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Plant leaf detection and segmentation are challenging tasks for in-situ plant image analysis.

Here, a novel leaf detection scheme is proposed to detect individual leaves and accurately

determine leaf shapes in natural scenes. A leaf skeleton-extraction method was developed

by analysing local image features of skeleton pixels. Approximate positions of individual

leaves were determined according to the main leaf skeleton. Sub-images containing only

single target leaves were extracted from whole plant images according to position and size

of the main skeleton. Accurate leaf analysis was conducted on the sub-images of individual

leaves. Leaf direction was calculated by examining the structure of the main leaf skeleton.

Joint segmentation by combining region and active shape model was presented to accu-

rately elucidate leaf shape. Leaf detection was implemented using deep learning approach,

Faster ReCNN. A plant leaf image dataset containing four types of leaf images of different

complexity was built to evaluate detection algorithms. Plant leaves with occlusions and

complex backgrounds were effectively detected and their shapes accurately determined.

Detection accuracy of the proposed method was 81.10%e100%, and 86.75%e100% for Faster

ReCNN. The method demonstrated a comparable detection ability to that of Faster ReCNN.

Furthermore, the rates of success to determine leaf direction by our method ranged be-

tween 89.06% and 100%, while the average measurement difference was 1.29� compared

with manual measurement. The accuracy of shape measurement was 75.95%e100% for all

types of plant images. Therefore, this method is accurate and stable for precise leaf

measurements in agricultural applications.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
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Nomenclature

ACM Active Contour Models

ASM Active Shape Models

b Vector of weights

CNN Convolutional neural networks

D Square region

DSLR Digital Single Lens Reflex

EM Expectation-Maximization

GMM Gaussian Mixture Models

HSI Hue, Saturation and Intensity colour space

k-NN k-Nearest Neighbour

n Number of landmark points

N Size of a square region D

Nasm Total number of leaf shapes in the training set

NIR Near-infrared

p A pixel in a plant image

P Matrix of first t eigenvectors

q A pixel from a square region D

RANSAC Random sample consensus

RGB Red, Green and Blue colour space

RGB-D Red, Green and Blue colour space and Depth

map

Smooth( ) Smooth degree

SVM Support Vector Machine

t Number of eigenvectors

T Transpose operator

x Mean shape

xi A vector of 2D points that representing leaf

shapes

xi,j x coordinate of jth landmark in the ith training

shape

yi,j y coordinate of jth landmark in the ith training

shape

j() Intensity value of a pixel
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1. Introduction

Over the last decades, studies of plant image analysis under

field conditions have increased due to advances in image

processing and pattern recognition techniques. Plant image

analysis is a fundamental task for achieving precision auto-

mation systems in agricultural practises, such asmicro-spray,

deleafing, or plant inspection (Ota et al., 2007; Slaughter et al.,

2008).

Plant leaf analysis is a crucial issue for agricultural auto-

mation systems because plant leaves contain abundant in-

formation regarding plant growth, health status, and disease,

among other biological phenomena. Leaf image analysis is

also a challenging task because of shape and position varia-

tions, especially under field conditions. Most previous studies

have focused on species identification, disease recognition,

leaf segmentation, and leaf detection. Species identification or

disease recognition of plant leaves focuses the best distin-

guishable feature descriptors and optimised classifiers to

produce accurate predictions of plant species and diseases
(Mata-Montero & Carranza-Rojas, 2016; W€aldchen & M€ader,

2018). In order to obtain accurate shape and texture features,

much of the recognition work of plant leaves or diseases is

usually carried out on individual leaf images in a white

background under laboratory conditions (Horaisov�a & Kukal,

2016; Zhao et al., 2015). Leaf recognition against natural

backgrounds has also been reported after the introduction of

computational features and accurate leaf segmentation ap-

proaches (Olsen et al., 2015; Wang et al., 2008). Recently, deep

learning has greatly increased the accuracy and the number of

target species for plant leaf recognition (Barr�e et al., 2017;

Dyrmann et al., 2016).

Numerous segmentation approaches have been developed

to extract individual leaf images from field complex images.

Thus, for example, a watershed segmentation of the HSI

colour spacewas presented to extract an individual leaf image

from a natural background (Tang et al., 2009). Similarly, Wang

et al. (2013) applied Otsu and Canny operators to segment the

region of a leaf in a sub-image containing a single leaf. They

used a set of Boolean, morphology operations, and a shape-

identification algorithm to obtain accurate edges of target

leaves. In turn, Viaud et al. (2017) transformed the foreground

of a plant image into a Euclidean distance image and used a

watershed-based approach to obtain a set of segments; then,

the second operation was implemented based on ellipsoid-

shaped leaves to refine the segmentation.

The above methods were proposed based on low-level

image features. No structural constraints evolved in these

methods; therefore, over-segmentation might occur. Active

contour models (ACM) were employed to segment individual

leaves of various shapes (De Vylder et al., 2011). ACM is rather

flexible in fitting the shape of a variety of leaves. The contour

of ACM is constrained to ensure that the segmentation results

are maintained within regular shapes. To that effect, Cerutti

et al. (2011) proposed a parametric active polygon defined by

10 points and four numeric parameters to model the general

shape of a leaf. They initialised a region in the middle of the

image and generated a colour distance map based on a 2-

component GMM estimated in the initial region. Then, the

parameters of the leaf model were adjusted within an

authorised range to produce the largest region with few

colour-distant pixels. Active shape models (ASM) for the

extraction and classification of crops using field images were

reported by Persson and �Astrand (2008). The ASM was trained

using the image samples of weed leaves. Three ASMs were

constructed using different images with different degrees of

complexity. The ASM-extracted leaves were further classified

using a k-NN classifier.

All the studies above targeted plant images containing only

one leaf. Their purpose was to segment individual leaves from

the background. However, plant images in agricultural fields

usually contain multiple leaves. The detection and segmen-

tation of individual leaves from natural plant images with

multiple leaves is a practical requirement of agricultural

automation systems. Severe occlusions and position varia-

tions in plant leaves frequently occur in natural plant images.

