.9 ± 0.3AB 
5D 4.6 ± 0.3Ab 4.4 ± 1a 1.2 ± 0.2B 1.8 ± 0.3aB 

6D 5.8 ± 0.3AB 5.8 ± 1AB 2.9 ± 0.7AB 2.9 ± 1 

7D 6.3 ± 0.9AB 5.8 ± 0.4AB 2.9 ± 0.4AB 4.4 ± 0.6a 

CS 1.3 ± 0.5b 2.4 ± 0.1 1.5 ± 0.3B 2.9 ± 0.4 

ER 2.8 ± 0.2a 2.6 ± 0.02 4.7 ± 0.7A 3.5 ± 0.5 

Genotypes 
Tr (mmol·m2·s-1) 

WP -WP W-P -W-P 

1A 4.0 ± 0.7AB 3.4 ± 0.4AB 0.4 ± 0.04B 0.7 ± 0.04AB 
2A 3.9 ± 0.9AB 1.9 ± 0.1ab 0.5 ± 0.07B 0.8 ± 0.2AB 
3A 3.8 ± 0.2AB 3.0 ± 0.4AB 0.5 ± 0.1B 0.7 ± 0.1AB 
4A 5.2 ± 1AB 2.0 ± 0.03aB 0.5 ± 0.02B 2.5 ± 0.01AB 
5A 3.1 ± 0.7AB 2.7 ± 0.9AB 0.9 ± 0.2B 1.1 ± 0.1aB 
6A 3.9 ± 0.7A 2.9 ± 0.8AB 1.2 ± 0.2aB 1.2 ± 0.01b 
7A 5.1 ± 1.1AB 4.2 ± 0.06AB 0.7 ± 0.1B 1.1 ± 0.2aB 
1B 1.5 ± 0.2 1.7 ± 0.4b 1.3 ± 0.01ab 0.4 ± 0.04AB 
2B 1.1 ± 0.4 0.6 ± 0.2 0.8 ± 0.1B 0.8 ± 0.3AB 
3B 0.5 ± 0.07 1.0 ± 0.3 0.5 ± 0.03B 0.8 ± 0.2AB 
4B 1.2 ± 0.4 0.7 ± 0.02 1.0 ± 0.04B 0.6 ± 0.06AB 
5B 0.8 ± 0.02 0.6 ± 0.2 0.6 ± 0.1B 0.6 ± 0.1AB 
6B 1.5 ± 0.2 1.3 ± 0.7 0.4 ± 0.1B 0.5 ± 0.01AB 
7B 1.7 ± 0.3 1.6 ± 0.2 0.3 ± 0.1B 0.8 ± 0.3AB 
1D 2.6 ± 0.2Ab 1.7 ± 0.3 2.9 ± 0.8AB 2.8 ± 0.3AB 
2D 2.0 ± 0.1a 2.3 ± 0.4AB 2.9 ± 0.8AB 4.2 ± 0.7AB 
3D 2.3 ± 0.08a 1.7 ± 0.2 3.4 ± 0.06AB 1.2 ± 0.05B 
4D 3.0 ± 0.9AB 1.3 ± 0.4 4.4 ± 0.5AB 1.3 ± 0.4b 
5D 2.4 ± 0.2Ab 2.5 ± 0.8AB 2.1 ± 0.4A 2.4 ± 0.4Ab 
6D 3.0 ± 0.3AB 2.4 ± 0.4AB 2.3 ± 0.7A 2.4 ± 0.2Ab 
7D 2.9 ± 0.4AB 1.9 ± 0.3ab 1.9 ± 0.6A 1.2 ± 0.4b 
CS 0.9 ± 0.2 0.9 ± 0.2 0.5 ± 0.03B 1.7 ± 0.6 
ER 1.2 ± 0.004 0.8 ± 0.2 2.0 ± 0.5A 1.9 ± 0.3 

Note: Letters A and a indicate a significantly different results than the parent China Spring at P = 
0.01 and P = 0.05, respectively; Letters B and b indicate a significantly different result than the 
parent Egyptian Red at P = 0.01 and P = 0.05, respectively. 

 

Under W-P conditions, the parent ER showed the highest Pn value, and chromosomes 6A, 4D, 6D, 

7D, 7A showed significantly increased Pn compared to CS and chromosome 3B showed a significantly 

decreased Pn compared to the two parents. Chromosomes 4D, 3D, 2D, 1D had significantly increased 
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Tr compared to the two parents, while chromosomes 7B, 1A, and 6B showed lower Tr than that of the 

two parents, but only showed significant difference with ER. 

Under -W-P treatment, chromosomes 7A, 7D, and 2A showed increased Pn compared with the two 

parents, and chromosomes 1B, 3D, 4D, 5B, 1D, 3B, 4B, 5D showed significantly decreased Pn 

compared with the two parents. Chromosomes 2D, 1D, 4A, 6D, 5D had significantly increased Tr and 

chromosomes 1B, 6B, 4B, 5B, 1A, 3A, 3B, 2B, 7B, 5A, 7A showed significantly decreased Tr 

compared with the parents. As shown in Table 1, genes with positive effects on Pn and Tr were mainly 

located on the A and D genome, and genes with negative effects on Pn and Tr on the B genome under 

different water and P stress conditions. 

2.2. Chromosomal location of the genes associated with WUEl (Leaf water use efficiency) effects  

It can be seen from Table 2 most genotypes showed greater WUEl under -WP conditions. Under 

WP condition, chromosomes 3B, 6B, 1B, 7B, 3D, and 2B may carry genes with positive effects and 

chromosome 1A with negative effects on WUEl, because they had higher and lower WUEl than that of 

two parents, respectively. But WUEl of chromosomes 3B, 6B, 1B, 7B, 3D, and 2B showed a 

significant difference for CS, and WUEl of chromosome 1A showed a significant difference for ER. 

Under -WP treatment, chromosomes 4D, 6B, and 2B had higher and chromosomes 1A, 5D, 5B, 2D, 

7A, 3A, 4B, 6D, 1B, 5A, 1D, 2A, 6A, and 3D had lower WUEl than that of the two parents, 

respectively. Only the value of WUEl on chromosomes 1A and 5D showed any significant differences 

compared to the two parents.  

