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  Abstract        Features of oil spills and look-alikes in polarimetric synthetic aperture radar (SAR) images 
always play an important role in oil spill detection. Many oil spill detection algorithms have been implemented 
based on these features. Although environmental factors such as wind speed are important to distinguish oil 
spills and look-alikes, some oil spill detection algorithms do not consider the environmental factors. To 
distinguish oil spills and look-alikes more accurately based on environmental factors and image features, 
a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed. The process 
of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian 
model. The Faster-region convolutional neural networks (RCNN) model was used for oil spill detection 
based on the convolution features. The detection results of the two models were fused at decision level using 
Dempster-Shafer evidence theory. The establishment and test of the proposed algorithm were completed 
based on our oil spill and look-alike sample database that contains 1 798 image samples and environmental 
information records related to the image samples. The analysis and evaluation of the proposed algorithm 
shows a good ability to detect oil spills at a higher detection rate, with an identifi cation rate greater than 75% 
and a false alarm rate lower than 19% from experiments. A total of 12 oil spill SAR images were collected 
for the validation and evaluation of the proposed algorithm. The evaluation result shows that the proposed 
algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%. 

  Keyword : synthetic aperture radar (SAR) data; oil spill detection; subjective Bayesian; Faster-region 
convolutional neural networks (RCNN); Dempster-Shafer evidence theory  

 1 INTRODUCTION 

 Oil pollution is a serious marine problem worldwide 
(Zhang et al., 2011). Diff erent types of oil and its 
refi ned products such as gasoline, kerosene, and 
diesel oil enter the marine environment during the 
process of exploitation, refi ning, storage, 
transportation, and utilization (Li et al., 2013). The 
pollution caused by these oil spills greatly threatens 
the ocean fi sheries resource, the ecological 
environment, and human activities (Leifer et al., 
2012). Thus, prompt and effi  cient oil spill detection is 

of great signifi cance to the protection of coastal 
resources and the marine ecosystem (Guo et al., 
2013). 

 The oil spill detection for polarimetric synthetic 
aperture radar (SAR) mainly consists of three parts: 
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dark spot detection, feature extraction, and 
discrimination between oil spill and the look-alike 
(Guo et al., 2018). Many studies have focused on the 
exploration of new features extracted from the 
polarimetric SAR data and the innovation of oil-spill 
detection methods in recent years. The related works 
indicate that polarimetric features or polarimetric 
feature sets extracted from diff erent channels can help 
for oil spill detection (Zhang et al., 2011; Guo et al., 
2018; Tong et al., 2019). However, SAR sensors work 
in diff erent observation models and this has limited 
the application of these features due to a lack of an 
appropriate channel. With the development of 
machine learning and deep learning, many 
classifi cation algorithms have been introduced to the 
fi eld of oil spill detection with appropriate adjustments 
and modifi cations. The convolutional neural networks 
(CNN) and the fully convolutional networks (FCN) 
have also been successfully applied on the 
discrimination of oil spills and look-alikes in 
polarimetric SAR images (Huang et al., 2018). 
Krestenitis et al. (2019) compared oil-spill detection 
methods based on diff erent CNNs including U-Net, 
LinkNet, and other CNNs. The authors indicated that 
the optimal model for classifying oil spills is the deep 
convolutional neural network (DCNN). It can be 
found that the CNNs can be used as a model to extract 
the image features and they have good performance 
when distinguishing oil spills and look-alikes. 
Environmental information is also an important 
source for distinguishing oil spills and look-alikes 
(Solberg et al., 2003, 2007). However, these studies 
or methods have not considered environmental 
information from dark spots, such as wind speed, etc.  

 To distinguish oil spills and look-alikes more 
accurately with environmental factors and image 
features in a more objective way, a new oil spill 
detection algorithm based on Dempster-Shafer 
evidence theory (Dempster, 1967; Shafer, 1976) is 
proposed in this paper. The discrimination of oil spills 
and look-alikes can also be regarded as a problem of 
uncertainty in some cases (Solberg et al., 2003, 2007). 
Many algorithms including Bayes, neural networks 
and the Dempster-Shafer theory are employed to 
solve the uncertainty problems. The Bayesian method 
can make a scientifi c judgment based on information 
from multiple sources and it can solve the uncertainty 
problems successfully (Li et al., 2016). Thus, 
environmental information including wind speed, the 
distance from samples to waterways and oil off shore 
platforms were combined to distinguish oil spills and 

