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ABSTRACT
Intensified field management in orcahrds has resulted in significant and widespread acidification in the soils. However, effectively mapping the spatial

patterns of soil pH aiming to support ecological management is impeded by its large variotions across soil types and planting durations. Kriging methods
were used to integrate soil type and planting duration information for effective mapping of orchard soil pH in a case study in orchards of the Northeast
Jiaodong Peninsula, East China. A total of 1 472 surface soil samples were collected, and the planting duration of each sampled orchard was acquired to
generate a planting duration map via Voronoi tessellations. The performance of five kriging methods was compared, namely, ordinary kriging (OK), OK
combined with soil type (OK_ST), OK combined with planting duration (OK_PD), cokriging combined with soil type and planting duration (OCK_STPD),
and OK combined with soil type and planting duration (OK_STPD). Results showed that soil pH declined significantly with increasing planting duration and
exhibited moderate spatial variability over the study area. Soil type and planting duration both had significant influence on the spatial distribution of soil pH.
The OCK_STPD and OK_STPD methods showed better prediction efficiency than OK, OK_ST, or OK_PD. With regard to the predicted maps of soil pH,
the OCK_STPD and OK_STPD methods highly reflected local variations associated with soil type and planting duration, but the OK method was poorly
representative. Categorical soil type and planting duration information may be used as ancillary information to improve the mapping quality of orchard
soil pH. The OCK_STPD and OK_STPD methods were practical and efficient methods for interpolating orchard soil pH in the study area. The resultant
high-quality soil pH maps can contribute to improved site-specific management in the orchards.
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INTRODUCTION

Soil pH is a fundamental property that has important in-
fluences on soil physical, chemical, and biological processes,
and is therefore considered to be a key soil variable (Liu et
al., 2013; Ávila et al., 2017). Soil acidification can reduce
the availability of some nutrients (Liu et al., 2013), but it
can increase the availability of heavy metals to toxic levels
that can render soils infertile and contaminate agricultural
products (Li et al., 2014). Under natural conditions, soil
acidification is a slow process occurring over hundreds to
millions of years (Guo et al., 2010). However, because of
intensive anthropogenic activities in recent decades, there
has been significant and widespread acidification in Chinese
agricultural lands (Guo et al., 2010; Xu, 2015). Effectively
delineating the spatial patterns of soil pH and revealing
the acidification conditions are thus crucial to agricultural,
environmental, and ecological management of agricultural
ecosystems.

Soil properties vary considerably depending on soil type,

climate, parent materials, topography, vegetation, water con-
ditions, and anthropogenic activities, all of which influence
the distribution patterns of soils (Shi et al., 2009; Moitinho et
al., 2015). The inherent accuracy of a spatial prediction can
be improved by utilizing a suitable interpolation approach
and integrating helpful auxiliary information in the inter-
polation. Considerable attention in pedometrics has been
paid to utilizing spatially correlated ancillary information to
improve the mapping quality of soil properties (Goovaerts
and Journel, 1995; Hengl et al., 2004; Wu J P et al., 2006,
Wu C F et al., 2009; Qu et al., 2013a; Mirzaee et al., 2016).
Soil maps delineating the borders of soil types are available
and combined categorical soil type information has proved
to be useful in studies of many soil properties (Liu et al.,
2006; Goovaerts, 2010; Zhang et al., 2010). Although the
borders of soil types are not accurate enough to segment the
geographical space, the categorical soil types can separate
the soil property groups with clear differences in statistical
inference (Brus et al., 1996). Spatial variation in soil pro-
perties comprises two parts: genesis processes and historical
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practices. Variation caused by genesis processes is on a
geological scale and is used to determine soil classification
(Liu et al., 2006). Variation caused by historical practices
generally occurs on a field scale within each soil type (Liu
et al., 2006). Better predictions can be obtained by conside-
ring both of these sources of variance together. However, in
many circumstances soil type may be one of many factors
influencing the distribution pattern of soil properties (Hengl
et al., 2004; Zhang Z Q et al., 2010; Zhang S W et al.,
2012). Moreover, there are complex spatial changes at the
field scale, even in the same soil type (Liu et al., 2006). To
minimize interpolation variance, it is necessary to address
the additional sources of variance as completely as possible
(Liu et al., 2006).