 

Table 2. Leaf water use efficiency (WUEl) of the wheat substitution lines under different 

conditions (data are means ± SD of three replicates). 

Genotypes 
WUEl (μmol·mmol-1) 

WP -WP W-P -W-P 

1A 1.3 ± 0.05B 1.1 ± 0.1AB 3.7 ± 0.4aB 4.8 ± 0.02AB 

2A 1.8 ± 0.3 2.8 ± 0.8 2.9 ± 0.4 4.8 ± 0.8AB 

3A 2.1 ± 0.4a 2.3 ± 0.07 3.2 ± 0.4 3.7 ± 0.5AB 

4A 1.9 ± 0.5 2.9 ± 0.04 4.0 ± 0.2AB 1.4 ± 0.01 

5A 2.3 ± 0.3a 2.4 ± 0.7 2.0 ± 0.3 2.0 ± 0.2 

6A 2.1 ± 0.4 2.8 ± 0.3 3.4 ± 1b 2.8 ± 0.2AB 

7A 1.8 ± 0.3 2.3 ± 0.2 3.7 ± 0.2aB 4.1 ± 0.4AB 

1B 2.9 ± 0.04A 2.4 ± 0.03 1.5 ± 0.5Ab 1.7 ± 0.6 

2B 2.5 ± 0.6A 3.4 ± 0.3 2.3 ± 0.3 2.4 ± 0.a 

3B 2.9 ± 0.1A 2.5 ± 0.3 0.7 ± 0.2AB 2.0 ± 0.4 

4B 1.7 ± 0.4 2.4 ± 0.06 1.7 ± 1A 2.5 ± 0.4a 

5B 2.2 ± 0.2a 2.1 ± 0.3b 2.7 ± 1 1.7 ± 0.6 

6B 2.9 ± 0.3A 3.5 ± 1.2 3.2 ± 0.4 4.3 ± 0.02AB 

7B 2.7 ± 0.1A 2.9 ± 0.3 3.3 ± 0.3 3.1 ± 0.3AB 
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Table 2. Cont. 

1D 1.6 ± 0.1b 2.4 ± 0.5 0.8 ± 0.1AB 0.5 ± 0.1AB 

2D 2.3 ± 0.3a 2.3 ± 0.1b 0.6 ± 0.3AB 0.5 ± 0.05AB 

3D 2.6 ± 1A 2.8 ± 0.2 0.5 ± 0.1AB 0.6 ± 0.01AB 

4D 1.5 ± 0.3b 3.6 ± 0.01 0.8 ± 0.04AB 0.7 ± 0.2AB 

5D 1.9 ± 0.2 1.7 ± 0.6aB 0.6 ± 0.1AB 0.7 ± 0.1AB 

6D 1.9 ± 0.3 2.4 ± 0.06 1.3 ± 0.4AB 1.2 ± 0.5 

7D 2.2 ± 0.02a 3.1 ± 0.3 1.6 ± 0.8Ab 3.5 ± 0.6AB 

CS 1.4 ± 0.2B 2.9 ± 0.6 2.9 ± 0.6 1.7 ± 0.3 

ER 2.4 ± 0.2A 3.3 ± 0.9 2.4 ± 0.3 1.9 ± 0.6 
Note: A and a indicate a significantly different performance than the parent China Spring at  
P = 0.01 and P = 0.05, respectively; B and b indicate a significantly different performance than the 
parent Egyptian Red at P = 0.01 and P = 0.05, respectively. 

 

Under W-P condition, chromosomes 4A, 7A, 1A, 6A, 7B, 6B, and 3A had higher and chromosomes 

3D, 5D, 2D, 3B, 4D,1D, 6D,1B, 7D, 4B, 5A, and 2B had lower WUEl than that of the two parents. 

Only chromosomes 4A, 7A, 1A,3D, 5D, 2D, 3B, 4D,1D, 6D,1B, 7D showed significant differences 

compared to the two parents. 

Under -W-P treatment, the higher WUEl and lower WUEl were observed on chromosomes 2A, 1A, 

6B, 7A, 7D, 3A, 7B, 6A, 4B, 2B, 3B, 5A and 1D, 2D, 3D, 4D, 5D, 6D, 4A than that of the two 

parents, respectively. These substitute lines of chromosomes 2A, 1A, 6B, 7A, 7D, 3A, 7B, 6A, 1D, 2D, 

3D, 4D, 5D showed significant differences for both parents. 

 

2.3. Chromosomal location of the genes associated with DM (dry mass) TWC (total water consumption) 

 

Most genotypes showed high DM under WP treatments. Higher TWC values were found under WP 

(control) or W-P treatments (Table 3). 

Under WP conditions, chromosomes 5A, 3D, and 4B had higher DM than that of the two parents. 

Chromosomes 1B, 7B, 1A, 1D, and 6A showed lower DW than that of the two parents, but only 

showed significant difference with one parent CS or ER. The two parents showed significantly higher 

TWC than all the other genotypes except 5B.  

Under -WP conditions, chromosome 7D showed higher DM, and chromosomes 2D, 1A, and 7B 

showed lower DM than that of the two parents, but only showed a significant difference with one 

parent CS or ER, respectively. Higher TWC values were found on chromosomes 6D, 3D, and 4D and 

lower TWC on chromosomes 7B, 3A, 5A, 1D, 1B, 5D, 1A, 4A, 2D, 6B, 7A, 2A, 2B, 3B, 4B, 7D and 

6A compared with the two parents, but only the values of TWC on chromosomes 7B, 3A, 5A, 1D 

and1B showed any significant differences compared with both parents simultaneously. 

 

 



Int. J. Mol. Sci. 2009, 10             

 

 

4123

Table 3. DM (dry mass), TWC (total water consumption) of the wheat substitution lines 

under different conditions (data are means ± SD of three replicates). 