look-alikes using the subjective Bayesian method 
(Duda et al., 1976). Because the Faster-region 
convolutional neural networks (RCNN) (Ren et al., 
2017) has been successfully applied to object 
detection with convolution features (Manana et al., 
2018; Han et al., 2019), Faster-RCNN was used as a 
model to extract the convolution features and to detect 
oil spills from the images. Features extracted from the 
single channel intensity image have been more widely 
and successfully used in many studies and the use of 
a single channel intensity image can reduce the 
channel restrictions (Solberg et al., 2003, 2007). Oil 
spill detection with features extracted from a single 
channel intensity image will be more conducive to 
real-time business application (Solberg et al., 2003, 
2007). The Dempster-Shafer theory also shows a 
great capability to fuse the multiple observational 
evidence to solve the uncertainty problems (Zeng et 
al., 2019; Yang et al., 2020). Furthermore, the 
Dempster-Shafer theory has the characteristics of 
strong anti-interference, low sensor dependence, and 
relatively strong fault tolerance. A more robust result 
with less uncertainty was provided using the feature 
level and decision-making level Dempster-Shafer 
theory. Thus, the Dempster-Shafer evidence theory 
was selected for the fusion of the output results from 
the subjective Bayesian method and Faster-RCNN 
model to give the fi nal detection result of oil spills in 
this paper.  

 2 MATERIAL AND METHOD 

 2.1 Data and the preprocessing 

 2.1.1 SAR data and preprocessing 

 A total of 190 SAR images from 2008−2018 
acquired from ENVISAT-ASAR, Sentinel-1A/B, and 
RADARSAT-1/2 were collected for the proposed 
algorithm experiment. These SAR data mainly 
recorded oil spills and look-alikes in the Bohai Sea, 
the South China Sea, and the coastal waters of China. 
The number of SAR images acquired from ENVISAT-
ASAR, Sentinel-1A/B, and RADARSAT-2 is 170. 
The information of the three main SAR systems is 
listed in Table 1. The C-band VV and HH polarization 
data from these SAR images were used to provide oil 
spill and look-alike image samples for our algorithm 
experiment due to the limitation of SAR images 
(Krestenitis et al., 2019). The selected data was 
processed with Sentinel Application Platform (SNAP) 
software provided by ESA. The processed data were 



3ZHANG et al.: Oil spill detection method based on D-S theory

resampled at a spatial resolution of 30 m. To reduce 
the interference of speckle noise, all the data was 
processed by Refi ned-Lee fi lter (7  7 window) (Lee et 
al., 1999).  

 2.1.2 Supplementary data and the preprocessing 

 The TRMM Multi-satellite Precipitation Analysis 
(TMPA) 3B42 data, the Global Precipitation 
Measurement (GPM) data and European Centre for 
Medium-Range Weather Forecasts (ECMWF) ERA-
interim re-analysis data for the same period as the 
SAR data were downloaded to provide rainfall and 
wind speed data for the interpretation of oil spills and 
look-alikes. The time step and spatial resolution of 
the TMPA 3B42 data and GPM data are 3 h, 0.5 h and 
0.25°, 0.1° respectively. The time interval of the 
ECMWF ERA-interim data is 6 h and the data are 

stored in NetCDF format with a resolution of 0.125°. 
The TMPA 3B42 data and ECMWF ERA-interim re-
analysis data were resampled to 0.125° using bilinear 
interpolation. In addition, off shore oil platform 
locations data (Commander Department of the Navy, 
2005a, b) and waterway data (China Cartographic 
Publishing House, 2015) over the coastal waters of 
China were collected to service the interpretation. 
The two data were vectorized using ESRI ArcGIS 
vectorization tools and the distribution of waterways 
and off shore platforms are shown in Fig.1. 

 2.2 Establishment of oil spill and look-alike sample 
database 

 There are few open-source oil spill and look-alike 
sample databases and they are diffi  cult to obtain. 
Therefore, an oil spill and look-alike sample database 

 Table 1 The information of SAR systems 

 SAR system  Revisit period (d)  Incidence angle (°)  Polarization mode  Resolution (m)  Band/observation mode 

 ENVISAT-ASAR  35  26°−39°  VV+HH/VV+VH  30 m  C/alternating polarization model, wide swath model 

 Sentinel-1A/B  12  29°−46°  VV+VH/HH+HV  20 m  2 m  C/interferometric wide swath  

 RADARSAT-2  24  20°−41°  Quad  25 m  8 m  C/standard strip map  
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 Fig.1 The distribution of waterways (left) and off shore oil platforms (right) along coast of China 
 Map review No. (2019)1671. 



4 J. OCEANOL. LIMNOL.,

(OSLSD) was established with oil spill and look-alike 
samples that have been interpreted from SAR images. 
The actual oil spill and look-alike samples were 
selected using a visual interpretation method based on 
the prior knowledge of experts (Solberg et al., 2003, 
2007; Karathanassi et al., 2006). The visual 
interpretation followed the rules and descriptions of 
oil spills with reference to Solberg et al. (2003, 2007) 
and Karathanassi et al. (2006). The OSLSD is an 
important basic database for the construction and 
accurate evaluation of the new proposed algorithm in 
this paper. It consists of two parts: the fi rst part is the 
Image Samples Database (ISD) and the second part is 
the Environmental Information Database (EID). The 
ISD consists of 1 798 image samples including 828 
oil spill samples and 970 look-alike samples in 
GeoTiff  format and the corresponding Extensible 
Markup Language (XML) fi les created by the 
LabelImg (2018). The XML fi les record the boundary 
and classifi cation of the corresponding image samples 
(Fig.2). Seven types of look-alikes including oceanic 
internal waves, upwelling, ship trace, rain cells, wind 
sheltered by land, biogenic fi lms, and low wind 
velocity were interpreted based on the above visually 
interpreted method. 

