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A B S T R A C T   

Biomethane produced by methanogenic archaea is a main greenhouse resource of terrestrial and marine eco-
systems, which strongly affects the global environment change. Conductive materials, especially nano-scale, 
show considerable intervention on biomethane production potential, but the mechanism is still unclear. Here-
in, we precisely quantified the absolute abundance of Methanosarcina spp. proteins affected by carbon nanotubes 
(CNTs) using tandem mass tag (TMT) proteomics technology. Among the 927 detectable proteins, more than 
three hundred, 304, showed differential expression. Gene Set Enrichment Analysis on KEGG pathways and GO 
biological processes revealed a trend of decreased protein synthesis induced by CNTs, suggesting these 
conductive nanomaterials may replace part of the cell structure and function. Interestingly, increased acetoclastic 
methanogenesis actually came at the expense of reduced protein synthesis in related pathways. CNTs stimulated 
biomethane production from acetate by stimulating intracellular redox activity and the –COOH oxidation pro-
cess. These findings enhanced the understanding of the biomethane production process affected by conductive 
materials.   

1. Introduction 

Methane is an active player in the global carbon cycle and serves as 
renewable fuel with crucial application potential. Biomethane produc-
tion is an anaerobic process, which is the primary energy obtaining step 
for methanogenic archaea (Evans et al., 2019). Methanogens, which 
belong exclusively to the domain Archaea, are globally spread in various 
environments, such as sediments, anaerobic soils, landfills, wastewater 
and so on (Xiao et al., 2017, 2021a; Li et al., 2018a; Chen et al., 2020a). 
Methanogenic archaea have been identified as the main component in 
many anaerobic digestion systems, which play a crucial role in global 
carbon cycle and biomethane production (Zhu et al., 2020; Cai et al., 
2021). There are three known methanogenesis pathways, and the main 

biomethane producing pathways are acetoclastic methanogenesis and 
CO2 reduction, contributing to approximately 2/3 and 1/3 of the global 
biomethane production, respectively (Conrad, 2005). 

For all methanogenic progresses, Mcr and Mtr catalyzing the last two 
steps of methanogenesis are the crucial components of methanogens. 
Methanogenic archaea generally contain only one or two methano-
genesis pathways, while Methanosarcina spp., cytochrome containing 
methanogens, produce methane through all three known methanogenic 
pathways (Mand and Metcalf, 2019). Moreover, Methanosarcina spp. 
often dominate the biomethane production in many anaerobic digestion 
systems (Tsapekos et al., 2017; Xiao et al., 2018, 2019a, Kurade et al., 
2019). It was reported that Methanosarcina switched electron transport 
chains according to environmental condition (Mand et al., 2018). 
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Therefore, methanogens evolve many numerous transport proteins such 
as Ech, Fpo, Vho, Hdr, and so on. 

In the past decade, direct interspecies electron transfer (DIET) 
coupled methanogenesis is considered an important biomethane pro-
ducing process in complex environments (Morita et al., 2011; Song et al., 
2019; Xiao et al., 2019b, c). This is largely due to the participation of 
some bacteria that can produce electrons, such as Geobacter (Morita 
et al., 2011; Liu et al., 2012; Xiao et al., 2021b). Conductive materials 
such as nano-magnetite and carbon nanomaterials in the system can 
significantly enhance this coupling process (Liu et al., 2012; Xiao et al., 
2020a; Chen et al., 2020b). The strengthened electrons transfer from 
exoelectrogenic bacteria to CO2 reducing archaea was first proposed to 
explain the enhanced methane production. Nevertheless, it is not clear 
whether the bacteria or the archaea primarily respond. Recent studies 
showed that conductive magnetite promoted methane production in 
pure archaea culture through enhanced acetate dismutation (Fu et al., 
2019). Further, we proposed a potential mechanism by which CNTs 
promoted acetoclastic methanogenesis by increasing intracellular elec-
tron transfer (Xiao et al., 2020b). However, the detailed analysis is ab-
sent and how methanogen regulates whole protein expression to 
respond to conductive nanomaterial is still unknown. 