Model-based leaf detection and segmentation schemes have

been widely adopted. For instance, Manh et al. (2001) devel-

oped a parametric deformable leaf model to describe shape

variations. The leaf model was applied to the segmentation of
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individual weed leaves. Recently, modified ASMs were pro-

posed by integrating a leaf boundary classifier to detect indi-

vidual leaves under field conditions (Xia et al., 2013). ASM

learns shape variation from training samples and can deter-

mine the shape of the occluded parts of the leaves under

study. In addition to 2D plant image analysis, depth infor-

mation has been introduced for plant leaf detection. Thus, for

example, Teng et al. (2011) applied an optical flow estimation

algorithm and a camera self-calibration algorithm to recover

3D scene points. The RGB-D camera was used to capture

colour and depth images of the plants. The mean-shift was

conducted to remove background on the depth image, and

ACM was applied to segment individual leaves. However,

additional instrumentation is required to achieve depth im-

ages in these studies (Xia et al., 2015).

It is very important to detect the position of individual

leaves in whole-plant images. Although the sophisticated leaf

segmentation approaches have shown excellent performance

in complicated environments, these approaches greatly rely

on initialisation accuracy, such as position, size, or orienta-

tion. Leaf tips, boundaries, and skeletons have been adopted

to estimate the approximate positions of leaves (Manh et al.,

2001; Xia et al., 2013; Zhang et al., 2016). Recently, deep

learning approaches have achieved promising performance in

counting plant leaves. A convolutional neural network (CNN)

can extract robust image features for describing leaf images.

Many types of CNNs have been applied to solve leaf counting

and segmentation problems. Thus, for instance, Dobrescu

et al. (2017) presented a modified deep residual network for

counting rosette leaves. Similarly, Giuffrida et al. (2018)

developed a multimodal architecture of a deep neural

network for combining RGB, NIR, and fluorescence features.

The accuracy of this counting work was 88.5% for rosette

leaves. In turn, Kumar and Dominic (2020) applied the

orthogonal transform to plant region segmentation and

improved the accuracy for leaf counting by fine-tuning Alex-

Net and VGG net. These studies were successful in detecting

and counting individual leaves on a public dataset; however,

estimating leaf position under natural conditions has not been

widely studied.

In this study, a coarse-to-fine leaf estimation scheme is

proposed to detect individual leaves and determine leaf shape

under field conditions. The approximate position of individual

leaves was determined by detecting the main leaf skeletons.

Sub-images containing single leaves were subsequently

extracted from the whole plant image to reduce noise and

complexity for leaf analysis. Leaf direction was estimated by

examining the structural characteristics of the main leaf

skeleton. A joint segmentation scheme combining low-level

segmentation and model-based object detection was pro-

posed to accurately determine the leaf shape, including

occluded leaves. A novel in situ leaf detection scheme was

proposed to extract information from individual leaves in

complex natural scenes. The proposed leaf detection scheme

effectively determined the precise shape of individual

occluded leaves and predicted the shape of the occluded part

of the leaves. The method effectively detected individual

leaves from plant leaf images containing a large number of

leaves without need for an additional training process for leaf

detection.
2. Materials

Sweet potato (Ipomea batatas L.) plants were selected for leaf

extraction. Plant images were captured from a field located in

Guangzhou, Guangdong province, China. The plant images

were captured by two types of high-resolution digital imaging

devices: a professional digital single-lens reflex (DSLR) camera

(Cannon EOS-700D) with 18 M pixel resolution (maximal

image resolution: 3456 � 5184 pixels), and a Samsung smart-

phone (SCH-P729) with an 8 M pixel camera with a maximum

image resolution of 3264 � 2448 pixels. All plant images con-

taining multiple leaves in the dataset were scaled to

1556 � 1037 pixels to reduce the computational cost. Single

leaf images were scaled to 805 � 790 to maintain the leaves of

a similar size. Automatic focussing and automatic parameter

settings of the cameras were selected to capture the plant

images. The distance between the camera and the plant

leaves was varied from 0.1 to 1.8 m. Therefore, various scales

and different numbers of plant leaves could be captured in the

image set. An example of a sweet potato image collected from

the field is shown in Fig. 1a. The leaf skeleton in this study

indicates the main leaf skeleton and branches, as shown in

Fig. 1b.

Plant leaf images were divided into four types according to

the complexity of the specific natural scene (Fig. 2): single-leaf

images with non-green background, single-leaf images with

green background, images with multiple leaves, and images

with numerous leaves. A single-leaf image with a non-green

background contained only one leaf, and most of the back-

ground consisted in the ground surface; further, a small part

of the leaf overlaps with the plant stem and other young

leaves. A single-leaf image with a green background was

generally a close-up photograph of an individual leaf above

the neighbouring leaves. Many partially occluded leaves occur

in the background. Multiple-leaf images captured an isolated

individual sweet potato plant from the top view. In this case,

the leaves are positioned in various directions and overlap

among them, thereby occluding one another. The number of

leaves was less than 10 in all single-plant images. Numerous-

leaf images contained more than 10 leaves from different

plants. The leaves were crowded in the images of numerous

leaves. Leaves were of various sizes and positioned in

different directions, frequently giving raise to occlusions to

different extents.

Plant images were collected in the spring of 2018 and 2019

when plants were young and most leaves maintained regular

shapes. Leaf images were acquired on April 12 to 15, 2018 and

on April 16 to 18, 2019 by two groups of staff. To avoid shadow

interference, leaf images were collected either on cloudy days

or early in the morning, or late in the afternoon. Images were

captured from randomly selected sweet potato plants in the

field. In our test dataset, 190 images were obtained. In all, 2219

sweet potato leaves were selected and labelled as detection

targets. The number of target leaves in a single image ranged

from one to 63. The details of our dataset are listed in Table 1.

The number of single-leaf images was 25 for both non-green

background images and green background images. There

were 344 target leaves in 60 images with multiple leaves, and

1825 in 80 imageswith numerous leaves. Themean number of

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Fig. 1 e Plant images and skeletons, (a) original leaf image, (b) leaf skeleton and branches.

Fig. 2 e Categories of plant leaf images; (a) single leaf image with non-green background, (b) single leaf image with green

background, (c) multiple-leaf image, and (d) numerous-leaf image. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

Table 1 e Description of leaf-image dataset.