Genotypes 
DM (g/plant) 

WP -WP W-P -W-P 

1A 0.13 ± 0.03B 0.1 ± 0.008B 0.26 ± 0.1AB 0.14 ± 0.01 

2A 0.16 ± 0.003b 0.15 ± 0.01b 0.11 ± 0.01 0.17 ± 0.007a 

3A 0.19 ± 0.006 0.15 ± 0.02b 0.15 ± 0.01 0.11 ± 0.08 

4A 0.19 ± 0.001 0.15 ± 0.01b 0.11 ± 0.007 0.11 ± 0.01 

5A 0.29 ± 0.03A 0.17 ± 0.007 0.16 ± 0.01 0.15 ± 0.05 

6A 0.14 ± 0.01B 0.13 ± 0.03b 0.14 ± 0.02 0.15 ± 0.03 

7A 0.24 ± 0.07a 0.18 ± 0.01 0.22 ± 0.04Ab 0.16 ± 0.01a 

1B 0.11 ± 0.03B 0.16 ± 0.004 0.14 ± 0.02 0.13 ± 0.01 

2B 0.22 ± 0.04 0.17 ± 0.02 0.21 ± 0.05a 0.19 ± 0.03A 

3B 0.21 ± 0.03 0.19 ± 0.02a 0.18 ± 0.02 0.17 ± 0.06a 

4B 0.25 ± 0.02A 0.16 ± 0.11 0.19 ± 0.02 0.14 ± 0.04 

5B 0.24 ± 0.05a 0.14 ± 0.02b 0.15 ± 0.004 0.07 ± 0.006 

6B 0.22 ± 0.01 0.13 ± 0.03b 0.17 ± 0.03 0.1 ± 0.02 

7B 0.12 ± 0.03B 0.10 ± 0.05B 0.13 ± 0.006 0.1 ± 0.04 

1D 0.13 ± 0.03B 0.14 ± 0.04b 0.15 ± 0.007 0.17 ± 0.03a 

2D 0.19 ± 0.03 0.09 ± 0.02B 0.16 ± 0.03 0.15 ± 0.008a 

3D 0.25 ± 0.07A 0.22 ± 0.03A 0.2 ± 0.03 0.2 ± 0.007A 

4D 0.21 ± 0.01 0.16 ± 0.03 0.19 ± 0.02 0.12 ± 0.03 

5D 0.19 ± 0.03 0.18 ± 0.02 0.12 ± 0.03 0.05 ± 0.01b 

6D 0.22 ± 0.02 0.15 ± 0.05b 0.16 ± 0.01 0.11 ± 0.07 

7D 0.23 ± 0.02a 0.24 ± 0.07A 0.18 ± 0.03 0.1 ± 0.05 

CS 0.15 ± 0.06b 0.12 ± 0.02B 0.15 ± 0.03 0.08 ± 0.03 

ER 0.24 ± 0.04a 0.23 ± 0.01A 0.16 ± 0.01 0.13 ± 0.04 

Genotypes 
TWC (g/plant) 

WP -WP W-P -W-P 

1A 91.7 ± 10.2AB 58.7 ± 5.3b 103.6 ± 6.3 60.9 ± 1.3 

2A 85.2 ± 0.04AB 61.9 ± 6.4 98.8 ± 7.8 59.0 ± 5.4 

3A 95.8 ± 0.03AB 55.2 ± 7.7aB 95.6 ± 8.8 77.8 ± 2.9AB 

4A 108.5 ± 5.5AB 59.8 ± 1.9b 103.4 ± 0.2 59.8 ± 3.8 

5A 93.8 ± 4.4AB 57.4 ± 1.9ab 137 ± 0.1AB 60.5 ± 4.6 

6A 97.0 ± 0.8AB 66.6 ± 1.3 104.9 ± 5.4 65.7 ± 5.2 

7A 96.3 ± 0.7AB 62.0 ± 3.5 118.0 ± 6.1AB 69.7 ± 1.4 

1B 108.8 ± 8.3AB 58.4 ± 1.5ab 95.4 ± 0.1 72.6 ± 1.8b 

2B 100.6 ± 0.6AB 62.2 ± 4.3 110.1 ± 0.5b 67.4 ± 6.1 

3B 100.9 ± 6.6AB 63.7 ± 0.3 99.5 ± 0.06 71.3 ± 6.7b 

4B 105.4 ± 3.8AB 64.4 ± 6.4 98.6 ± 0.1 53.4 ± 5.5 

5B 128.1 ± 9.8 69.4 ± 1.2 90.7 ± 0.08a 67.2 ± 2.7 
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Table 3. Cont. 

6B 93.6 ± 9.3AB 61.4 ± 6.8 98.5 ± 7.6 73.2 ± 8.2aB 

7B 86.5 ± 0.1AB 51.8 ± 8.1AB 100.1 ± 0.5 65.6 ± 6.8 

1D 101.2 ± 5.8AB 58.1 ± 9.1ab 128.9 ± 7.8AB 70.2 ± 3.8 

2D 103.4 ± 5.3AB 61.2 ± 0.7 98.1 ± 8.2 72.4 ± 3.8b 

3D 109.2 ± 4.4AB 74.5 ± 0.3 108.3 ± 2.8b 65.4 ± 5.9 

4D 102.4 ± 4.5AB 73.3 ± 6.9 118.6 ± 0.2AB 75.8 ± 6.6aB 

5D 105.9 ± 11.1AB 58.9 ± 0.4b 90.9 ± 4.8a 68.4 ± 4.6 

6D 97.5 ± 4.5AB 80.9 ± 6a 124.1 ± 4.0AB 71.9 ± 1.1b 

7D 102.5 ± 3.2AB 65.9 ± 9.5 110.1 ± 8.9b 64.6 ± 8.7 

CS 128.7 ± 8.2 68.8 ± 4.2 103.4 ± 5.0 62.5 ± 0.8 

ER 139.5 ± 0.1a 70.8 ± 0.2 96.9 ± 0.78 60.6 ± 7.2 
Note: A and a indicate a significantly different performance than the parent China Spring at  
P = 0.01 and P = 0.05, respectively; B and b indicate a significantly different performance than the 
parent Egyptian Red at P = 0.01 and P = 0.05, respectively. 