In this study, combining proteomic analysis and several statistical 
tools, we deeply screened the proteins expressed in acetoclastic 
methanogen under anaerobic condition with or without CNTs. The 
differentially expressed genes (DEGs) were discovered and the key 
pathways affected by CNTs were identified. A statistic tool was applied 
to identify the most stably DEGs which might play a role in biomethane 
production. Finally, we drawn a general illustration about the bio-
methane production pathway stimulated by CNTs. 

2. Materials and methods 

2.1. Methanogens and culture conditions 

The cultivation of pure M. barkeri can refer to Xiao et al. (2020b). In 
brief, M. barkeri was inoculated in Mineral salt medium supplied with or 
without CNTs (~0.2 g/L, Macklin, Shanghai, China; CAS: 308,068-56-6, 
Lot#:C10112635, Inner diameter: 5–10 nm, Outer diameter: 10–20 nm, 
Length: 500–2000 nm) under strict anaerobic conditions in the dark. 
Acetate was used as the methanogenic substrate with the final concen-
tration of about 20 mmol L− 1. The cultivation was performed in 
anaerobic tubes (25 mL total volume, medium volume of 10 mL) pres-
surized with a mixture of N2/CO2 (80%/20%) with triplicates for each 
treatment. 

2.2. LC-MS/MS based methanogen proteomics 

Proteome was used to analyze the protein expression of M. barkeri. 
Briefly, the total protein samples were collected on the 25th day. Frozen 
samples were lysed with lysis buffer (150 mM KCl, 50 mM HEPES, 0.1% 
CHAPS, pH = 7.4) supplemented with 1 mM PMSF and sonication (10 
times for 10 s each with 50% amplitude and 30 s intervals on ice). Raw 
protein extract was loaded on a 10 K ultrafiltration tube with reducing 
buffer (10 mM DTT, 8 M Urea, 100 mM TEAB, pH 8.0) at 60 ◦C for 1 h. 
IAA was then added to the solution with a final concentration of 50 mM 
for 40 min at room temperature. The proteins were washed three times 
with 100 mM triethylammonium bicarbonate (TEAB) and subsequently 
digested by sequencing-grade trypsin (1 μg/μL) in 100 mM TEAB at 
37 ◦C for 12 h. The digested peptides were collected by centrifugation 
and lyophilized. The resulted peptides were labeled using a 6-plex TMT 
reagent Multiplex kit (Applied Biosystems, Foster City, CA) according to 
the manufacturer’s protocol. The labeled peptides from different sam-
ples were equally combined and lyophilized. 

The combined peptides were dissolved in Milli-Q water containing 
0.1% formic acid (FA) and first subjected to reversed-phase (RP) sepa-
ration on an Agilent 1100 HPLC System (Agilent Technologies, Palo 

Alto, CA, USA) using an Agilent Zorbax Extend RP column (5 μm, 150 
mm × 2.1 mm). Mobile phases A (2% acetonitrile in HPLC water) and B 
(98% acetonitrile in HPLC water) were used for RP gradient. The solvent 
gradient was set as follows: 0~8min, 98% A; 8.00–8.01min, 98%–95% 
A; 8.01–38 min, 95%–75% A; 38–50 min, 75–60% A; 50–50.01min, 
60–10% A; 50.01–60 min, 10% A; 60–60.01 min, 10–98% A; 60.01–65 
min, 98%A. The fluent flow rate was 300 μL/min. The samples were 
harvested from 8min to 50min, and elution buffers were collected every 
minute. The separated peptides were lyophilized for LC-MS detection. 