Image type No. of images No. of target leaves Max Min Mean Collection Date Operators

Single-leaf with non-green background 25 25 1 1 1.00 Apr, 2018 Group 1

Single-leaf with green background 25 25 1 1 1.00 Apr, 2018 Group 1

Multiple leaves 60 317 9 3 5.7 Apr, 2018

Apr, 2019

Group 1

Group 2

Numerous leaves 80 1609 63 10 21.4 Apr, 2018

April, 2019

Group 1

Group 2
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leaves was 5.7 and 21.4 for multiple-leaf images and

numerous-leaf images, respectively. Plant leaves with a reg-

ular shape and proper size were identified as detection
targets. Small leaves and damaged leaves that could not show

the main leaf vein were not considered as detection targets.

Weeds were excluded from the study.

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Fig. 4 e Leaf image after background removal from the

original image to eliminate noise.
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3. Methods

3.1. Overview of the leaf segmentation system

A coarse-to-fine leaf shape determination process was pro-

posed based on leaf skeleton analysis and sub-image seg-

mentation. The overall procedure consists of three main

steps: pre-processing, main-leaf skeleton analysis and sub-

image extraction, and joint segmentation (Fig. 3). The back-

ground is initially removed from the plant images for noise

reduction. In leaf skeleton analysis, candidate skeleton pixels

are detected, and leaf skeletons are extracted. Then, the leaf

main skeleton is identified from the skeleton to represent leaf

direction and approximate leaf size. The individual leaf image

is extracted from the whole-plant image according to the size

and position of the main leaf skeleton. The leaf direction is

determined by examining the structure of the main skeleton.

Accurate segmentation of individual leaves is conducted on a

sub-image that contains only the target leaf. Region growing

segmentation and active shape models are utilised to accu-

rately extract the shape of individual leaves from the plant

images.

3.2. Background removal from plant images

Background removal is a common process in plant leaf-image

analysis. The complexity of plant images can be largely

reduced by removing the background. In particular, back-

ground images in agricultural fields can produce numerous

noises that reduce the accuracy of plant image analysis. In

this work, the background was initially removed from the

plant image. A leaf surface extraction method developed in

our previous work was utilised to achieve background

removal. Leaf surfaces are usually present in large areas with

a homogeneous colour. This method examines the smooth-

ness of the neighbouring area of each pixel. For a given pixel p,

the smoothness degree of p is defined as:

SmoothðpÞ¼ 1
N

X
q2D

ðjjðpÞ� jjðqÞjÞ (1)
Fig. 3 e Overall procedure of proposed
where j() represents the intensity value of a pixel in the G

channel in the RGB colour space; q is a pixel from the square

regionD, which is centred at p. The size ofD is defined asN�N

(N ¼ 9). Accordingly, a smoothness threshold is applied to

determine whether the pixels belong to the leaf surface. The

smoothness threshold was set to 12 in this study. The values

of parameter N and the smoothness threshold were deter-

mined by experiments on a large number of plant images.

These parameters are related to image resolution. In this

work, the plant images were scaled to a given size; therefore,

the fixed parameter enhanced high performance in back-

ground removal. These values can also be determined by

conducting preliminary tests under different environmental

conditions. Owing to the complexity of field images, back-

ground noise images (e.g. weeds)may present features similar

to those of the leaf surface. These unexpected objects are

usually small and can be eliminated by morphological

erosion-dilation operations. Similarly, the spots on the leaf

surface produced small wholes after the background removal

process, which could also be removed. The isolated small

areas (e.g. less than 500 pixels) should be removed as back-

ground noise. The plant image in Fig. 1a after background

removal is shown in Fig. 4.
leaf shape-determination scheme.

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Fig. 6 e Candidate skeleton pixels.
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Many leaf segmentation methods have been developed to

eliminate background images in natural scenes, such as ExG

(Meyer & Neto, 2008). The vegetation segmentation algorithm

for plant images is beyond the scope of this study, and per-

formance evaluation with other background removal methods

should be conducted in extensive studies. The advantage of

our method is that it extracts plant leaves rather than vege-

tation pixels. Small pieces of weeds or branches should be

filtered out during this process. The combination of the vege-

tation segmentation method and our background removal

method improved the stability of background removal.

3.3. Leaf skeleton detection and sub-image extraction

As shown in Fig. 1b, the leaf skeleton always presents brighter

intensity values than the surrounding pixels on the leaf sur-

face. Therefore, leaf skeleton detection was proposed ac-

cording to colour and intensity characteristics. Initially, the

image features of the leaf skeleton pixels were analysed by

calculating the intensity histogram of skeleton pixels and

their neighbouring pixels. To determine the intensity distri-

bution pattern, 500 skeleton pixels were randomly selected

from the plant image dataset. The intensity values of neigh-

bouring pixels were collected from an N*N (N ¼ 9) window

centred at the skeleton pixel (Fig. 5a). The intensity difference

between the skeleton pixel and its neighbour pixels was

calculated by subtraction. The average intensity difference

between the skeleton pixel and neighbouring pixels is shown

in Fig. 5b. Positive values indicate that the pixels showing

lower intensity values and negative values are brighter than

the sampled skeleton pixels. Thus, Fig. 5c shows that most of

the neighbouring pixels have a lower intensity value than the

skeleton pixel.

The skeleton pixels are brighter than the leaf surface, but

the sampled skeleton pixels may not be the brightest pixels in

the neighbouring area. The neighbouring skeleton pixels are

contained in the local image. The proportion of brighter pixels

in the local image of the skeleton pixel is analysed based on the

intensity difference in the local image. The cumulative distri-

bution of brighter pixels from the 500 skeleton pixel samples is

shown in Fig. 5c. Only 27% of the skeleton pixels are the
Fig. 5 e Intensity distribution of skeleton pixels, (a) sample imag
brightest pixels in the neighbouring image. In the local image

of the skeleton pixel, the proportion of brighter pixels was 40%

atmost. In other words, any given pixel might be considered as

a candidate skeleton pixel provided less than 40% of its

neighbouring pixels are brighter than the given pixel. Based on

the characteristic of the intensity distribution of skeleton

pixels, a computationally inexpensive method is proposed to

examine the candidate skeleton pixels from plant images.