 

Under W-P conditions, chromosomes 1A, 7A, 2B, 3D, 4D, 3B, 7D and 6B were found to have 

higher DM and lower one was seen on chromosomes 2A, 5D, 4A, 7B, 6A, 1B, and 1D than that of the 

two parents, and only the DM values on chromosomes 1A and 7A showed any significant differences 

with the two parents. Chromosomes 5A, 1D, 6D, 4D, 7A, 7D, 2B, 3D, 6A and 1A had positive effect 

and chromosomes 5B, 5D,1B and 3A negative effect on TWC, respectively, but only the values of 

TWC on chromosomes 5A, 1D, 6D, 4D and 7A had any significant difference with the two parents. 

Under -W-P treatment, chromosomes 3D, 2B, 1D, 2A, 3B, 7A, 2D, 5A, 6A, 1A and 4B had higher 

DM than the two parents. Chromosomes 5D and 5B showed lower DM than the two parents; 

chromosomes 3A, 4D, 6B, 1B, 2D, 6D, 3B, 1D, 7A, 5D, 2B, 5B, 6A, 7B, 3D, and 7D had higher and 

chromosomes 4B, 2A, 4A, and 5A had lower TWC values than the two parents, respectively. None 

showed significant differences except the values for chromosomes 3A, 4D, and 6B. 

 

2.4. Chromosomal location of the genes associated with WUEp (Individual plant water use efficiency) 

 

WUEp is calculated as the ratio between total plant dry mass (including roots) weight and  

total water use amount during the treatment period (planting to harvest) [34]. It can be observed from 

Table 4 that the higher WUEp of most genotypes were observed under -WP or -W-P treatment. Most 

genotypes showed lower WUEp under W-P treatment.  

Under WP (control) treatment, chromosomes 5A, 7A, 6B, 4B, 3D, 6D, 7D, 2B, 3B, 4D, 3A, 2A, 

2D, 5D, 5B and 4A had greater WUEp and only chromosome 5A showed a significantly higher value 

than that of the two parents, while chromosome 1B had a little lower value than that of the two parents. 

Under -WP conditions, only chromosomes 7D and 2D simultaneously possessed higher and lower 

WUEp than that of the two parents, respectively. 
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Table 4. Individual plant water use efficiency (WUEp) of the wheat substitution lines under 

different conditions. (Data are means ± SD of three replications). 

Genotypes 
Treatment: WUEp (mg/g) 

WP -WP W-P -W-P 

1A 1.4 ± 0.05 1.7 ± 0.3B 2.5 ± 0.3AB 2.3 ± 0.3A 

2A 1.9 ± 0.03 2.5 ± 0.4ab 1.1 ± 0.03 2.9 ± 0.3bA 

3A 1.9 ± 0.06 2.8 ± 0.03A 1.6 ± 0.01 1.4 ± 0.1b 

4A 1.7 ± 0.3 2.5 ± 0.3ab 1.1 ± 0.07 1.9 ± 0.1 

5A 3.1 ± 0.2AB 3 ± 0.02A 1.2 ± 0.07 2.4 ± 0.4A 

6A 1.4 ± 0.6 1.9 ± 0.5B 1.3 ± 0.01 2.3 ± 0.02A 

7A 2.5 ± 0.7A 2.9 ± 0.4A 1.9 ± 0.8 2.2 ± 0.2A 

1B 1 ± 0.7 2.7 ± 0.1A 1.5 ± 0.2 1.8 ± 0.2 

2B 2.2 ± 0.4a 2.8 ± 0.5A 1.9 ± 0.5 2.8 ± 0.6A 

3B 2.1 ± 0.4a 3 ± 0.4A 1.8 ± 0.2 2.4 ± 0.2A 

4B 2.4 ± 0.3a 2.5 ± 0.3ab 1.9 ± 0.2a 2.7 ± 0.4A 

5B 1.8 ± 0.6 1.9 ± 0.3B 1.6 ± 0.04 1.0 ± 0.05B 

6B 2.4 ± 0.8a 2.1 ± 0.04B 1.8 ± 0.01 1.3 ± 0.5b 

7B 1.4 ± 0.3 1.9 ± 0.3B 1.3 ± 0.3 1.6 ± 0.07 

1D 1.3 ± 0.3 2.4 ± 0.3aB 1.1 ± 0.01 2.4 ± 0.1A 

2D 1.8 ± 0.2 1.5 ± 0.3B 1.7 ± 0.1 2.1 ± 0.4A 

3D 2.3 ± 0.6a 2.9 ± 0.4A 1.8 ± 0.3 2.9 ± 0.4bA 

4D 2 ± 0.2 2.1 ± 0.01B 1.6 ± 0.07 1.6 ± 0.05 

5D 1.8 ± 0.7 3.1 ± 0.4A 1.3 ± 0.4 0.7 ± 0.1B 

6D 2.3 ± 0.09a 1.9 ± 0.3B 1.3 ± 0.2 1.5 ± 0.7b 

7D 2.3 ± 0.3a 3.6 ± 0.4A 1.6 ± 0.01 1.6 ± 0.08 

CS 1.2 ± 0.04 1.7 ± 0.4B 1.4 ± 0.01 1.2 ± 0.3B 

ER 1.7 ± 0.3 3.3 ± 0.2A 1.6 ± 0.1 2.2 ± 0.2A 
Note: A and a indicate significantly different performance than the parent China Spring at P = 0.01 
and P = 0.05, respectively; B and b indicate a significantly different performance than the parent 
Egyptian Red at P = 0.01 and P = 0.05, respectively. 

 

Under W-P treatment, higher and lower WUEp were observed on chromosomes 1A, 4B, 7A, 2B, 

3D, 6B, 3B, 2D, 4D and 1D, 2A, 4A, 5A, 7B, 6A, 5D, 6D than that of the two parents, respectively. 

Only chromosome 1A had a significantly higher value than that of the two parents. 