 The EID consists of environmental information 
such as the wind speed related to the image samples. 
The data in the two databases were matched by the 
fi lename of the image samples. The EID included the 
wind speed data and the distance between the position 
of all samples and off shore oil platforms and 
waterways. The geometric center of image samples 
was regarded as the optimal location for collecting 

wind speed data and distance data. The location data 
were acquired using a vectorization tool from ESRI 
ArcGIS software. Using the location data, wind speed 
data were extracted from the ECMWF ERA-interim 
data. The distance between the optimal location and 
the off shore oil platforms or waterways was measured 
using an ESRI ArcGIS measurement tool. The 
distance data of oil platforms and waterways are 
represented by sample-platform data and sample-
waterway data for the convenience of writing and 
expression. 

 2.3 Oil spill detection algorithm based on 
Dempster-Shafer evidence theory 

 2.3.1 The subjective Bayesian oil spill detection model 

 The Support Vector Machine (SVM) and Artifi cial 
Neural Networks (ANN) are easy to over-fi t if the 
number of samples is relatively limited when training 
the classifi cation model. Besides, the uncertainty of 
samples should be considered when using the 
Dempster-Shafer model to express the uncertainty of 
the fusion results (Li et al., 2016; Yang et al., 2020). 
Thus, the subjective Bayesian method is selected to 
solve the problem that whether a sample is classifi ed 
as an oil spill under the infl uence of single or multiple 
environmental factors. The environmental information 
can be regarded as evidence  E  and the occurrence of 
an oil spill can be regarded as event  H  (Duda et al., 
1976). Because the probability  P ( H | E ) and the 
probability  P ( E ) are diffi  cult to determine when 
applying the subjective Bayesian probabilistic 
reasoning model, the parameters Likelihood of 

Oceanic internal waves Ship trace Biogenic films Rain cells

SAR image Label 1 Label 2 Label 3

 Fig.2 Illustrations of labeled simple images (fi rst row) and look-alikes (second row) 
 The number represents the label of the oil fi lm, the red frame is the enlarged view of the oil fi lm 1, 2, 3. 
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Suffi  ciency (LS) and Likelihood of Necessity (LN) 
were introduced into the subjective Bayesian 
probabilistic reasoning model to determine the two 
probabilities (Duda et al., 1976). The LS and LN 
parameters embody the suffi  ciency and the necessity 
of the reasoning rules respectively (Duda et al., 1976). 
The values of LS and LN can be acquired using the 
statistical analysis results of the samples, the two 
parameters can be described as follows:  

 
( )( )( ) ;LS .

1 ( ) ( ~ )
P E HP HO H

P H P E H
 


         (1) 

 If the probability  P ( E ) equals 1, the probability 
 P ( H | E ) and  P ( H |~ E ) are defi ned as follows: 
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 where  H  and  E  are the event and the evidence, 
respectively. If  E′  represents the observations aff ecting 
evidence  E  with uncertainty, then  P ( H | E′ ) is 
considered in terms of the rules (Eq.3) given by Duda 
et al. (1976). 

  P ( H | E′ )= P ( H | E )   P ( E | E′ )+ P ( H |~ E )   P (~ E | E′ ).     (3) 
 It is necessary to combine this evidence  E s to 

obtain the fi nal posterior probability of event  H . The 
posterior odds of event  H  can be defi ned as follows: 
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 The probability  P ( H ),  P ( E | H ), and  P ( E |~ H ) can be 
obtained using the statistical analysis result.  P ( H | E ) 
and  P ( H | E  1 … E  n ) represent the probabilities of a 
sample if it is an oil spill sample under the infl uence 
of a single or multiple environmental factors, 
respectively. In this study, three environmental factors 
including wind speed and the distances between 

samples and oil platforms or waterways were 
extracted from the supplementary data from diff erent 
sensors, respectively. It is not appropriate to detect 
whether a dark spot is an oil spill using a single 
environmental factor due to the complexity of the 
marine environment. Thus, the subjective Bayesian 
oil spill detection model was employed to product a 
detection result with the infl uence of multiple 
environmental factors. 

 2.3.2 The Faster-RCNN oil spill detection model 

 The Faster-RCNN oil spill detection model was 
established using the sample image features from a 
diff erent perspective. The Faster-RCNN is a well-
known object detection framework that was proposed 
by Ren et al. (2017) after the introduction of RCNN 
and Fast-RCNN in 2016. The Faster-RCNN model 
combines the feature extraction layer, the proposal 
layer, the bounding box regression layer, and the 
classifi cation layer into one object detection 
framework and it is very convenient to complete the 
process of feature extraction, classifi cation, and 
position correction (Ren et al., 2017). The structure of 
the Faster-RCNN model is shown in Fig.3. In this 
study, the detection result can be regarded as the 
supportive degree for each detected dark spot in SAR 
images (Yang et al., 2020). 