(1) Detection of candidate skeleton pixels

The plant image is initially converted into a grey image on

which the correlation filter is performed. For each pixel p in

the plant image, the intensity difference of its neighbouring

area is calculated, and the proportion of neighbouring pixels

brighter than the given pixel p is obtained. If the proportion of

brighter pixels is less than 40%, p is determined as a candidate

skeleton pixel. The examined candidate skeleton pixels are

shown in Fig. 6.

(2) Skeleton extraction

Leaf skeletons were effectively extracted from leaf images;

however, numerous noise points were also detected in the

process. Small dots can be removed by examining their size.

Many of the noise points were connected, forming a large area

(Fig. 6). In some cases, the noise points were connected to the
es, (b) intensity difference, (c) proportion of brighter pixels.

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Fig. 8 e Main leaf skeleton detection. (a) leaf skeleton, (b)

detected main skeleton (green pixels are the main skeleton

and red lines are the fitting results). (For interpretation of

the references to colour in this figure legend, the reader is

referred to the Web version of this article.)
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skeleton. Therefore, a skeleton extraction method was pro-

posed to extract the main leaf skeleton from the candidate

pixels.

As the leaf skeleton always shows a line shape, the main

leaf skeleton can be extracted by examining if the pixels lay on

a line. The detailed steps are as follows:

(a) For every candidate pixel p, candidate skeleton

pixels are searched for which run along straight lines

originated at p in all directions (from 0� to 360�). The
search strategy is illustrated in Fig. 6.

(b) If a straight line containing a candidate pixel can be

found with a certain length (e.g. 48 pixels), pixel p

and the pixels on the straight line are determined as

skeleton pixels. Otherwise, pixel p should be

removed as noise.

As shown in Fig. 7, only strong skeletons remained after

this process. The length of the line containing candidate

pixels was selected according to the size of the leaves in the

plant image. A large leaf shows a long vein where a large

threshold should be given to extract the vein. This value

should be determined by preliminary tests or manual mea-

surements of the maximal and minimal lengths of leaf veins.

(3) Retrieval of the main leaf skeleton

The leaf skeleton represents the structural information of a

leaf. For leaf analysis, important information from the leaf

skeleton is leaf direction. In this study, the main leaf skeleton

was used to represent leaf direction. The main leaf skeleton

was defined as the longest leaf vein. The main leaf skeleton

was retrieved from the leaf skeletons (Fig. 8b). A straight-line

fitting based on random sample consensus (RANSAC) was

applied to extract the longest leaf skeleton. RANSAC is a

robust method of parameter estimation that can estimate

outliers from a dataset (Fischler & Bolles, 1981). In the leaf

skeleton, themain leaf skeleton is considered to be the inliers,

while the skeletons on both sides are outliers.

After skeleton pixel extraction as described in step (2), leaf

skeletons are represented as connected components (Fig. 8a).

In this process, it is possible to break the leaf skeletons into

small pieces. Therefore, leaf skeletons were merged and the

remaining small pieces were removed as noise. Every con-

nected component in Fig. 6 was examined. If any two con-

nected components have a minimal distance of less than six
Fig. 7 e Extracted leaf skeletons.
pixels, these two connected components are merged into a

new connected component. Subsequently, RANSAC fitting

was conducted to detect the main leaf skeleton in each con-

nected component. The detailed process is described as

follows:

1. A minimum number of pixels are randomly selected for

a straight-line fitting.

2. The least squares method is conducted to solve the

parameters of the straight-line function from those

selected pixels.

3. The distances between every pixel on the skeleton and

the fitted straight line are calculated. The number of

pixelswith a distance less than a predefined tolerance is

determined (e.g. 3 pixels). These pixels can be consid-

ered as inliers.

4. If the number of inliers exceeds a predefined threshold

t, re-estimate the model parameters using all the

identified inliers.

5. Steps 1 to 4 are repeated M times (e.g. M ¼ 500). The

fitting result with most inliers was determined as the

final result.

The main skeletons detected are shown in Fig. 8b, where

the slightly curvedmain skeletonswere effectively detected in

the skeletons. The red line represents the fitting results by

RANSAC, and the green pixels are the original skeleton pixels

(inliers).

(4) Sub-image extraction and estimation of leaf

direction

Once the leaf main skeleton is extracted, the approximate

position of the leaf can be acquired. The centre point of the

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Fig. 10 e Estimated leaf direction. The leaf direction is

represented by the red arrows. (For interpretation of the

references to colour in this figure legend, the reader is

referred to the Web version of this article.)
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leaf main skeleton was assumed to be the leaf centre. The

length of the sub-image was assigned according to the length

of the main skeleton. Subsequently, sub-images containing a

single plant leaf can be extracted from the whole plant image.

As shown in Fig. 9a, one of the individual leaves shown in

Fig. 1 was sampled. The length of the sub-image was given as

1.3 times the length of the main skeleton.

To represent the morphological features of the entire leaf

skeleton, an adaptive threshold was applied to obtain the

structure of the plant leaf (Fig. 9b). Although leaf skeletons are

extracted by the previous process, the leaf skeletons are thin

and cannot accurately describe the actual appearance of the

leaf skeleton. For example, the leaf tip could not be identified

using a thin skeleton. Therefore, the structure image of the

main leaf skeleton was obtained to detect the leaf tip side. A

bounding box of the partial main skeleton was calculated to

sample the structure image. To reduce background noise, 3/4

of the length of themain skeleton from its centre was selected

to examine the morphological features of the main skeleton

(Fig. 9b), shown in Fig. 9c); the leaf tip side is thinner than the

other side. Therefore, the leaf tip could be determined by

comparing the size of the area of the two halves of the main

skeleton.

Once themain skeleton and the leaf tip are determined, the

direction of the individual leaves can be calculated from the

main leaf skeleton. In this work, two end points of the partial

main skeleton were adopted to calculate leaf direction (an

angle ranging from [0, 2p]), as shown in Fig. 10. Because the

main skeletons might be slightly curved in some leaves,

especially on the tip side, calculating the leaf direction using

the central part of themain skeleton should bemore accurate.

