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Are oil spills enhancing outbreaks of red tides in the Chinese coastal
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Abstract
Between 1973 and 2017, evidences of red tide outbreaks and oil spill accidents in the Chinese coastal waters were collected.
Statistical analysis and multiple regression models were used to determine the relationship between the red tide and the oil spill.
Major findings reveal that (1) the frequency of red tides positively correlates to the number of oil spills and the volume of oil
spilled as well; (2) the higher percentage of small spills (< 7 tonnes) are more likely to enhance the outbreaks of red tides; (3) both
EI Niño and storm events do not show any relationship with red tides; and (4) more severe oil spill with penalty recorded implies
a higher possibility to trigger the red tide afterwards. Therefore, oil spill contingencymanagement focusing on small oil spills and
mitigating their spill effect by physical measures could be of benefit to decrease the frequency of red tides significantly. For
example, it is suggested to carry out physical combat instead of chemical dispersants to remove the spilled small oil in the shallow
coastal areas for reducing the outbreak risk of red tides after the oil spill.
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Introduction

Red tide is considered as the harmful algal bloom discoloring
seawater in a short term (Huang et al. 2018). Red tide could be
primarily made of toxic and non-toxic organisms (Liu et al.
2013) so that its outbreak is widely taken as one of the most
serious marine disasters having a bad influence on coastal
habitats and marine ecosystems (Park and Lee 2014). Some
direct and adverse effects from the red tide include killing
marine animals and excessively consuming oxygen of marine

habitats, which further cause huge economic losses and affect
human health. There exist a number of statistical works dem-
onstrating that there is a significant increase in trend for red
tides in the Chinese coastal waters for the past decades (Zhao
et al. 2003). So far many studies focus on mechanism of the
red tide and have pointed out that a variety of biological,
hydrological, meteorological, and chemical indicators and
their interactions may cause the red tide outbreaks (Wang
et al. 2016). For example, a variety of models including deci-
sion tree (Park et al. 2011), multivariate linear regression
(Pauline and Howard 1997), neural network (Velo-Suárez
and Gutiérrez-Estrada 2007), stochastic dynamics (Huang
et al. 2008), genetic programming (Sivapragasam et al.
2010), and time series (Qin et al. 2017) were proposed to
predict the red tide occurrence. Due to the complexity of the
marine system, it still remains difficult to predict the red tide
by using those modeling techniques, as stated by Huang et al.
(2018). Furthermore, those modeling results are not intuitive
to shed light on coastal management for effective control of
the red tide outbreaks in an operational way. Controlling any
single indicator mentioned above in the coastal region is not
only impossible but risky to meet a worse consequence.

In recent decades and throughout the China, the increasing
outbreak of red tide suggests its likely link to coastal pollution
(Luo and Jiao 2016). It was observed that red tide events

Responsible Editor: Vitor Vasconcelos

* Xin LIU
xliu@yic.ac.cn

1 Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese
Academy of Sciences, Yantai 264003, People’s Republic of China

2 Centre for Ocean Mega-Research of Science, Chinese Academy of
Sciences, Yantai 264003, People’s Republic of China

3 Shanghai Maritime University, Shanghai 201306, People’s Republic
of China

4 University of Chinese Academy of Sciences, Beijing 100049,
People’s Republic of China

Environmental Science and Pollution Research
https://doi.org/10.1007/s11356-021-14549-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-14549-3&domain=pdf
mailto:xliu@yic.ac.cn


increase as coastal pollution worsens (Suzuki 2016).
However, oil spill as one of the major coastal pollutions has
not yet been studied for its association with the red tide for a
long term at a nation level, although only very few documents
reported the algae bloomed following the Penglai 19-3 oil spill
in the Chinese Bohai Sea as stated by Guo et al. (2012). Tang
et al. (2019) investigated 21 oil spills in the world and found
out of 21 spill cases, 14 algal blooms were observed by uti-
lizing the remote sensing data and the time interval between
algal blooms and oil spills varied between 3 and 10 months.

With the availability of observation data over a long period
of time from 1973 to 2017 at the national scale of China, we
made a first attempt to examine the relationship between the red
tide events and the oil spill to fill the gap in the literature on the
one hand and to provide operational methods for declining the
outbreaks of red tide on the other hand. For a full comparison,
we then extended such an analysis to natural events such as
storms and EI Niño. However, other environmental factors such
as temperature and nutrients that may influence the occurrence
of HABs (harmful algal blooms) as well were not discussed in
this paper. To characterize the response of red tide outbreaks to
the oil spill, multiple regression models were proposed.