 The VGG16 (Simonyan and Zisserman, 2015) pre-
trained convolution neural network was selected as the 
convolution feature extraction network in this paper. 
The convolution kernel of window size 7  7 is replaced 
by three convolution kernels in window size 3  3. The 
non-maximum suppression (NMS) algorithm is an 
important part of the Faster-RCNN and is used to 
remove the duplicate detection box when the 
intersection over union (IOU) is greater than a certain 
threshold (Bodla et al., 2017). The Soft-Non-Maximum 
Suppression (Soft-NMS) algorithm can solve this 

SAR
image

samples

VGG16 

convolution 

neural network 

(VGG16)

Region Proposed Networks (RPN)

ROI pooling layer

Proposals

Full connection layer Classifier

Detection 
result

 Fig.3 The structure diagram of Faster-RCNN 
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problem eff ectively by reducing the confi dence of 
those boxes with IOU greater than the threshold rather 
than deleting them (Bodla et al., 2017).  

 2.3.3 The Dempster-Shafer evidence theory 

 To add the environmental information from dark 
spots to distinguish oil spills and look-alikes, the 
information for the above two models should be fused 
using the information fusion method. The method can 
be divided into three levels: the data level, the feature 
level, and the decision-making level. The information 
fusion on the data level and the feature level requires 
a high precision matching relationship in time and 
space of the original information. That means the 
fault tolerance and anti-interference of the above two 
types of information fusion are not strong. Because of 
the limitation mentioned above, the data level and the 
feature-level information fusion are not suitable for 
oil spill detection in a complex marine environment. 
Therefore, the decision-making level-information 
fusion method named Dempster-Shafer theory was 
employed in this paper due to the characteristics of 
strong anti-interference, low sensor dependence, and 
relatively strong fault tolerance. The detection process 
and the detection result of the Bayesian model and the 
Faster-RCNN model are independent, and the 
detection results of the two models can be regarded as 
the evidence for the occurrence of an oil spill 
(Dempster, 1967; Shafer, 1976). In Dempster-Shafer 
theory, the Basic Probability Assignment (BPA), Brief 
function (Bel) and Plausibility function (Pls) are three 
important parts of evidence theory (Dempster, 1967; 
Shafer, 1976). The Pls establishes a bridge between 
an abstract mathematical model and the actual 
proposition and it can transform the original logical 
reasoning problem into a mathematical aggregation 
problem. BPA represents the initial allocation of 
believability. Bel and Pls represent the support and 
suspicion of a proposition and they can be described 
and calculated with the mass function. The defi nition 
of Bel and Pls are as follows: 

 Bel( ) ( ), ( ),
B A

A m B A 


               (5) 

 Pls( ) ( ) 1 Bel( ),( ),
B A

A m B A A



 
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 where  Θ  is the discernment frame of proposition  A  
and  A  is the arbitrary proposition.  B  and A  are the 
subset and supplementary set of  A .  Φ  represents the 
empty set.  m ( B ), named mass function, represents the 
BPA and it meets the following conditions (Dempster, 

1967; Shafer, 1976): 

 ( ) 1; ( ) 0.
B

m B m
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 It is necessary to fuse the evidence sources to make 
more accurate decisions on the proposition supported 
by multiple sets of evidence sources simultaneously. 
The fusion must meet the Dempster Shafer rules in 
reference (Dempster, 1967; Shafer, 1976). Because 
the result of the orthogonal process for the BPA 
function is still a BPA function (Dempster, 1967; 
Shafer, 1976), the new Bel function and Pls function 
can be updated with the updated BPA. The expression 
is shown as Eq.8: 
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 where  δ  represents the fusion result,  A  i    represents the 
 i  th  arbitrary proposition for the discernment frame,  m  i  
represents the  i  th  mass function for the corresponding 
 A  i , and  K  is the confl ict level of evidence. The 
detection result obtained from the subjective Bayesian 
oil spill detection model and Faster-RCNN oil spill 
detection model can be regarded as the supportive 
degree or evidence for a dark spot detected as oil spill. 
The supportive degrees can be used to construct the 
BPA function. The Dempster-Shafer theory can also 
make the fi nal decision with the multiple supportive 
degrees (Yang et al., 2020) and the fusion result can 
be considered as the fi nal result for oil spill detection. 
The implementation chart is shown in Fig.4. 