3.4. Estimation of leaf shape by joint segmentation

After the sub-images of individual leaves are extracted from

the plant image, it is possible to obtain detailed information

on plant leaves based on local image analysis. Here, a fine leaf

extraction strategy is presented that combines pixel-wise re-

gion growing segmentation andmodel-based segmentation to

improve the accuracy of leaf contours definition, and to deal

with occlusions.
Fig. 9 e Determination of leaf tip. (a) sub-image of the leaf, (b
Region growing is initially conducted to segment leaf im-

ages by examining the similarity of neighbouring pixels (Shih

& Cheng, 2005). Seed points of region growing were obtained

from the main leaf skeleton detected. Region growing is per-

formed on the grey-value plant image. Figure 10a shows the

segmentation results from Fig. 8a using region growing, which

is a low-level image processingmethod that does not have any

constraints to maintain object shapes.

As plant leaves generally overlap or occlude each other,

region growing can extract all connected leaves showing a

similar colour (Fig. 10a). Therefore, a deformable model-based

segmentation method was introduced to detect and estimate

the accurate leaf shape from the incomplete segmented re-

sults. The active shape model (ASM) is a widely applied

deformable model for detecting elastic objects, which has

been successfully applied to many fields, such as face detec-

tion and medical image analysis (Cootes et al., 1995;

Hamarneh et al., 2004; Milborrow & Nicolls, 2008). The

advantage of ASM is that it detects objects showing occluded

portions and estimates the shape of such occluded parts. ASM

also succeeded in segmenting plant leaves from a complex

background (Xia et al., 2013). In ASM, the variation in leaf

shape was modelled. With a priori knowledge of leaf shape,
) leaf structure image, (c) structure of main leaf skeleton.
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ASM can estimate incomplete parts of a leaf image caused by

occlusion or segmentation error. In ASM, a leaf shape (xi) is

represented by a group of boundary points called landmarks.

xi ¼
h
xi;0; yi;0; xi;1; yi;1; ::: ; xi;n�1; yi;n�1

iT
; i ¼ 1; ::: ;Nasm (2)

where (xi,j, yi,j) are the coordinates of the jth landmark on the

ith shape in the training set.Nasm indicates the total number of

leaf shapes in the training set. In this study, 36 leaves of sweet

potato plants containing various leaf shapes were manually

marked with 37 landmarks. After training, the pattern of

variation in leaf shape was modelled to represent any leaf

shape in the training set:

xi ¼xþ Pb (3)

where p ¼ [p1,p2, …,pt] is the matrix of the first t eigenvectors,

and b is aweight vector. The shape variationwas controlled by

adjusting weight vector b. In the matching process, ASM

searches for the optimal boundary points at each landmark

and estimates the best weight b with minimal matching er-

rors. Finding optimal leaf boundary points is important for

acquiring accurate segmentation of leaf shapes. Building ac-

curate leaf boundary descriptors requires numerous sample

data and sophisticated algorithms, which are usually

computationally expensive. Region growing and ASM were

combined to simplify the matching process. The leaf model

matches individual leaf images on the segmentation results

by region growing. The leaf model was initialised on the bi-

nary image of the segmented leaf according to the position

and direction of the main leaf skeleton. The leaf model finds

binary leaf boundary points and estimates the whole leaf

shape from inaccurate segmentation by region growing. As

shown in Fig. 11b, c the individual leaf boundary was accu-

rately extracted by applying ASM to refine the segmentation

results from region growth. In this study, the ASM was

implemented based on the work by Hamarneh et al. (1998).

3.5. Leaf detection using faster ReCNN

To evaluate the performance of the proposed method, plant

leaf detection was further implemented using a state-of-the-
Fig. 11 e Individual leaf segmentation by region growing and A

segmentation by ASM and (c) ASM segmentation visualized on
art object detection method, namely, Faster ReCNN (Ren

et al., 2015). A Faster ReCNN consists of two parts: (1) fully

convolutional region proposal networks for generating

candidate regions, and (2) a downstream Faster ReCNN

network. Both parts share full-image convolutional features,

thus, enabling nearly cost-free region proposals. Here, all the

images in Table 1 (190 images) were selected as training im-

ages. Plant leaves were manually labelled to train the Faster

ReCNN model. These images were labelled manually in the

PASCAL VOC 2007 dataset format. ResNet 101 (He et al., 2016)

was adopted as the feature extractor of the faster ReCNN

network for leaf detection. In this study, 50% of the plant

images were randomly selected for training the network, and

the trained faster ReCNN was compared with our proposed

method.
4. Results

In this study, the detection of the main leaf skeleton the

estimation of leaf direction were conducted by coarse seg-

mentation of individual leaves. In turn, the extraction of the

shape of individual leaves was performed by a joint segmen-

tation approach. Understandably, the complexity of leaf im-

ages is significantly increased in multiple leaves and

numerous leaves, because more extensively occluded leaves

are present. In particular, for images with numerous leaves,

an average of 21.4 leaves were shown by these images (Table

1). The leaves were relatively small, with various positions.

Occlusions and overlapping of leaves are difficult to detect.

The proportion of less occluded leaves is summarised for each

type of leaf image to explain the complexity of the plant im-

ages. Low occlusion was defined as involving leaves having

less than 1/4 of the whole leaf surface being occluded and the

main leaf skeleton visible. To evaluate the performance of leaf

skeleton detection, only low occlusion leaves were selected as

detection targets. The detection accuracy of the main leaf

skeleton is shown in Table 2. All main leaf skeletons were

correctly detected in images containing a single leaf with

either a non-green or a green background. The detection ac-

curacy of the main skeleton was 98.42% for multiple-leaf
SM, (a) segmented leaf by region growing, (b) accurate

original image.
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Table 2 e Detection accuracy of main leaf skeleton.

Image type No. of target leaves Correct detection Missed leaves Inaccurate detection False alarms

Single leaf with non-green background 25 25 (100%) 0 0 0

Single leaf with green background 25 25 (100%) 0 0 0

Multiple leaves 317 312 (98.42%) 5 (1.58%) 9 (2.84%) 31 (9.78%)

Numerous leaves 1609 1526 (94.84%) 83 (5.16%) 114 (7.09%) 131 (8.14%)
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images. In contrast, 94.84% of the target leaves were correctly

detected from the images of numerous leaves. Inaccurate

detection was reported to be 7.09% only for numerous leaf

images. Here, inaccurate detectionmeans that the leaf branch

was incorrectly identified as the main leaf skeleton. And the

detected leaf boundaries, severely occluded leaves, blurred

leaves and weed leaves were considered as false positive re-

sults. False alarms were 9.78% and 8.14% for multiple leaves

and numerous leaf images, respectively. A small proportion of

leaf boundaries between overlapping leaves showed a similar

appearance to that of the main skeleton. These leaf bound-

aries were possibly misrecognized as leaf skeletons. On the

other hand, Table 2 shows that missed leaves were the main

reason for the decrease in detection accuracy. Leaves missed

by detection were 1.58% and 5.16% for images of multiple

leaves and images for numerous leaves, respectively.