The aliquots were dissolved in 0.1% formic acid solution and 
analyzed by an LC-MS system consisting of an Ultimate3000 system 
(Thermo, USA) and a Q-Exactive HF mass spectrometer (Thermo, USA) 
equipped with a Nanospray Flex source (Thermo, USA). Samples were 
loaded and separated by a C18 column (15 cm × 75 μm). The flow rate 
was 250 nL/min, and linear gradient was set as follows: 5–8% B over 
7min, 8–30% B over 55 min, 30–50% B over 24 min, 50–90% B over 2 
min (mobile phase A containing 0.1% FA in water and phase B con-
taining 0.1% FA in acetonitrile). Full MS scans were acquired in the mass 
range of 300–1500 m/z with a mass resolution of 120,000, and the AGC 
target value was set at 3e6. The 12 most intense peaks in MS1 were 
fragmented with higher-energy collisional dissociation (HCD) with a 
collision energy of 32. MS/MS spectra were obtained with a resolution of 
45,000, an AGC target of 1e5, and a max injection time of 100 ms. The Q- 
Exactive HF dynamic exclusion was set for 30.0 s and run under positive 
mode. 

ProteomeDiscoverer (v.2.2) was used to search all the raw data 
against the proteome of M. barkeri (strain Fusaro/DSM 804) obtained 
from the UniprotKB database. A global false discovery rate (FDR) was set 
to 0.01, and protein groups considered for quantification required at 
least 2 peptides. 

2.3. Differentially expressed gene analysis 

The package limma (version 3.46.0) implemented in R (version 
4.0.3) was applied to identify differentially expressed genes (DEGs). As 
described previously, one sample of the CNTs group was removed from 
the analysis because of obvious experimental contamination. With the 
“lmFit” function, we built a general linear model analysis on all the 
quantified proteins. With the “eBayes” function, we performed an 
empirical Bayes inference to analyze the differences between the two 
groups. The criteria of a fold change larger than 1.5 and adjusted p-value 
less than 0.05 was set to select proteins with a significant expression 
difference. 

2.4. Go and KEGG analysis 

The GO and KEGG analyses were conducted using the R package 
clusterProfiler (Yu et al., 2012, version 3.18.0). The KEGG annotations 
were obtained through its application programming interface, and the 
GO annotations were obtained from the UniprotKB database. We 
manually constructed the background package of M. barkeri using the R 
package AnnotationForge (version 1.32.0). Up-regulated genes and 
down-regulated genes were applied for over-representation analysis 
separately, and the overall ordered expression profile was applied for 
gene set enrichment analysis with default parameters. 

2.5. Expression variation analysis 

To assess the stability of the gene expression, we calculated the dif-
ferences between samples from each group. The mean difference and the 
standard deviation of the six comparisons were then obtained and 
plotted. 
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3. Results and discussion 

3.1. CNTs largely changed the global expression pattern 

Using labeling LC-MS/MS proteomics analysis method, we identified 
927 individual proteins; 849 of them were successfully quantified in all 
the five samples (Tables 1 and S1), which present 23.5% of the 3616 
proteins reported from the reference genome (Maeder et al., 2006). 
Obviously, the two groups presented different expression patterns 
(Fig. 1A). Compared to the control treatment, the proportion of 

Fig. 1. The overall expression pattern. A: heat map of the expression level for 
all quantified proteins. Each line presented a protein; each column presented a 
sample. The proteins were clustered by the hclust function. B: volcano plot for 
DEG analysis with x-axis showed the log base 2 of the fold changes and y-axis 
showed the log base 10 of the adjusted p-value. Grey points represented not 
significant proteins, blue and red points represented down-regulated and up- 
regulated genes, respectively. The dash lines represent the selection criteria 
of fold change and adjusted p-value. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
Summary of the proteomic analysis.   

All Function identified Function Unknown 

Identified protein 927 715 212 
Quantified protein 849 714 135 
Differential protein 304 225 79 
Increased protein 164 107 57 
Decreased protein 140 115 25  

Fig. 2. KEGG and GO analysis. A: KEGG pathway over-representation analysis. 
The absolute value of the y axis represents the gene ratio of DEGs in the specific 
pathway. Positive value and negative value represent up-regulated and down- 
regulated, respectively. The circle size represents the number of DEGs; the 
color of the circle represents the adjusted p-value. B: GO biological process gene 
set enrichment analysis. The x-axis represents the enrichment score, positive 
value and negative value represent up-regulated and down-regulated, respec-
tively. The color of the bar represents the adjusted p-value. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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decreased proteins was larger than increased ones, indicating a global 
protein synthesis decreased. 