 2.4 Experimental setup 

 The Faster-RCNN for CPU versions based on the 
Tensorfl ow framework was used for training the 
image samples using the Windows 10 operating 
system in this paper. The CPU was the Intel core i7-
6700 and the running memory size was 16 GB. The 
learning rate and the weight decay were set to 0.005 
and 0.000 1. The batch size was set to 256 and the 
maximum iterations were set to 40 000 during training 
image samples. The step size for reducing the learning 
rate was set to 5 000. In addition, the number of top 
proposals to select was set to 2 000 for oil spill 
detection with the trained network. 70% of the 
samples (1 259 samples) including oil spill and look-
alike samples from the ISD were selected randomly to 
train the Faster-RCNN oil spill detection model. The 
remaining 539 samples were selected for the model 
test. 
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 3 RESULT AND DISCUSSION 

 3.1 Evaluation method 

 The detection rate (DR), the false alarm rate (FAR) 
and the identifi cation rate (IR) were used to obtain 
objective and accurate evaluation results of the 
subjective Bayesian detection model, the Faster-
RCNN detection model and the proposed algorithm. 
The expressions for DR, FAR, and IR are as follows: 

 

TTDR= ,
TT+TF

FTFAR= ,
TT+FT

TT+FFIR= ,
TT+FF+TF+FT

         (9) 

 where TT represents the number of correctly classifi ed 
oil spill samples and TF represents the number of 
misclassifi ed oil spill samples. FF represents the 
number of correctly classifi ed look-alike samples, 
and FT represents the number of misclassifi ed look-
alike samples. 

 3.2 Analysis and evaluation of subjective Bayesian 
oil spill detection model 

 The analysis and evaluation of the subjective 
Bayesian oil spill detection model was undertaken 

with data from the EID. All 1 798 records from the 
database were used to determine the LS value of the 
environmental factors. The probability  P  (oil spill) 
was 0.461 in terms of the preliminary statistical result 
of all the records.  

 To determine the LS value in an objective way, the 
samples with diff erent wind speed, sample-platform 
data, and sample-waterway data were counted (Fig.5). 
The LS value was determined with the certain interval 
integral method due to the small number of samples. 
The step interval of the certain interval integral 
method was set to 1 m/s, 1 km, and 1 km, respectively. 
The upper limit of the LS value calculation for wind 
speed data, sample-waterway data, and sample-
platform data were set to 5 m/s, 80 km, and 300 km 
respectively.  

 The co-ordinates of marked points are 3.27, 0.23 in 
Fig.6a. When the wind speed is greater than 3.27 m/s, 
the growth of the LS value is accelerated. The curve 
in Fig.6a shows that the supportiveness of wind speed 
on samples belonging to oil spill gradually increases 
as wind speed increases from 3 m/s. This is consistent 
with the conclusion of Bern et al. (1993). The increase 
of supportiveness is mainly due to the decrease in the 
number of look-alike samples with low wind speeds. 
Thus, the intervals for the calculation of posteriori 
probabilities  P ( E | H ) are 0–3 m/s and >3 m/s. 
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 The curve of the LS values and the sample-
waterway data is shown in Fig.6b. The fl uctuation of 
the curve with the sample-waterway data ranges from 
0 to 10 km and this is due to the small number of 
samples and the variation of the proportion of oil spill 
and look-alike samples. The coordinates of the 
marked turning point are 19.3 and 1.72. When the 
distance is greater than 19.3 km, the rate of decrease 

in the LS value becomes increasingly slow. Although 
in general the LS decreases in line with the increase of 
distance, all the LS values are greater than 1. This 
trend means that the supportiveness of distance of oil 
spill samples increases with a decreasing distance. 
This is consistent with the fact that an oil spill from a 
ship is an important source of marine oil spills. The 
intervals for the calculation of posteriori probabilities 
 P ( E | H ) are 0−20 km and >20 km. 

 The relationship between LS values and sample 
platform data is shown in Fig.6c. The marked turning 
point is the peak of the curve, and its coordinates are 
32.8, 1.78. In general, the LS value decreases with 
increasing distance from 32.8 km. The supportiveness 
of distance on samples belonging to oil spill decreases 
as distance increases. This trend means that the result 
of the LS value is consistent with the fact that oil spill 
from off shore oil platforms is another important source 
of oil spill. The intervals for the calculation of posteriori 
probabilities  P ( E | H ) are 0−30 km and >30 km.  

 For the defi nition of posteriori probabilities  P ( E | H ), 
the situation whereby a sample belongs to an oil spill 
can be regarded as event  H . Similarly, the intervals of 
wind speed data, sample-waterway data and sample-
platform data are regarded as evidence  E . The result 
of posteriori probabilities  P ( E | H ) with diff erent 
intervals under diff erent environmental factors were 
calculated and the detailed information and calculated 
results are shown in Table 2.  