The estimation of leaf direction was subsequently evalu-

ated by comparing the angle difference between estimated

results and manual measurements of the main skeleton.

Manual measurement of leaf direction was conducted by

selecting two-thirds of 2/3 length of the main skeleton in its

middle part and calculating the angle using its two end points.

The straightest part of the main skeleton was selected for

estimating leaf direction. The results of the evaluation of leaf

direction estimation are summarised in Table 3. In this work,

the correct estimation was defined as the estimated results

with an angle difference of less than 10�. Otherwise, the result

should be considered as an inaccurate estimation. The mean

angle difference between the estimated leaf direction and

human measurements was also calculated for the correct

estimations and is shown in Table 3. Accurate estimation

rates for all single-leaf images were 100% but decreased to

95.19% for multiple-leaf images and to 89.06% for numerous-

leaf images. Directions of each leaf were all correctly

measured for both single leaves with non-green and with

green background. The mean estimation differences were

1.46� (±1.06�) and 1.39� (±0.92�) for single leaves with non-

green background and single leaves with green background,

respectively. Although the complexity was largely increased

in multiple-leaf images and numerous-leaf images, the angle

difference of the correctly detected leaves did not increase.
Table 3 e Estimation accuracy of leaf direction.

Image type No. of detected
leaves

Cor
estim

Single leaf with non-green

background

25 25 (100

Single leaf with green background 25 25 (100

Multiple leaves 312 297 (95

Numerous leaves 1526 1359 (8
The mean estimation differences were 1.31� ± 1.12� for

multiple-leaf images and 1.42� ± 1.29� for numerous-leaf im-

ages. Therefore, themaximal estimation error of the leaf angle

was less than 3�, which was accurate and stable. The results

showed that inaccurate estimation was caused by incorrect

detection of leaf tips, which produced a 180� error in leaf di-

rection estimation. Inaccurate estimation rates for multiple-

leaf and numerous-leaf images were 4.81% and 10.43%,

respectively (see Table 4).

The accuracy of the proposed main leaf-skeleton scheme

was subsequently compared with that of our previously re-

ported method (Zhang et al., 2016). Three complex plant im-

ages from Zhang et al. (2016) were used to examine the

accuracy of the two methods. Figure 12a shows 20 leaves on

the soil background and Fig. 12b shows 21 sweet potato leaves

with occlusions that overlapped with neighbouring leaves. As

shown in Fig. 12c, 61 leaves of cabbagemustardwere captured

on the ground. The leaves in Fig. 12a,c were small and in

various positions. Severe occlusions appear in Fig. 12b. Plant

images in the first row in Fig. 12 were analysed by Zhang et al.

(2016), while the results obtained by the new method pro-

posed here are shown in the second row in Fig. 12. The nu-

merical results obtained by Zhang et al. (2016) and those

obtained by the proposed method are summarised in Table 2.

The overall accuracy of detection and direction estimation

using the proposedmethodwas superior to that of Zhang et al.

(2016). Especially for the image with numerous leaves in

Fig. 12c, the detection accuracy (98.36%) and direction esti-

mation accuracy (83.61%) by the proposed method were

significantly superior, compared with the previous work in

which the detection accuracy and direction estimation accu-

racy were only 65.57% and 54.10%, respectively. On average,

the accuracy of leaf detection and direction estimation by the

method were almost 20% higher than those obtained by the

previous method. The method proved it can be more accurate

and stable for the analysis of the leaves of diverse plant

species.

The results of the comparison between the proposed

method and faster ReCNN are summarised in Table 5. Both

methods showed high accuracy in detecting leaves, with

overall detection rates exceeding 80%. They both achieved
rect
ation

Mean angle difference
(±STD)

Inaccurate
estimation

%) 1.46 ± 1.06 0

%) 1.39 ± 0.92 0

.19%) 1.31 ± 1.12 15 (4.81%)

9.06%) 1.42 ± 1.29 167 (10.43%)
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Table 4 e Leaf detection accuracy of the proposed method and of the previous method by Zhang et al. (2016).

Figure No. of target
leaves

Methods Correct leaf
detection

Accuracy of leaf
detection

Correct direction
estimation

Accuracy of direction
estimation

Fig. 12

(a)

26 Zhang 2016 20 76.92% 14 53.85%

Proposed 24 92.31% 23 88.46%

Fig. 12

(b)

41 Zhang 2016 27 65.85% 18 43.90%

Proposed 28 68.29% 26 63.41%

Fig. 12

(c)

61 Zhang 2016 40 65.57 33 54.10%

Proposed 60 98.36% 51 83.61%

Fig. 12 e Comparison between the proposed method and the previous method reported by Zhang et al. (2016).

Table 5 e Comparison with faster ReCNN (50% training þ 50% test).

Image type No. of target leaves Proposed Faster ReCNN

Detected False alarms Detected False alarms

Single leaf with non-green background 13 13 (100%) 0 13 (100%) 6 (46.15%)

Single leaf with green background 13 13 (100%) 0 13 (100%) 17 (130.77%)

Multiple leaves 170 149 (87.65%) 9 (5.29%) 162 (95.29%) 5 (2.94%)

Numerous leaves 921 747 (81.10%) 71 (7.71%) 799 (86.75%) 5 (0.54%)

In Total 1091 896 (82.13%) 80 (7.33%) 961 (88.08%) 33 (3.02%)
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100% accuracy in single-leaf detection. In contrast, the

detection rates formultiple leaves using the proposedmethod

and Faster ReCNN were 87.65% and 95.29%, respectively. In

multiple-leaf detection, our proposedmethod produced 5.29%

false alarms (two leaves), while the false alarm rate was 2.94%

for Faster ReCNN. As for numerous-leaf detection, the

detection rates were 81.10% and 86.75%, while false alarms

were 7.71% and 0.54% for the proposed method and Faster

ReCNN, respectively. The overall detection rate of the pro-

posed method was 82.13%, while Faster ReCNN showed a

slightly higher accuracy, estimated at 88.08%. False alarm rate

was 7.33% for our proposed method, and 3.02% for Faster

ReCNN for all types of leaves. The extremely high false alarm
rates of Faster ReCNN were found in the single leaf detection.