We identified 304 DEGs, 79 of which are unknown functions at 
present (Table 1, S2), indicating the importance of unknown proteins to 
biomethane production (He et al., 2019). The proportion of unknown 
proteins in DEGs is similar to that of the genome (1200/3616, Maeder 
et al., 2006), showing the need for more detailed functional annotation 
on the genome of M. barkeri. Among the DEGs, 140 proteins amount 
significantly decreased while 164 proteins significantly increased 
(Table S2, Fig. 1B). Although CNTs promoted more protein synthesis, 
the decreased proteins showed a larger fold change. Especially, 50 S 
ribosomal proteins (L44e, L37e) showed extremely decreased expression 
with a fold change smaller than 1/10. Recently, Yan et al. (2020) found 
that zero-valent iron and magnetite nanoparticles could decrease the 
ribosome protein levels in anaerobic digestion sludge, but the 
decreasing attitude is lower than the presented results. In contrast, Yan 
et al. (2020) found that powder activated carbon could increase ribo-
some protein levels. Thus, the effects of ribosomes to biomethane pro-
duction may depend on the characteristics of the conductive materials. 

In comparison, dimethylamine corrinoid proteins are the most 
increased proteins with known functions. They are essential components 
of the methanogenic pathway, which could produce Na+ gradient for 
energy conservation but not directly participate in the acetoclastic 
methanogenesis but methylotrophic methanogenesis (Kurth et al., 
2020). Previously detailed evidence confirmed that CNTs promoted 
acetoclastic methanogenesis (Xiao et al., 2020b). A larger Na+ gradient 
and more energy production may benefit acetate dismutation for bio-
methane generation. 

3.2. CNTs served as structural proteins 

Fig. 2A showed the over-representation analysis of the KEGG path-
ways. The methanogenesis pathway was over-represented in up- 
regulated genes, which was also observed in the previous study (He 
et al., 2019) with enhanced methane production. However, the ribo-
some pathway was over-represented in down-regulated genes. Thus, the 
overall protein synthesis was decreased in the CNTs group. It was sug-
gested that under stressful conditions, cells often decreased protein 
synthesis to minimize energy consumption (Yan et al., 2020). Fujinawa 
et al. (2019) showed that high concentration carbon nanoparticles 
inhibited the growth of archaea because of their antimicrobial activity 
and decreased biomethane production. On the contrary, a previous 
study showed that the CNTs attached to the cell surface and promoted 

methane production (Xiao et al., 2020b). Meanwhile, CNTs often 
showed good potential to combine with proteins and increased the ac-
tivity of the attached proteins (Li et al., 2018b). Therefore, the CNTs 
attached to the cell wall to serve as structural proteins and promote the 
activity of surface proteins, which may decrease the overall protein 
expression. 

Fig. 2B showed the gene-set enrichment analysis of the GO biological 
process. The methanogenesis was enriched for increased expression, 
while the translation, gene expression, and peptide synthesis processes 
were enriched for decreased expression. These results were constant 
with the KEGG analysis. Intriguingly, ion transport and nitrogen com-
pound metabolic process showed a significant decrease. In contrast, a 
previous study showed that an increase of acetate concentration 
enhanced methane production through enhanced ion transport and ni-
trogen metabolism, which related to electron transfer and protein ac-
tivity (He et al., 2019). In complex anaerobic digestion system, CNTs 
were shown to enhance methane production through improved DIET 
(Mostafa et al., 2020). But the present results implied an enhanced 
electron transfer efficiency within the cell by CNTs. As we mentioned 
before, CNTs could act as structural proteins; thus, it could increase 
methane production without increased ion transport and nitrogen 
metabolism. 