Data and methods

Red tide in the Chinese coastal waters has been monitored and
reported by the State of Ocean Administration (SOA), China,
since 1972. Annual red tide data were collected in each of
local marine environmental monitoring centers distributed
along the Chinese coasts. This study used the SOA red tide
time series data for 45 years from 1973 to 2017.

Historical oil spills in the coastal waters originated from the
Maritime Safety Administration (MSA), China. Such data re-
cords spill date, spill size, spill location, spill type, penalty
applied, and spill reason for each accident at the national level
of China from 1973 to 2017. Regarding penalty, only greater
than CNY 10,000 were recorded. Spill size data varies as time
goes. For example, data from 1973 to 2001 only focuses on
spills over 50 tonnes; data from 2002 to 2013 has a focus on
spills over 10 tonnes and data from 2014 to 2017 provides
information on any spill size larger than 1 tonne. The oil spill
data for each year from 1973 to 2017 used in this study in-
cludes the actual number of accidental oil spills, percentage of
different spill size categories, the sum of volume spilled, and if
fine/penalty was applied following the spill. According to the
International Tanker Owners Pollution Federation (ITOPF),
spills are generally categorized by size: < 7 tonnes (small
spill), 7–700 tonnes (medium spill), and > 700 tonnes (large
spill). Totally, there were 161 oil spills recorded for the period
between 1973 and 2017 (see Table S1 for more details), the
vast majority of which fall into the medium spill category.
Such a bias could be explained by the fact that any spill size

smaller than 50 tonnes was not available in the historical data
from 1973 to 2001.

Storms hitting China were obtained from the Unisys
Weather and then were analyzed in time series for this study
(http://weather.unisys.com/hurricane). Years for the strong EI
Niño events were collected from the Golden Gate Weather
Services (http://www.ggweather.com/enso/oni.htm) and
were coded into binominal data in the analysis: 1 for strong
EI Niño and 0 for weak EI Niño.

Statistical analysis

The statistical analyses were performed with the EVIEWS
version 10.0 statistical software (EVIEWS, QMS Inc.,
USA). The correlation between the red tide and the other
environmental factors including storms, oil spills, and strong
EI Niño was performed by using the Pearson’s correlation.
The strength of the relationship between paired data was
interpreted through the Pearson’s correlation index (CI) anal-
ysis, where the closer CI is to ± 1, the stronger their relation-
ship is.

Shuffled surrogates

The time series data for red tides, oil spills, storms, and EI
Niño are from non-linear systems. Additionally, the size of
sample is limited to 45. To further confirm the relationship
between these paired data calculated by the Pearson’s corre-
lation index, we performed a null hypothesis test. For exam-
ple, our null hypothesis is that, the occurrence of red tide is not
associated with the oil spill (i.e., the red tide has no relation-
ship with the oil spill). We tested this hypothesis by (i) gener-
ating surrogate data by randomly shuffling of the original time
series of oil spill data; (ii) using Matlab programming for
producing 1000 surrogate time series data of the original oil
spills; (iii) batch run of 1000 times for calculating the
Pearson’s correlation coefficient between each of the surro-
gate data set of oil spill and the original red tide data (iv)
deriving the mean value of the 1000’s correlation coefficients;
(v) computing the Z-score of the difference between such a
mean value and the former Pearson’s correlation coefficient
produced by the paired original data sets between the red tide
and the oil spill; and (vi) testing whether the Z score of their
such a difference was significantly different from 0 (i.e., the
null hypothesis can be rejected if the difference was signifi-
cantly different from 0).

Regression models

Once the red tide is confirmed to be associated with the oil
spill in the previous analysis, we move to evaluate their rela-
tionship in details. Here four regressionmodels were proposed
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as seen below. Multiple regression analyses were conducted
by EVIEWS 10.