Under -W-P conditions, when compared with the two parents, higher WUEp were observed on 

chromosomes 3D, 2A, 2B, 4B, 1D, 5A, 3B, 6A, 1A and 7A and lower values on chromosomes 5D and 

5B; only the value of WUEp on chromosomes 3D and 2A had any significant difference for the  

two parents.  
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2.5. Chromosomal location of the genes associated with PUT (phosphorus uptake) and PUE 

(phosphorus use efficiency) 

 

PUT and PUE are two important indexes for measuring the phosphorus utilization capability. The 

definition and calculation have been described in the literature [17,18,35,36]. PUT and PUE of 

substitution lines under different conditions are shown in Table 5. All genotypes showed the highest 

PUT under WP (control) treatment and decreased under the other three stress conditions. However, the 

lowest value of PUE was observed under WP (control) treatment, except for 2D and the highest ones 

were found under W-P or -W-P treatments. 

 

Table 5. PUT (phosphorous uptake) and PUE (phosphorous use efficiency) of the wheat 

substitution lines under different conditions (data are means ± SD of three replicates). 

Genotypes PUT (mg/plant) 

 WP -WP W-P -W-P 

1A 3.72 ± 0.2B 1.35 ± 0.02B 3.28 ± 0.9Ab 1.11 ± 0.07 

2A 6.89 ± 0.4A 2.21 ± 0.2B 1.32 ± 0.1b 1.5 ± 0.05 
3A 7.03 ± 0.02A 3.08 ± 0.05B 2.49 ± 0.5 1.51 ± 0.7 

4A 6.88 ± 0.15A 3.00 ± 0.09B 1.89 ± 0.3 1.43 ± 0.05 
5A 9.69 ± 0.17AB 3.71 ± 0.7B 3.31 ± 0.4Ab 2.07 ± 0.6ab 
6A 4.71 ± 1.47B 2.48 ± 0.3B 1.88 ± 0.2 1.57 ± 0.4 
7A 5.48 ± 1.32b 3.17 ± 0.2B 1.94 ± 0.3 1.75 ± 0.1 
1B 4.79 ± 0.83B 4.84 ± 0.7A 1.35 ± 0.09b 1.29 ± 0.1 
2B 7.18 ± 0.27A 2.84 ± 0.2B 2.72 ± 0.7a 2.00 ± 0.3a 
3B 9.42 ± 0.83Ab 5.71 ± 0.7A 2.04 ± 0.1 1.99 ± 0.9a 
4B 6.34 ± 0.62a 4.00 ± 0.1ab 2.73 ± 0.4a 1.6 ± 0.3 
5B 8.67 ± 0.03A 2.97 ± 0.6B 2.55 ± 0.3 0.93 ± 0.1 
6B 7.17 ± 0.01A 2.62 ± 0.5B 2.79 ± 0.7a 1.12 ± 0.4 
7B 3.29 ± 0.5B 2.69 ± 0.9B 1.84 ± 0.2 1.87 ± 0.9a 
1D 4.51 ± 0.5B 2.06 ± 0.5B 1.61 ± 0.02 1.48 ± 0.3 
2D 4.65 ± 1.4B 3.12 ± 1.6B 2.28 ± 0.5 1.52 ± 0.004 
3D 10.09 ± 1.1AB 4.29 ± 0.1A 1.71 ± 0.3 3.24 ± 0.02AB 
4D 7.08 ± 0.3a 3.51 ± 0.5B 2.69 ± 0.4a 4.18 ± 0.4AB 
5D 5.21 ± 0.6a 3.27 ± 0.2B 1.67 ± 0.3 0.75 ± 0.2 

6D 8.21 ± 0.2A 2.80 ± 0.7B 1.93 ± 0.2 0.85 ± 0.5 

7D 5.84 ± 1.2a 4.20 ± 1.6A 1.62 ± 0.3 1.63 ± 0.8 

CS 4.39 ± 0.8B 2.41 ± 0.2B 1.79 ± 0.4 0.69 ± 0.3 

ER 7.30 ± 0.08A 5.54 ± 0.4A 2.28 ± 0.3 0.86 ± 0.3 

Genotypes PUE (g/g) 

 WP -WP W-P -W-P 

1A 34.1 ± 3.5 74.5 ± 2.4AB 78.6 ± 0.5b 123.5 ± 1.3AB 
2A 23.6 ± 0.9ab 68.9 ± 1.0AB 85.3 ± 1.9B 112.5 ± 3.2B 
3A 26.5 ± 0.4 49.4 ± 2.7 61.5 ± 6.5A 72.9 ± 0.4AB 
4A 27.5 ± 0.4 49.5 ± 2.7 62.9 ± 6.0A 77.4 ± 7.2AB 
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Table 5. Cont. 

5A 30.4 ± 1.2 46.8 ± 3.4 48.0 ± 2.8AB 69.9 ± 4AB 
6A 29.5 ± 3.3 52.3 ± 2.9 72.1 ± 2.8 94.4 ± 6.1AB 
7A 43.1 ± 1.4ab 58.1 ± 0.4b 116.0 ± 4.2AB 88.6 ± 0.9AB 
1B 23.8 ± 0.9ab 32.7 ± 2.9a 104.0 ± 4.2AB 103.1 ± 2.6B 
2B 30.5 ± 2.5 60.6 ± 5.6B 76.1 ± 1.4 93.9 ± 5.1AB 
3B 22.3 ± 0.5ab 33.9 ± 0.1a 86.3 ± 2.2B 84.1 ± 7.3AB 
4B 39.5 ± 0.4 39.8 ± 4.6 69.8 ± 3.6A 89.8 ± 6.1AB 
5B 27.3 ± 2.9 46.1 ± 1.3 57.1 ± 5.3AB 73.9 ± 2.8AB 
6B 30.9 ± 0.7 49.0 ± 1.5 62.6 ± 6.1A 85.1 ± 6.4AB 
7B 36.5 ± 1.6 38.3 ± 2.1 69.8 ± 3.6A 54.4 ± 5.3AB 
1D 29.7 ± 1.4 66.4 ± 2.1AB 89.9 ± 3.5aB 114.7 ± 2.3B 
2D 41.1 ± 3.1 28.5 ± 4.2Ab 72.3 ± 2.7a 101.4 ± 5B 
3D 25.1 ± 2.3a 51.3 ± 3.2 116.0 ± 1.4AB 60.2 ± 1.6AB 
4D 28.9 ± 0.3 44.3 ± 1.3 72.5 ± 2.7a 28.7 ± 3.9AB 
5D 37.5 ± 3.9 56.3 ± 5.1b 71.0 ± 3.2 63.6 ± 3.8AB 
6D 26.9 ± 0.1 53.6 ± 1.8 85.2 ± 1.8B 126.4 ± 8.7AB 
7D 39.5 ± 3.1 56.9 ± 1.8b 107.9 ± 5.6AB 64.2 ± 3.3AB 
CS 34.2 ± 3.2 48.1 ± 5.3 80.9 ± 0.3B 109.4 ± 5.1B 
ER 33.3 ± 2.7 41.6 ± 2.7 68.6 ± 4.0A 152.7 ± 4.8A 