 The posterior probability  P ( H | E  1 ∙∙∙ E  n ) can be 
regarded as the fi nal result with the infl uence of 
multiple environmental factors and it can be obtained 
with the calculation rules in Section 2.3.1 and the 

 Table 2 The detailed information and calculation result of 
posteriori probabilities  P ( E | H ) 

 Environmental 
factor   P ( E | H )  Qualifi ed samples/

total samples 
 The value  
 of  P ( E | H ) 

 Wind speed 

  P (0−3 m/s|oil spill)  178/828  0.215 

  P (>3 m/s|oil spill)  650/828  0.785 

  P (0−3 m/s|look-alike)  589/970  0.607 

  P (>3 m/s|look-alike)  391/970  0.393 

 Off shore oil 
platform 

  P (0−30 km|oil spill)  155/828  0.187 

  P (>30 km|oil spill)  673/828  0.813 

  P (0−30 km|look-alike)  103/970  0.106 

  P (>30 km|look-alike)  867/970  0.894 

 Waterway 

  P (0−20 km|oil spill)  600/828  0.676 

  P (>20 km|oil spill)  228/828  0.324 

  P (0−20 km|look-alike)  331/970  0.342 

  P (>20 km|look-alike)  639/970  0.658 
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 Fig.5 Histograms of wind speed data (a), the distance to 
waterways (b), and off shore oil platforms (c) 
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above computation result. The method introduced in 
Section 3.1 was selected to complete the evaluation. 
The detection rule is that if the process result for a 
sample is greater than the threshold value, the sample 
will be classifi ed as oil spill; otherwise, the sample is 
classifi ed as look-alike. Based on the prior knowledge 
of experts, the above statistical results in Section 3.2 
and the suggestion given by Duda et al. (1976), the 
threshold value is set to 0.5. The evaluation result 
with 1 798 samples is shown in Fig.7. The evaluation 

result indicates that the subjective Bayesian oil spill 
detection model eff ectively distinguished oil spill and 
look-alike and achieved DR and IR values greater 
than 60%. 

 3.3 Analysis and evaluation of Faster-RCNN oil 
spill detection model 

 The Faster-RCNN oil spill detection model was 
evaluated using the method described in Section 3.1 
based on the remaining 539 samples. The total loss 
curve with iterations is shown in Fig.8a. It can be 
found that the network converged and the total loss 
was lower than 0.7 when the iterations reached 
40 000. It also can be seen that the total loss curve 
dropped several times after protrusions in Fig.8a. The 
reason for this phenomenon is that the larger initial 
detection box in early iteration gradually returns with 
the increase of iterations during training. In order to 
see the sensitivity and the specifi city of the oil-spill 
detection model, a receiver operating characteristic 
(ROC) curve was plotted with a true positive rate 
(TPR) and a false positive rate (FPR). TPR indicates 
the proportion of TT and the sum of TT and FT. FPR 
indicates the rate of FT and the sum of FT and TF. The 
area under the curve (AUC) is also calculated with 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Wind speed (m/s)

0

0.2

0.4

0.6

0.8

1.0

L
S

 v
al

u
e

a

0 10 20 30 40 50 60 70 80

Distance (km) Distance (km)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
b

0 30 60 90 120 150 180 210 240 270 300
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
c
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TPR and FPR using the certain interval integral 
method. The ROC curve is shown in Fig.8b. The ROC 
curve and the AUC are helpful to assess the 
performance of a classifi er. In general, a good 
classifi er corresponds to a higher AUC value. The 
closer the ROC curve is to the upper left corner, the 
better the classifi er is. It can be found that the detection 
model shows a good performance with AUC rates 
higher than 0.8. In addition, the ROC curve is 
relatively close to the upper left corner. The ROC 
curve and AUC shows that the classifi er can 
distinguish oil spills and look-alikes eff ectively. 
According to all of the above, the detection model 
was used for oil spill detection of the remaining 
samples. A total of 459 samples randomly selected 
from the remaining samples were used to build a test 
set. The above process was repeated three times to 
build 3 test sets. The evaluation result is shown in 
Fig.8c. 

 3.4 Analysis and evaluation of the proposed 
algorithm 

 According to the principle introduced in Section 
2.3.3, the discernment frame  A  consists of three 
elements:  A  1  indicates that the target can be classifi ed 
as oil spill;  A  2  indicates that the target can be classifi ed 
as look-alike; and  A  3  indicates that the target cannot 
be classifi ed as oil spill or look-alike. The detection 
results of the above two oil spill detection models can 
be regarded as two independent pieces of evidence in 
Dempster-Shafer evidence theory (Dempster, 1967; 
Shafer, 1976). The IR for the two models were 0.70 
and 0.78 (average of three test sets), respectively. 
Thus, the mass function for the two pieces of evidence 
can be defi ned as Eqs.10 & 11 as follows (Dempster, 
1967; Shafer, 1976): 

 

 subBa 1 2 3

oil spill oil spill look-alike
subBa subBa subBa

look-alike unknown
subBa subBa

, ,

( 0.70,

0.70, 0.30),

m A A A

m P m

P m



  

            (10) 

 

 FstRCN 1 2 3

oil spill oil spill look-alike
FstRCN FstRCN FstRCN

look-alike unknown
FstRCN FstRCN

, ,

( 0.78,

0.78, 0.22),

m A A A

m P m

P m



  