Model 1:

red tide ¼ αþ β1*Nspill þ μi ð1Þ

Model 2:

red tide ¼ αþ β1*Nspill þ β2*P700 þ β3*P70−700

þ β4*P7−70 þ β5*P7 þ μi ð2Þ

Model 3:

red tide ¼ αþ β1*Nspill þ β2*P700 þ β3*P70−700

þ β4*P7−70 þ β5*P7 þ β6*Volumeyear þ μi ð3Þ

Model 4:

red tide ¼ αþ β1*Nspill þ β2*P700 þ β3*P70−700

þ β4*P7−70 þ β5*P7 þ β6*Volumeyear

þ β7*Penaltyspill þ μi ð4Þ

in which red_tide and Nspill indicate the number of red tides
and oil spills that occurred in the individual year,
respectively; α is constant; P700, P70 − 700, P7 − 70,
and P7 represent the percentage of different spill categories
including large spills (> 700 tonnes), medium spills (70–700
tonnes), medium spills (7–70 tonnes), and small spills (< 7
tonnes) for each year from 1973 to 2017. Volumeyear is the
annual volume spilled in total and Penaltyyear refers to whether
a penalty fare was applied following any spill in that individ-
ual year. This variable takes 1 if the fine was applied to any
spill in that year, otherwise 0. μi is a random and β1 − 7 are
parameters to be estimated.

Results

Relationship between red tides and environmental
factors

There were totally 1570 red tides occurring in the Chinese
coastal waters over 45 years during the period between
1973 and 2017 with an approximate average frequency of
35 times/year. The outbreaks of red tide have firstly gently
increased from 1973 to 1992 as shown in Fig. 1. Then, it
kept relatively stable with a mean of 16.5 times/year over 8
years between 1993 and 2000. In 2002 the frequency of red
tides increased sharply and peaked to 119 in 2003. Despite
a declining frequency of red tides after 2003, the risk of red
tides remains still high up to an average of 68.5 times/year
between 2004 and 2017.

We assessed frequencies of red tides along with the hits of
storms, oil spills, and the occurrence of EI Niño events, re-
spectively. It is noted that there is a strong trend between the
red tide and the oil spill. The frequency of red tides is highly
related to oil spills. The number of red tides per year is en-
hanced significantly as the annual frequency of oil spills in-
creases. Their Pearson’s correlation index is high up to +
0.618 with a significant level at 99% for a two-tailed test.
However, no clear trend is observed for EI Niño events linked
to red tides, as the correlation index between EI Niño events
and red tides is very low to be − 0.003 only. For example,
during the very strong Niño events in 1997–1998, blooming
of red tides were less frequent in the seas around China.
Additionally, the correlation index between the storm events
and red tides is low to be − 0.09, which demonstrated that
there is no relationship between them as well. Similarly,
storms hit China 13 times in 1974, while none of red tides
was observed at that year.

Red tide is highly associated with oil spills

Due to the small sample of the data series observed, the sta-
tistical significance of the correlation between the red tide and
the oil spill needs to be examined further. To validate such a
relationship, we hence conducted a null hypothesis test, in
which we assumed that the red-tide has no relationship with
the oil spill. We simulated 1000 surrogate data sets based on
shuffling the values of the original oil spill data set using
Matlab programming. The mean value of correlation index
between the red tide and the surrogate oil spill data is only
0.1225 and the Z-score value for comparing the Pearson’s
correlation indices calculated by using the original oil spill
data and the surrogate oil spill data is high to 5.4693 (see
Table 1, generally speaking Z-score >2 is quite significant).
Therefore, we rejected the null hypothesis firmly with a high
level of confidence. That is to say, the occurrence of red tide is
significantly associated with the oil spill in the Chinese coastal
waters for the past 45 years from 1973 to 2017.

Regression results

Our regression results suggest that oil spills do affect the num-
ber of red tides (see Table 2 for the full regression results). The
coefficient on the number of oil spills was positive and statis-
tically significant (P < 0.01) when this variable was only re-
pressor. It remains significant and changes little in magnitude
as controls are progressively added for percentage of spill
categories, the sum of spill amounts, and the spill fine applied
as shown in Model 2 to Model 4. Model 2 explains how the
percentage of spill categories affects the occurrence of red
tides in a relative way. Compared with other spill sizes from
large oil spills (> 700 tonnes) tomedium spills (7–700 tonnes),
small oil spills (< 7 tonnes) play much more significant role to
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enhance the outbreaks of red tides. Many small oil spills in-
stead of a single very large spill are likely to trigger the bloom-
ing of red tide. That is to say, more small spills happened,
more red tides are possible to occur. One possible reason is
that small spills result to low concentration of oil in waters,
which further promote the growth of marine harmful algae,
while high concentration of oil in the waters resulted from the
large spill inhibits the algae to grow.