Note: A and a indicate a significant difference with the parent China Spring at  
P = 0.01 and P = 0.05, respectively; B and b indicate a significant difference with the parent 
Egyptian Red at P = 0.01 and P = 0.05, respectively. 

 

Under WP (control) treatment, chromosomes 3D, 5A, 3B, 5B and 6D showed higher and 

chromosomes 7B, 1A showed lower PUT than that of the two parents, and only the values of PUT on 

chromosome 3D, 5A and 3B showed any significant difference with the two parents. Chromosomes 

7A, 2D, 7D, 4B, 5D and 7B might carry genes with positive effects on PUE, and chromosomes 3B, 

2A, 1B, 3D, 3A, 6D, 5B, 4A, 4D, 6A, 1D, 5A, 2B and 6B might carry genes with negative effects on 

PUE compared with the two parents. However, only the values of PUE on chromosome 7A showed a 

significant difference compared with the two parents. 

Under -WP treatment, chromosome 3B showed higher PUT than that of the two parents, but was 

significant different only for CS. Chromosomes 1A, 1D and 2A showed lower PUT than that of the 

two parents and only showed significant difference for ER. Chromosomes 1A, 2A, 1D, 2B, 7A, 7D, 

5D, 6D, 6A, 3D, 4A, 3A and 6B were found with higher and chromosomes 2D,1B, 3B, 7B, and 4B 

with lower PUE than that of the two parents, respectively, but only the values of PUE on chromosomes 

1A, 2A, 1D and 2D were significantly different for the two parents.  

Under W-P conditions, chromosomes 5A, 1A, 6B, 4B, 2B, 4D, 5B and 3A might carry genes for 

PUT improvement; whereas 2A, 1B, 1D, 7D, 5D and 3D carry suppressor genes for PUT; but only 

chromosomes 5A and 1A had a significant difference compared with the two parents. Higher PUE 

were obtain from chromosomes 3D, 7A, 7D, 1B, 1D, 3B, 2A, 6D and lower ones were located on 

chromosomes 5A, 5B, 3A, 6B and 4A, respectively; only the value of PUE on chromosomes 3D, 7A, 

7D, 1B, 1D , 5A and 5B showed a significant difference compared to the two parents. 
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Under -W-P treatment, all substitution lines showed higher PUT than that of the two parents except 

5D, but only the value of PUT on chromosomes 4D, 3D showed a significant difference compared to 

the two parents; chromosome 5D had a lower PUT value than that of ER. The highest PUE was 

observed on ER, chromosomes 4D, 7B, 3D, 5D, 7D, 5A, 3A, 5B, 4A, 3B, 6B, 7A, 4B, 2B and 6A 

showed significant lower PUE than that of the two parents. 

 

2.6. Relationship between WUEl WUEp and PUE and related traits under different treatments 

 

It can be seen from Table 6, that the phenotypic and genetic correlations between Pn and Tr were 

showed extremely significant positively correlation under WP (control), W-P, -WP treatment. 

Phenotypic correlations between Tr and WUEl also showed significant or extremely significant 

negatively correlation under -W-P, W-P, -WP treatment. Genetic correlation between Tr and WUEl 

showed extremely significant positive correlation under the four treatments. 

Table 6. Significance compare between phenotypic correlation and genetic correlation 

between WUEl, WUEp, PUE and related traits. 

Treatment   Phenotypic Correlation Genetic Correlation 

WP  Pn Tr WUEl DM TWC WUEp PUT  Pn Tr WUEl DM TWC WUE.p PUT 

Tr **       Tr **       

WUEl        WUEL  -**      

DM        DM        

TWC -* -*      TWC -* -*      

WUEp    **    WUEP    **    

PUT    **  **  PUT    **  **  

PUE       -* PUE   -*    -** 

-WP   Pn Tr WUEl DM TWC WUEp PUT  Pn Tr WUEl DM TWC WUE.p PUT 

Tr **       Tr **       

WUEl  -*      WUEl  -**      

DM        DM   *     

TWC        TWC   **     

WUEp    **    WUEP    **    

PUT    **  **  PUT  -*  **  **  

PUE       -** PUE  *     -** 

 W-P  Pn Tr WUEl DM TWC WUEp PUT  Pn Tr WUEl DM TWC WUE.p PUT 

Tr *       Tr **       

WUEl  -**      WUEl  -**      

DM        DM        

TWC        TWC        

WUEp    **    WUEP    **    

PUT    **  *  PUT    *  **  

PUE       -** PUE       -** 
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Table 6. Cont. 

-W-P  Pn Tr WUEl DM TWC WUEp PUT  Pn Tr WUEl DM TWC WUE.p PUT 

Tr        Tr        

WUEl ** -**      WUEl ** -**      

DM        DM        

TWC        TWC -*       

WUEp    **    WUEP    ** -*   

PUT    *    PUT -*       

PUE       -** PUE       -** 

Note: ** and * indicated positive correlation is significant at 0.01, 0.05 probability level, 
respectively；–** and –* indicated negative correlation is significant at 0.01, 0.05 probability 
level, respectively. 