            (11) 

 where oil spill
subBaP  and look-alike

subBaP  are the probability of oil 
spill and look-alike, respectively, calculated using the 
subjective Bayesian oil spill detection model. The 

oil spill
FstRCNP  and look-alike

FstRCNP  are the probability of oil spill and 
look-alike, respectively, provided by the Faster-
RCNN oil spill detection model. The two detection 
results of both models were fused based on the 
Dempster fusion rules, with one assumption that the 
probabilities of oil spill and look-alike would be 1 
(Dempster, 1967; Shafer, 1976). The detection rule of 
the proposed algorithm was based on the comparison 
of probabilities of oil spill and look-alike and the 
larger one is regarded as the fi nal result. Three test 
sets were created in the same way as the test sets in 
Section 3.3. The environmental information records 
corresponding to the image samples in the test sets 
were selected from the EID. An evaluation for the 
proposed algorithm was completed and the result is 
shown in Fig.9a. 

 The evaluation result shows that the proposed 
algorithm has good ability to classify oil spill and 
look-alike with DR and IR values greater than 75% 
and lower FAR values (FAR<19%). Compared with 
the subjective Bayesian oil spill detection model 
(Fig.9b), the proposed algorithm shows an improved 
capacity to distinguish between oil spill and look-
alike with increases of 13% and 11% in DR and IR, 

DR IR FAR
0

10

20

30

40

50

60

70

80

90

100
Averaged

Test set 1
Test set 2
Test set 3

P
er

ce
n
ta

g
e 

(%
)

DR IR FAR
0

10

20

30

40

50

60

70

80

90

100

Subjective Bayesian 
Faster-RCNN
The proposed method

P
er

ce
n
ta

g
e 

(%
)

ba

Accuracy evaluation index Accuracy evaluation index

 Fig.9 The evaluation result of the proposed algorithm with the test sets (a) and the comparison result of the subjective 
Bayesian method, Faster-RCNN method, and the proposed method (b) 
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respectively. Compared with the Faster-RCNN oil 
spill detection model (Fig.9b), the DR and IR of the 
proposed algorithm were improved with increases of 
3% and 4%, respectively. The FAR of the proposed 
algorithm was reduced by 10% compared with the 
subjective Bayesian oil spill detection model and 4% 
compared with the Faster-RCNN oil spill detection 
model.  

 3.5 Application cases validation 

 To evaluate the performance of the proposed 
algorithm, a total of 12 oil spill images were selected 
for the oil spill detection experiments. SAR images 

were related to several real oil spill accidents and 
some typical areas, such as the Malacca Strait and the 
Hormuz Strait, which suff er frequent oil spill 
accidents. The detailed information of these SAR data 
is shown in Table 3. 

 There are few open-source SAR images with 
simultaneous instrumental observations related to oil 
spill accidents and they are diffi  cult to obtain. To 
complete the validation, the oil spills and the look-
alikes in the selected images were labeled using the 
visual interpretation method in Section 2.2. In Fig.10, 
the detection result is marked with red rectangles and 
the interpreted oil spills and look-alikes are marked 

PL-08-12 (1)

HS (1) TBHS (2)

PL-08-12 (2) MS-S3 (2)

MS-S3 (1)

MS-S2

MS-S4 PL-08-13

BP-04-07 BP-09-15

 Fig.10 The detection result of the collected data 
 Detected oil spills are labeled with red rectangle, the interpretation results of oil spills and look-alikes are labeled with blue and green rectangles respectively. 
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with blue and green rectangles, respectively. The 
complex degree of SAR image background is 
classifi ed by the texture of SAR images and the 
number and area of oil spills and look-alikes 
(Karathanassi et al., 2006). The fi rst two rows show 
the detection result when the SAR image background 
is slightly complicated. Twenty-three out of 31 oil 
spill dark spots were detected and the detection rate 
for oil spills was 74.19%. The third row and forth row 
show the detection result when the SAR image 
background is relatively complicated. The total 
number of labeled oil spills was 49 and the detected 
oil spills was 31. The detection rate for oil spill was 
63.26%. Most oil spills in the fi rst two rows were 
detected correctly although a few oil spills with small 
areas were not detected. The detection result shows 
that the irregular line-like oil spills PL-08-13 in Fig.10 
failed to be detected by the proposed algorithm. In 
addition, a look-alike dark spot MS-S3(2) in Fig.10 
was mistakenly classifi ed as oil spill. The oil spill 
detection result is also aff ected by the diff erence of 
NRCS between oil and seawater. The diff erence of 

NRCS between oil spill dark spots and seawater in the 
12 validation SAR images were calculated and the 
minimum threshold (the diff erence of NRCS) for the 
oil spill dark spots detected by the proposed method is 
4.9 dB. The minimum threshold appears in the lower 
right corner red rectangle of HS (2) in Fig.10. If the 
diff erence of NRCS between oil spill dark spots and 
seawater is lower than the minimum threshold value, 
the oil spill dark spots will not be detected by the 
proposed algorithm. The detection result indicates 
that the proposed method shows good ability to detect 
oil spills when the SAR image background is not 
complicated. Meanwhile, the ability and accuracy for 
detecting oil spills with complicated SAR image 
background needs to be improved.  