In Model 3, we added the total amount of oil spilled as a
variable into the regression. Although the estimation on this
variable is positive and statistically significant at 1% level, the
coefficient of 0.0002 indicated that the number of red tides is
not sensitive enough to the change of sum of spilled oil, which
is explained partly by the fact that the independent variable is
the number of red tides, not the spreading area (i.e., intensity)
of red tides.

The spill fine applied is an important control because the
severity of pollution may be responsible for triggering out-
break of the red tide. The spill fine was always applied if such
an oil accident caused any sever damage to the surrounding

coastal waters. As shown inModel 4, the coefficient is high up
to 0.4916 on spill fine applied. An oil spill with fine applied
indicated that such a spill caused severe damage to the marine
environment, which has high likelihood to induce red tide
subsequently. The Akaike information criterion (AIC) is the
other index to evaluate the fitness of model and the model
showing the smallest AIC is considered to be the most desir-
able (Akaike 1974). Although all AICs for four models are
small enough ranging from 27.22 to 18.97, Model 4 is most
preferred. Such a judgment is consistent with the evaluation
by using R2. Obviously, the fitness of R2 inModel 4 is 56.9%,
significantly higher than those of other models.

Discussions

To our knowledge, only very few documents reported the
algae phenomena following the specific oil spill in the
Chinese coastal waters. For example, the Penglai 19-3 oil spill
happened in the Chinese Bohai Sea on 4 June 2011 with an

Fig. 1 Annual frequency of red tides in the Chinese coastal waters for a time period between 1973 and 2017. Amoving average of red tides per 5 years is
shown in red solid line

Table 1 Correlation between the number of oil spills and the frequency of red tide per year in the Chinese coastal waters by using original and surrogate
oil spill data

Original oil spill data Surrogate oil spill data

Pearson’s correlation index (between
red tide and oil spill)

+ 0.618*** + 0.1225 (mean)

Sample size 45 1000 simulations*45

Significant level P < 0.001; significant level = 99%

Z-score (comparing Pearson’s correlation
indices generated by using original and surrogate data )

5.4693***
(*** indicates significant level = 99%)
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estimated economic loss of CNY 12.56 billion for the local
fishery (Pan et al. 2015). Within 1 month after the spill,
blooming of algae was observed at the shortest distance of
3.7 km from the spill site (Tang et al. 2019). Besides China,
large plankton blooms were observed in other areas as well.
For example, unusually large plankton blooms occurred in the
contaminated waters of the Gulf of Mexico caused by the
Ixtoc-I exploratory well oil spill (Jernelöv and Lindén 1981).

So far none of studies have investigated comprehensively
the relationship between the red tide and the oil spill based on a
long-term time series data at the national scale. Our work is the
first attempt to associate the red tide to the oil spill in a quan-
titative way and further explains their relationship by a pro-
posed regression model. Our findings, if confirmed by renewed
studies in the future, will have a significant impact on coastal
management to prevent the red tide outbreaks in not only the
Chinese coastal waters, but similar coastal regions elsewhere.

The finding “oil spills causing significantly red tides
and especially, small oil spills enhancing outbreaks of the
red tide” was demonstrated merely based on our empirical
analysis in this paper. In particular, the finding that small
oil spills enhance outbreaks of the red tide is concerned.
Generally, this can be explained by the fact that small spills
may result to low concentrate of crude oil in waters. While,
laboratory studies by Wang et al. (2009) supported that
some specific species of marine algae exposed to low con-
centrate of oil tend to bloom. Ozhan and Bargu (2014)
demonstrated toxin productivity for harmful algae such as
Karenia brevis and Prorocentrum minimum increases at the
lowest crude oil concentration (0.66 mg L-1), while higher
crude oil concentrations led to significant growth
inhibition and a decrease in toxin production. Zhang
et al. (2002) found that lower doses of crude oil (i.e.,
0.49 mg/dm3) promote the growth of the marine algae

Table 2 Estimates of model
coefficients with the number of
red tides per year as dependent
variable using Poisson regression