 

Phenotypic and genetic correlation among DM, WUEP and PUT all showed significant or extremely 

significant positively correlation under WP (control), W-P, and -WP treatments. There were significant 

or extremely significant and negative correlations between PUE and PUT under the four treatments. 

 

3.1. Plant material and experimental design 

 

Twenty-one substitution lines derived from the wheat varieties Chinese Spring and Egyptian Red, 

and their parents were used in this experiment. The parents were initially chosen for their differences 

in drought tolerance. The donor parent Egyptian Red, is a drought-tolerant wheat variety, whereas the 

recipient parent Chinese Spring, is a drought-sensitive variety. These substitution lines were often used 

to locate genes for major agriculture characteristics [23,25]. Chinese Spring was identified as a low 

phosphorus uptake variety [37], but the phosphorus uptake of Egyptian Red was not identified. 

These materials were kindly provided by Dr Richard Richards (CSIRO Plant Industry, Australia). 

Uniform seeds were sterilized in 0.1% HgCl2 about 15 min, and rinsed for three times in distilled 

water. Seed germination was carried out in an incubator for two days and then they were transferred to 

plastic pots containing vermiculite. Seedlings were selected at the one-leaf stage and then they were 

cultured in triangular flasks. The triangular flasks were sealed with sealing film to prevent evaporation 

and wrapped with black plastic film to keep the roots in the dark. About a week after transplanting, the 

experiments were initiated on March 20, 2007, and for six weeks after the treatment application 

measurements were taken. The second repeated experiments were begun on March 27, 2007. All 

treatments were like in the first experiment. During the experiment period, the growth chamber had a 

day temperature range was 25-27 ºC and the night temperature range was 20-22 ºC, the relative 

humidity range was 60-70%. Artificial lighting (fluorescent tubes with 400 PFD) were used for 

seedling growth (14 h day/10 h night cycle, respectively). 

The planting design was a randomized complete block with three replicates and six seedlings in 

each bottle. Two water regimes (W) and two phosphate treatment (P) was used. Four experimental 

treatments were conducted as: WP and W-P, which was control treatment (Hoagland solution) and P 

stress treatment (Hoagland solution with 1/2 P) respectively; While -WP, and -W-P which was osmotic 

treatment (Hoagland solution with 10% PEG), and osmotic and P stress treatment (Hoagland solution 



Int. J. Mol. Sci. 2009, 10             

 

 

4130

with 10% PEG and 1/2P), respectively. Culture solutions were changed once every 3-5 days during the 

growth period. The bottle positions were randomly switched every so often to decrease the differences 

in microclimates. Three seedling plants per bottle were randomly selected for measuring the 

investigated traits. 

 

3.2. Determination of WUE and PUE 

 

3.2.1. Leaf water use efficiency (WUEl) 

 

At wheat seedlings with six leaves, newly fully expanded leaves (the second leaf from the top) were 

selected for investigating leaf photosynthetic rate (Pn) and transpiration rate (Tr) with a portable 

photosynthesis system (LI-6400, Li-Cor, Lincoln, NE, USA). Nine leaves were measured for every 

treatment. Leaf water use efficiency (WUEl) was determined by Pn/Tr [38,39].  

 

3.2.2. Individual plant water use efficiency (WUEp) 

 

After measuring WUEl, plant samples from three plants were collected from each bottle, then oven-

dried at 80 ºC to constant weight and weighed with an analytical balance. The amount of water used 

during the plant growth period was determined by measuring water volume in bottle during the 

exchange of solution. WUEp is calculated as the ratio between total plant dry mass (including roots) 

weight and total water use amount [34]. 

 

3.2.3. PUT (phosphorus uptake) and PUE (phosphorus use efficiency) 

 

The dried samples were milled and subsequently digested with concentrated H2SO4 and H2O2 for 

determining total P using the molybdate-blue colorimetric method. The calculation of PUT and PUE 

has been described in the literature [35,36]. 

 

3.3. Statistical analyses 

 

Statistical analysis was performed using the SPSS 13.0 software. Duncan’s multiple range tests was 

employed for mean separation of each variable of investigated traits (photosynthetic rates, transpiration 

rates, leaf water use efficiency, dry mass, total water consumption, individual plant water use 

efficiency, phosphorous uptake, phosphorous use efficiency) among lines. Statistical difference in 

investigated traits under different treatments was assessed using one-way analysis of variance.  

 

4. Conclusions 

 

In this experiment, a set of Chinese Spring-Egyptian Red wheat substitution lines were used to 

locate the genes conferring WUEl, WUEp, PUE improvement or suppression on specific chromosomes 

at the seedling stage. Although the two parents were originally chosen because of their large 

differences in drought tolerance (Egyptian Red and Chinese Spring are drought tolerant and drought 
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sensitive varieties, respectively), large differences between the two parents were also observed for the 

investigated traits. Egyptian Red showed greater WUEl (except for W-P treatment) (Table 2), WUEp 

(Table 4), and PUT (Table 5) than Chinese Spring under all four treatments. However, Chinese Spring 

had higher PUE than that of Egyptian Red under WP, -WP and W-P treatment (Table 5).This might be 

a reflection of the fact that Egyptian Red is more tolerant to water and phosphorous deficiency than 

Chinese Spring. 

It can be seen from Table 1 that Pn and Tr were more reduced by P stress than water stress. This is 

consistent with the results of [40-42], in which plant growth and Pn were limited by P deficiency and 

moderate water stress had no significant effects on these traits. It is also reported that plants may show 

reduced Tr and increased WUEl to adapt to the stress condition [43]. Chromosomes 7D and 7A 

showed significantly increased Pn compared with CS under the four treatments. Chromosomes 6D, 

4D, 6A and chromosome 2A showed higher Pn under WP, -WP, W-P treatment and WP, -WP, -W-P 

treatment, respectively; these chromosomes all showed significant increased Pn compared with CS. It 

may indicated that chromosomes 7D, 7A, 6D, 4D, 6A ,2A may carry genes with positive effects on Pn. 