 Two cases were considered in this paper according 
to reference Karathanassi et al. (2006), Solberg et al. 
(2007) and the above analysis in this section. The 
undetected oil spills were regarded as misclassifi ed 
labeled oil spills. The look-alike unclassifi ed as oil 
spills were regarded as correctly classifi ed look-
alikes. The evaluation result of oil spill detection at 
diff erent sea states is shown in Table 4. The DR, FAR, 
and IR for case 1 and case 2 are shown in Fig.11. 

 Table 4 The evaluation result of the proposed method in 
diff erent cases 

   Oil spill  Undetected oil spill 

 Case 1: oil spill detection at relatively slightly complicated sea states 

 Labeled oil spill  36  11 

 Labeled look-alike  8  33 

 Case 2: oil spill detection at relatively complicated seawater states 

 Labeled oil spill  38  19 

 Labeled look-alike  15  43 
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 Fig.11 The evaluation result of case 1, case 2, and overall 

 Table 3 The validation SAR images in this study 

 Date  Sensor  Polarization mode  Code  Resolution  Incidence angle  Accident-prone area 

 12-Aug-2011 

 ENVISAT ASAR 

 VV  PL-08-12 

 30 m  26°−39°   Penglai 19-3 oil spill accident
(Guo et al., 2013)  13-Aug-2011  VV  PL-08-13 

 28-Aug-2011  VV  PL-08-28 

 07-Apr-2010 

 RADARSAT2 

 HH  BP-04-07 

 25 m×8 m  20 ° −41 °  
  BP Deepwater Horizon accident

(Leifer et al., 2012)  15-Sep-2010  HH  BP-09-15 

 29-Sep-2010  HH  BP-09-29 

 11-Apr-2013  VV  HS   Hormuz Strait (Zhao et al., 2015) 

 11:16:43-21-Aug-2017 

 Sentinel-1 

 VV  MS-S1 

 20 m×22 m  29°−46°   Malacca Strait
 (Vaezzadeh et al., 2017) 

 11:17:08-21-Aug-2017  VV  MS-S2 

 11:17:33-21-Aug-2017  VV  MS-S3 

 11:17:58-21-Aug-2017  VV  MS-S4 

 27-Dec-2002  ERS-2  VV  TB  30 m  23°   Gulf of Thailand (Gullaya, 2012) 
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Compared with the evaluation results of case 1, the 
DR and IR of case 2 were reduced by about 10% and 
8% and the FAR of case 2 was increased by about 
10%. When comprehensively considering case 1 and 
case 2, the number of labeled oil spills, detected oil 
spills, undetected oil spills, and look-alikes 
misclassifi ed as oil spills are 104, 74, 30, and 23 
respectively. The overall DR, FAR, and IR are 
calculated by the formula proposed in section 3.1 and 
their values are 71.15%, 23.71%, and 73.89% 
respectively, as shown in Fig.11 in Green. 

 4 CONCLUSION 

 To distinguish oil spills and look-alikes more 
accurately with environmental factors and image 
features in a more objective way, a new oil spill 
detection algorithm based on the Dempster-Shafer 
evidence theory is proposed to give the optimal 
detection result of oil spills. The proposed algorithm 
was applied to the test sets to conduct detection 
experiments. The evaluation results indicate that the 
proposed algorithm has good ability to detect oil spills 
in SAR images showing DR and IR values greater 
than 75% and lower FAR values (FAR<19%). In 
addition, a total of 12 SAR oil spill images were 
selected to validate the eff ectiveness of the proposed 
algorithm. The evaluation result shows that the 
proposed algorithm can detect oil spills eff ectively 
with overall DR greater than 70% and FAR lower 
than 25%. The subjective Bayesian model is built 
with environmental information of image samples 
extracted from multi-source remote sensing data 
along China’s coastline. This means that the detection 
results of the model depend partly on the geographical 
position of samples. This requires us to expand the 
sample database, add environmental factors and pixel 
factors of true or suspicious oil spills in diff erent sea 
areas of the world, to increase the model adaptability. 
The Dempster-Shafer method and the Faster-RCNN 
model in the proposed algorithm can also be improved 
with appropriate adjustment to achieve a higher 
detection accuracy. 

 In future work, the ability of oil spill detection 
shall be enhanced for more complex environments, 
and more comprehensive and detailed improvement 
works including the computational analysis for our 
algorithm will be put forward based on more samples, 
more features such as the polarimetric features, and 
more accurate waterway and oil off shore data. In 
addition, the proposed method should be compared 
with the previous oil spill detection methods built 

with machine learning methods (such as ANNs and 
SVMs), deep-learning methods, or information fusion 
methods, to evaluate the proposed method in a more 
objective way. 
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