Model and variables Coefficient estimate R2

(AIC)

Model 1 (base model) 0.341

(27.22)Constant 2.6708***

The number of oil spills for each year 0.2064***

Model 2 (add spill categories to above) 0.494

(20.39)Constant 1.8794***

The number of oil spills for each year 0.1971***

The percentage of large oil spills(> 700 tonnes) − 1.5565***

The percentage of medium oil spills (70–700 tonnes) 0.8005***

The percentage of medium oil spills (7–70 tonnes) 1.3522***

The percentage of small oil spills (< 7 tonnes) 1.8611***

Model 3 (add spill size to above) 0.535

(19.86)Constant 1.8461***

The number of oil spills for each year 0.1402***

The percentage of large oil spills(> 700 tonnes) − 2.6381***

The percentage of medium oil spills (70–700 tonnes) 0.7948***

The percentage of medium oil spills (7–70 tonnes) 1.5555***

The percentage of small oil spills (< 7 tonnes) 2.0679***

The total amount of oil spilled for each year (tonnes) 0.0002***

Model 4 (add spill fine to above) 0.569

(18.97)Constant 1.7388***

The number of oil spills for each year 0.1307***

The percentage of large oil spills(> 700 tonnes) − 2.8494***

The percentage of medium oil spills (70–700 tonnes) 0.5241**

The percentage of medium oil spills (7–70 tonnes) 1.3973***

The percentage of small oil spills (< 7 tonnes) 1.6857***

The total amount of spills for each year (tonnes) 0.0002***

The spill penalty applied (yes or no) 0.4916***

Note:*** statistically significant at 1% level
** statistically significant at 5% level
* statistically significant at 10% level

AIC Akaike information criteria

Environ Sci Pollut Res



Skeleton Cosatum, which is a widely known species
forming red tides in the Chinese Bohai Sea.

In reality, chemical dispersants were widely used in China to
remove spilled oil, especially in case of small spills, due to the
facts that small spills tend to form very thin oil film on sea
surface and chemical dispersants work very well with the mix
of thin oil and sea water. However, we did not examine the
relationship of dispersants and the red tides in this paper due to
the lack of dispersants data. A recent experiment by Almeda
et al. (2014, 2018) showed oil spills and dispersants could cause
the initiation of potential harmful algal blooms at the North
Gulf of Mexico. Such a study is a solid evidence to support
our finding that small spills with treatment of chemical disper-
sants undoubtedly enhance the risk of red tide blooming after
the spill. It is suggested to use physical combat substituting
chemical dispersants to respond to small oil spills in the shallow
coastal waters of China. More evidence, especially studies on
bio-physical models, chemical experiments, and field tests, are
needed to confirm or challenge this paradigm. Renewed studies
on the mechanism by which organisms of the red tide respond
to chemical substance of oil spilled are important to support and
refine this finding in the future.

There are uncertainties and limitations in our regression es-
timates. Firstly, R2 is only 0.569 for the regression Model 4,
which means only 56.9% of the annual number of red tides can
be explained by the proposed Model 4. Secondly, there might
be a time interval between the oil spill accident and the occur-
rence of red tide. Due to the lack of data, we could not deter-
mine the role of this variable in the regression model. Thirdly,
coefficient on the annual volume of spilled oil is significant, but
very small to be 0.0002. This could be attributed to the fact that
we take the frequency of red tide substituting the spreading area
of red tide as the dependent variable in the regression model.
Other factors like temperature and location of spill (i.e., open
sea or coastal areas) could have considerable influence on the
bloom of red tide as well. We expect to collect these kinds of
data to improve the modeling in the future.

Conclusion

Our study initially found the positive correlation between the
red tide occurrence and the number of oil spill pollution based
on a long-term historic data from 1973 to 2017 at the national
scale of China. Our major findings concluded that, compared
with the large oil spill, the higher percentage of small spills (<
7 tonnes) are more likely to enhance the blooming of red tide.
Both EI Niño and storm events have no relationship with red
tides based on the statistical checks. Oil spill contingency
management focusing on small oil spills and mitigating their
spill effects could be of benefit to decline the frequency of red
tide significantly. The findings from this study shed light on

the preventative management of red tide outbreaks in the
Chinese coastal waters and similar coastal region elsewhere.
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