In single leaf images, target leaves showed relatively large

size. But small weed leaves, blurred leaves, irregular leaves or

severely occluded leaves were occurred in the same image.

These images were not considered as detection targets for

both the proposed method and Faster ReCNN. And these

unexpected leaves were not included for training Faster

ReCNN. However, these unexpected leaves were still detected

due the description ability of CNN features. The detection

accuracy of our proposed method was comparable to that of

Faster ReCNN. Although the accuracy of the proposedmethod

was approximately 5.95% lower than that of Faster ReCNN, it

actually detectedmore information on individual leaves, such

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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Table 6 e Accuracy of shape detection by region growing
and joint segmentation.

Image type No. of
detected
leaves

Region
Growing

Joint
segmentation

Single leaf with non-

green background

25 23 (92.0%) 25 (100%)

Single leaf with green

background

25 10 (40.0%) 23 (92.0%)

Multiple leaves 312 147 (47.12%) 282 (90.38%)

Numerous leaves 1526 341 (22.35%) 1159 (75.95%)
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as leaf tip direction and skeleton structure. This information is

important for applications requiring precision analysis, such

as plant growth monitoring or leaf picking by robots.

Automatic individual leaf extraction was another contri-

bution of this study. Based on individual leaf detection, leaf

shape extraction was subsequently conducted using regional

growing and deformable models. Plant leaves with occlusions

in complex backgrounds were identified, and leaf contours

were effectively extracted by the proposed method. An

example of leaf shape extraction is presented in Fig. 13. Plant

leaves of various sizes, directions, and occluded leaves were

accurately detected by our method and Faster ReCNN.

Detected leaves by Faster ReCNN were marked by the

bounding boxes while our method was able to match the ac-

curate leaf boundaries (Fig. 13). Only the results showing a

regular leaf shape and containing at least 80% of the actual

leaf contour were considered as effective results. Partially

matched leaves should not be included in the final results;

thus, for example, leaf No. 7 in Fig. 13 is a partially detected

incorrect result. Leaf No. 2 in is an over-deformed result that

failed to converge to the actual leaf contour and should also be

removed from the final results. The overall accuracy of leaf

shape extraction is shown in Table 6. Leaf extraction was

evaluated based on the results of leaf skeleton detection. The

leaf contour-detection rate was calculated according to the

total number of detected main skeletons. Segmentation using

region growing and combination segmentation of region

growing and ASM were evaluated separately. For a single leaf

with a non-green background, the correctly detected leaf

contour was 23, with only region growing and 25 with joint

segmentation. The detection rates for region growing and

joint segmentation were 92% and 100%, respectively. The

extracted leaf contours were reduced to 10 and 23, while

detection rates were 40% and 92% for region growing and joint

segmentation, respectively. Because the complexity increased

in multiple-leaf images and numerous-leaf images, the ac-

curacy of detection decreased significantly. The number of

leaves detected in multiple-leaf images was 125 with region

growing and 262 with joint segmentation. The detection rates

of region growing and joint segmentation for multiple-leaf

images were 40.19% and 84.24%, respectively. The number of

detected leaves using region growing and joint segmentation

in numerous-leaf images was 333 and 1032, respectively.
Fig. 13 e Shape determination for individual leaves

(coloured shapes) and detection results by Faster ReCNN

(white rectangles).
Conversely, the detection rates for numerous-leaf images

decreased to 22.78% by region growth and to 70.59% by joint

segmentation. Leaf shape extraction is a challenging task for

analysing plant leaf images under field conditions. The accu-

racy of leaf extraction was excellent for single-leaf and

multiple-leaf images. Our experimental results demonstrated

that leaf shape extraction rates were greater than 80%, which

is acceptable for many agricultural applications. Furthermore,

it is understandable that the extraction rate was relatively low

in numerous-leaf images, compared with the other types of

plant images. Nevertheless, the extraction results clearly

showed the advantages of the proposed method in such a

complex scenario.
5. Discussion

Precise location of individual leaves in natural scenes is the

key step for counting leaf populations, accurate individual leaf

analysis, and other precision measurement tasks for devel-

oping intelligent agricultural systems. To implement auto-

matic plant leaf analysis, a coarse-to-fine scheme was

proposed to accurately detect leaf shape under field condi-

tions, including the determination of the shape of occluded

leaves. Leaf image analysis of sub-images of a single leaf may

effectively reduce the complexity of leaf analysis. Therefore,

coarse segmentation of individual leaves was developed by

detecting the leaf main skeleton and estimating leaf direction.

Sub-images containing individual leaves were extracted from

the whole plant image according to the position of the main

leaf skeleton. Fine-scale leaf shape determination was

implemented on the sub-images of individual leaves by

combining pixel-wise segmentation and deformable model-

based object detection methods.

Accurate leaf shape detection was tested on four types of

plant images in an agricultural field. The sample image sets

contained various levels of complex plant images. The pro-

posed coarse-to-fine leaf extraction scheme showed prom-

ising performance in accurately determining the leaf shapes

from plant images under different conditions. The main leaf

skeleton is considered as evidence of the presence of plant

leaves. For all types of plant images, the overall accuracy of

the leaf skeleton exceeded 90%. Although occlusions and

background noise were severe in numerous-leaf images, the

accuracy of detection of individual leaves was 94.84%, and

false alarms occurred at a rate of 5.16% (Table 2). Detection

accuracy was much better for all the other types of image

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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because the leaves were in much less complicated conditions.