Chromosomes 5B and 3B carry genes with negative effects on Pn. A genome and chromosomes 3A, 

3D, 4A and 4D were also reported to carry genes with increase Pn [24,25,44]. It seemed that genes 

with positive effects on Tr were carried by chromosomes 5D, 6D, 2D, 1D and 4A. The lower Tr values 

were mostly on the B genome. 

From Table 2, most genotypes showed greater WUEl under -WP conditions. The main reason due to 

the lower Tr rather than greater photosynthetic capacity, because Tr were greatly reduced under water 

stress condition. WUEl on chromosomes 6B and 2 B were observed had higher value than two parents 

under WP (control), -WP and -W-P conditions. Chromosomes 1A, 7A, 7B and 3A also showed higher 

WUEl under W-P, -W-P treatment, which indicated these chromosomes might carry genes associated 

with WUEl improvement. While chromosomes1D, 2D, 3D and 5D may carry genes with negative 

effects on WUEl because they showed lower WUEl than two parents under -WP, W-P, -W-P 

conditions. Chromosome 1A of wheat is also reported may carry genes involved in WUEl. [45], but 

observation differs from that in [25] that genes controlling water use efficiency were probably located 

on chromosomes 5A and 5D, which indicated that different location results may be obtained for 

different growth periods.  

It could be seen from Table 3 that most genotypes had the highest DM under control treatment. 

TWC did no significant differences between control and W-P treatment, but was greatly reduced under 

PEG stress. Chromosomes 3D and 7D showed higher DM than the two parents under W-P, -W-P, WP 

and -WP, W-P treatments, respectively; chromosomes 1A, 7A, 2B, 3B and chromosomes 5A, 4B 

showed higher DM under W-P,-W-P and WP, -W-P treatments, respectively, which indicated that 

these chromosomes possibly carried genes for positive effects on DM, while chromosome 7B might 

carry genes with negative effects on DM, because it had lower values than the two parents under WP 

(control), W-P and -WP conditions. The results were consistent with suggestions that chromosomes 

1A, 3D, and 5A carried genes with positive effects on DM [46]. Chromosomes 4D, 6D and 3D had 

higher TWC under -WP, W-P, -W-P treatments, this suggested that chromosome 4D, 6D and 3D 

possible carry genes increased TWC. Chromosomes 5D, 1B, 3A and chromosomes 4B, 2A, 4A and 5A 

may have deduced to be involved in reduced TWC because they showed lower values under WP 

(control), -WP, W-P and WP (control), -WP, and -W-P, respectively. This result was consistent with 
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the finding of a previous study that chromosomes 2A, 3A, 4B and 5A may carry genes related to  

TWC [45].  

 As it shown from Table 4, most genotypes that showed the highest WUEp under -WP treatment 

were partially due to the lower TWC. The other studies also showed that WUEp was greater in stressed 

treatments than in the well irrigated control [47,48]. Chromosomes 7A, 3D, 2B, 3B and 4B might carry 

genes for positive effects on WUEp, because they showed increased WUEp under WP (control), W-P, 

and -W-P conditions (Table 4). This confirmed earlier observations that QTLs on chromosome 3B, 3D, 

4A, 5B, 6D and 7A was vital for WUEp when the recombinant inbred line (RIL) population (W7984 × 

Opata85) was used as material [44]. Chromosome 3D of wheat was also reported to carry genes with 

strong positive effects on vegetative WUEp [49]. Genes for decreased WUEp might be carried by 

chromosome 5D because it showed lower WUEp under W-P and -W-P treatments.  

All substitute lines and their parents had the highest PUT and lowest PUE under WP (control) 

conditions (Table 5). For most substitute lines, water stress and nutrient stress all decreased PUT but to 

different degrees, and PUT was more reduced by P deficiency than water stress. On the contrary, P-

deficiency induced a significant enhancement of PUE. Our findings are also consistent with [50-52], 

who reported that PUE were increased but there was decreased PUT under P deficiency. This result 

also confirmed former observation that decreasing water and nutrient supply decreased N, P and k 

uptake efficiency of different wheat species [31]. As Table 5 shows, genes with positive effects on 

PUT might be carried by chromosome 3B and chromosomes 5A, 5B because they showed increased 

PUT under WP (control), -WP, -W-P treatments and WP (control), W-P, -W-P treatments, 

respectively. The previous studies also revealed that the genes related to PUT had been located on 

chromosome 5A under P deficiency [16,18]. Chromosomes 7A, 7D carry genes for PUE improvement 

because they showed higher values than the two parents under WP, -WP and W-P conditions. 

Chromosomes 1B, 3B and chromosomes 4A, 3A, 5A, 5B, 6B showed lower PUE than that of the two 

parents under WP, -WP, -W-P and WP, W-P, -W-P treatments, respectively. Thus these chromosomes 

might carry genes with negative effects on PUE. This response was further confirmed by the results of 

[53,54], who found that chromosome 7A might carry gene(s) that could make wheat resistant to P 

deficiency, while chromosomes 1B and 3A might carry unfavorable gene(s) for this trait. It is also 

reported that chromosome 7A is closely related with PUE in wheat [23]. 

It can be seen from Table 6, WUEl were mainly determined by Tr, because these two traits are 

closed correlated. The significant phenotypic and genetic positive correlations were found among DM, 

WUEP and PUT. Therefore, DM may be as a good indicator for higher PUT and WUEp and also 

showed that water and phosphorus utilization was a related inheritance. The above results support the 

observations of location result from Tables 1-5, that these three traits have many similar location 

results under same treatment.  

In conclusion, our results showed that chromosome 7A of substitution line were found to carry 

genes for increase in wheat WUEl, WUEp and PUE. Other studies also showed that chromosome 7A 

may carry genes for adapting to stressful environments [29,55]. Therefore, chromosome 7A should be 

further studied and some of the important genes on this chromosome might be cloned and transferred 

by molecular genetic techniques. Gene locations on chromosomes of the investigated traits were not 

completely similar under different experimental conditions [56-59], this indicated that genetic 

mechanism(s) of WUE and PUE are highly complex. Thus, the chromosomal location of these traits in 
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other growth periods and under different field conditions needs further study and we anticipate that 

very interesting data could be achieved through more verify, repeat experiments. 
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