Further analysis of the KEGG modules showed that both the CO2 to 
methane module and the acetate to methane module had more down- 
regulated genes than that of up-regulation (Fig. 3). The methano-
genesis process in complex environments could be enhanced by many 
different materials, such as magnetite, iron, activated carbon, hydro-
char, graphite, and so on. These materials can increase the proportion of 
acetoclastic methanogens such as Methanosarcina spp. and Methanothrix 
spp. (Tang et al., 2020; Du et al., 2020). A study showed that CNTs 
promoted acetoclastic methanogenesis (Xiao et al., 2020b). Therefore, 
the increase of specific essential proteins may be the critical point of the 
promoting effect of CNTs on the acetate utilization. In contrast, it is not 
required to increase the whole pathway’s protein level or even most of 
the pathway. This strategy also helps to conserve material and energy 
consumption. 

3.3. CNTs altered electron transfer system 

Crucial genes generally exhibit stable expression (Sun et al., 2013), 
therefore we calculated the differences between every two samples from 
each group (Table S3) to analyze the expression variation of the pro-
teins. The mean difference and the standard deviation of the differences 

Fig. 3. The proportion of different genes in two KEGG methanogenesis module. A: acetate to methane module. B: CO2 to methane module.  
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are plotted in Fig. 4. The points far from the central point indicate large 
differences, and the points on the bottom express fewer variations 
among the replicates. For the down-regulated proteins, 31 of them are 
ribosome proteins, showing a strong depression of protein synthesis. 
Fujinawa et al. (2019) showed that a high concentration of conductive 
materials could decrease protein synthesis and methane production due 
to their toxicity. 

Except for the genes discussed before, two genes, Q46C49 (Sulfite 
reductase, assimilatory-type) and Q46A58 (Thioredoxin), showed large 
increases in the CNTs group with considerable low variations. It sug-
gested their potential function for acetoclastic methanogenesis. Previous 
studies demonstrated both two kinds of proteins are redox proteins that 
participated in the resistance to oxidative stress (Yu et al., 2018). 
However, no study confirmed their effective function on methanogenic 
progress. We suppose that these proteins contributed to the electron 
transfer process for effective methane production. 

The overall methanogenesis pathways were summarized in Fig. 5. 
Only a few proteins are significantly regulated, showing their impor-
tance during the production of methane. Among the electron transfer 
proteins, only one of the Vho/Vht proteins was up-regulated. Analysis 
using deficient mutants showed that Vho is indispensable for M. barkeri 
to grow on acetate (Kulkarni et al., 2018; Mand et al., 2018). Concerning 
that Ech was decreased by CNTs, CNTs may attach to the surface protein 
Vho and increase their activity, consequently, enhance the overall 
electron transfer. Moreover, ferredoxin involved in the recovery of 
CoM/CoB, which participate the function of the crucial enzyme Mcr, 
were increased. Within complex anaerobic digestion system, proteomic 
analysis identified similar increase of ferredoxin in a biomethane 
increasing condition (Lam et al., 2021). Collectively, CNTs may stimu-
late biomethane production from acetate by intracellular redox activity 
and the –COOH oxidation process. 

Fig. 4. The mean difference (x-axis) and standard deviation (y-axis) of proteins between every two samples from each group. Grey points represent not significantly 
changed genes. Blue points and red points represent up-regulated and down-regulated genes, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 5. Summary of the methanogenesis pathways affected by carbon nanotubes. Significant up-regulation and down-regulation are shown with red and blue arrows, 
respectively. The pie chart on the top-right showed the number of all detectable proteins. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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4. Conclusion 

The finding of this research revealed the molecular mechanism of the 
increased acetoclastic methane production induced by CNTs, which is 
proved by previous detailed evidence. Serving as structure protein, 
increasing intracellular redox activity and the –COOH oxidation process 
mainly attributed to high methane production performance. These re-
sults enrich the understanding of the biomethane production process in 
anaerobic environments affected by conductive nanomaterials. 
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