The main factors affecting the detection rate were missed

detection and inaccurate detection. As the leaves were at

various scales in this study, the main skeleton of small leaves

could be removed as branches in the skeleton extraction

process. Some of the main leaf skeletons were occluded and

showed discontinuous lines while detecting candidate skel-

eton pixels. Consequently, it was difficult to detect these types

of leaves using the proposed method. Inaccurate detection

was the result of incorrectly recognising branches connected

to the main leaf skeleton. Many inaccurate main skeleton

detection results may provide an approximate position of the

leaves and extract sub-images of individual leaves, but they

should not be considered as correct leaf detection. Neverthe-

less, inaccurate detection may cause incorrect results while

estimating leaf direction (Table 2).

The estimation of leaf direction showed human-level ac-

curacy. The average measurement difference of correct de-

tections in all plant images was 1.40�. The estimation of leaf

direction was robust to noise because the RANSAC-based

fitting was applied to determine the main skeleton. The re-

sults were seldom confused with noise or branches. In

particular, when compared with our previous work, the ac-

curacy in estimating leaf directionwas significantly improved.

In comparison, the proposedmethodwas successfully applied

on leaves of several different plant species. The results

showed that the proposed leaf detection scheme is suitable for

many other plant species because the main leaf skeleton ex-

hibits similar image features. Under field conditions, leafmain

skeletons show various visual features, and the proposed leaf-

tip detection method should be improved to deal with varia-

tions in the main skeleton. Leaf tip detection contributed

7.62% of the estimation error. Therefore, it is possible to

improve the accuracy of the estimation of leaf direction by

developing a sophisticated leaf-tip detection method in the

future.

To evaluate detection accuracy, the proposed method was

compared with a deep learning approach, namely, Faster

ReCNN. The performance of our proposed method was com-

parable to that of Faster ReCNN. The proposed leaf detection

method is based on the presence of the main leaf vein. The

leaves without clear leaf veins or blurred leaf images were the

main factor reducing the detection accuracy of the proposed

method (Fig. 13). The advantages of the proposed detection

scheme are the following: (1) the direction of the leaf tip can be

estimated during detection, (2) additional training process is

not required, and (3) lower computational cost compared to

convolutional networks. The convolutional neural network

has demonstrated robust and reliable performance in various

computer vision tasks. Recently, many leaf detection/seg-

mentation methods have been developed based on convolu-

tion networks. Most CNNs are direction insensitive, which can

locate objects in arbitrary directions but cannot measure the

rotational angle of the leaves. Additional analyses should be

conducted to determine the object direction. In this study, leaf

direction could be directly estimated by identifying and ana-

lysing the main leaf veins. Further analysis of the leaf direc-

tion was not necessary. The proposed method can be applied

to plant image analysis without training. In fact, a similar idea

underlies both the proposed method and Faster ReCNN for
detecting individual leaves. The proposed method predicts

individual leaves from a feature of the local image, namely,

the main leaf vein. The precise leaf shape was extracted using

ASM. In Faster ReCNN, numerous-leaf candidates were

generated according to the local CNN features (e.g. anchors)

learned from the training sets. The candidates were further

examined and verified using a classifier (e.g. SVM or SoftMax)

(Ren et al., 2015). In some cases, thousands of candidates were

proposed in an image, and those with high confidence were

selected as the detection results. This process ensures that the

Faster ReCNN achieves a robust detection performance. In

this study, leaf image verification is not included in the pro-

posed detection scheme. The hypothesis based on leaf veins

was restricted to reduce false alarms; for example, the hy-

pothesis could not be generated based on broken veins.

Therefore, leaves showing broken veins have a high proba-

bility of being ignored. In the future, combining CNN features

for leaf detection and verification of individual images should

be considered to improve the accuracy and robustness of leaf

detection. Furthermore, hypotheses based on leaf veins, leaf

tips, and leaf boundaries should also be included in future

work (Liang et al., 2015).

The accurate determination of leaf shape under field con-

ditions is an additional contribution of this study. Regional

growing was applied to segment individual leaves at the pixel

level. The deformable leaf model built by the ASMwas used to

determine the precise shape of individual leaves. Regional

growing is a low-level image segmentation method that seg-

ments images according to the similarity among pixels. Over-

segmentation and under-segmentation frequently occur due

to variations in illumination conditions, overlapping, or oc-

clusions among leaves under field conditions. Therefore, the

deformable leaf model was applied to accurately determine

the leaf shape from the inaccurately segmented leaf images.

Leaf shape variations were modelled as a priori knowledge by

the ASM. With the deformable model, the whole leaf shape

can be determined from incomplete segmentation by regional

growth. The accuracy of leaf shape extractionwas excellent in

single-leaf andmultiple-leaf images. Leaves in numerous-leaf

images showed various irregular positions that might poten-

tially reduce the robustness of leaf shape determination.

Because irregular shape variations were not included in the

training set, they were difficult to describe by the model. In

cooperation with a robust estimation algorithm, such as

expectation-maximization (EM), RANSAC can effectively

improve the matching accuracy of ASM (Rogers & Graham,

2002; Santiago et al., 2015). In addition, integrating state-of-

the-art feature descriptors, such as convolutional features,

to find optimised leaf boundary features can improve the ac-

curacy and stability of leaf shape determination (Jourabloo &

Liu, 2016).
6. Conclusions

A leaf detection and an accurate shape determination scheme

are reported herein. A leaf skeleton-extraction method was

implemented and the main leaf skeleton was accurately

detected by RANSAC fitting. The main leaf skeleton serves as

evidence of the presence of an individual leaf. Sub-images of

https://doi.org/10.1016/j.biosystemseng.2021.03.017
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single leaves were extracted for the complexity of plant im-

ages. Leaf direction was accurately calculated using the main

skeleton. Accurate segmentation of individual leaves was

performed by combining region growth and ASM. The pro-

posed method could not only measure the individual shapes

of numerous aggregated leaves in various poses but addi-

tionally, it can determine the entire shape of occluded leaves.

The accuracy and stability of the proposed method were

demonstrated by experiments on plant images under various

conditions. Our results showed that the accuracy of leaf

detection and leaf shape determination achieved by the pro-

posedmethodwere outstanding, especially for single-leaf and

multiple-leaf images. The performance of the proposed

method is comparable to that of state-of-the-art object

detection methods (e.g. faster ReCNN). The proposed method

can provide reliable leaf measurements and has great poten-

tial to implement automation systems for agricultural

practises.
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