Integrating more related information into the kriging
method is considered helpful in improving the accuracy of
interpolation of soil properties (Hengl et al., 2004; Zhang
Z Q et al., 2010; Zhang S W et al., 2012). With regard to
orchard soils, planting duration is a vital feature affecting
environmental conditions and management practices, such
as soil acidification and copper enrichment (Xue et al., 2006;
Wang et al., 2009; Mackie et al., 2012; Li et al., 2014; Fu et
al., 2018). However, whether planting duration can be used
as a measurement to represent historical practices related to
orchard soils remains unknown. No study has shown that
planting duration can be used along with soil type to further
improve interpolation accuracy. Therefore, in this study we
considered whether incorporating planting duration along
with soil type information into a (co)kriging method could
increase the accuracy of the mapping of orchard soil pro-
perties.

The Northeast Jiaodong Peninsula has a long tradition
of intensive horticultural crop production. Over the last
few decades, large areas of farmland have been converted
into orchards, and there has been widespread reclamation
of hillsides, making it one of the largest apple and grape
production areas in China. Soil acidification has become pro-
nounced because of the intensification of field management
in the orchards. A preliminary investigation in 2007–2009
reported that topsoil pH was less than 5.5 in 60.4% of 268
sites investigated and was less than 4.5 in 27.2% (Li et al.,
2014). It is therefore urgent to investigate acidification in
every orchard and to effectively map the spatial distribution
of soil pH levels. The main aims of this study were to i)
study the soil acidification status and its spatial variation
on the Northeast Jiaodong Peninsula and ii) compare the
performance and feasibility of (co)kriging combined with
soil type and planting duration information in the mapping
of orchard soil pH with ordinary kriging (OK).

MATERIALS AND METHODS

Study area

The study region (36◦49′8′′–37◦48′32′′ N, 120◦30′40′′–

121◦28′5′′ E) covers an area of 3 620 km2 on the Northeast
Jiaodong Peninsula (Fig. 1). It comprises 21 municipal towns
of Yantai City, a coastal city located on the rim of the Bohai
and Yellow seas. The region is classified as a warm temperate
zone with a marine climate, humid air, and ample sunlight
with four distinct seasons (Li et al., 2014). The mean annual
rainfall is 980 mm and the annual temperature averages
11.2–12.5 ◦C. Elevation in the orchards ranges from 0 to
766 m above sea level.

Fig. 1 Distribution of soil samples in the study area on the Northeast
Jiaodong Peninsula. a.s.l. = above sea level.

Soil sampling and chemical analysis

The soil sampling sites were selected according to a soil
map and based on the distribution of orchards in the study
area. Soil samples were taken during April and June 2014.
Five soil subsamples were collected at each sampling site
within a 10-m radius using a shovel at a depth of 0–20 cm,
and subsequently mixed thoroughly to obtain an accurate
representative composite sample from the site. A global
positioning system (GPSmap 60CSx, Garmin, Olathe, USA)
was used to determine the locations of the sampling centers.
A total of 1 472 samples were collected, and their locations
are presented in Fig. 1. In addition, the age of each orchard
was ascertained from the orchard manager or owner and
classified into five groups, namely,< 5, 5–15, 15–25, 25–35,
and > 35 years.

The soil samples were air-dried at room temperature.
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After stones or other coarse debris were manually removed,
the dried samples were then ground and sieved to ensure
that the soil particles were < 2 mm in diameter. Soil pH
was determined at a soil-to-water mass ratio of 1:2.5 using a
pH meter (FiveEasy Plus FE20, Mettler Toledo, Greifensee,
Switzerland). Detailed descriptions of the routine analytical
methods used have been previously published (Lu, 1999).

Spatial interpolation

Ordinary kriging and kriging combined with auxiliary
information methods were used for predicting the soil pH
distribution of the study area. The semivariance and the
interpolation principle of the OK method have been widely
established by numerous studies (Lark and Webster, 2006;
Wu et al., 2006; Qu et al., 2013a; Fu et al., 2018). Kriging
combined with auxiliary information methods have been
widely adopted in the geosciences and soil science (Goovaerts
and Journel, 1995; Liu et al., 2006; Zhang et al., 2010,
2011; Qu et al., 2013a). Kriging combined with auxiliary
information methods followed simple kriging with local
means as presented by Goovaerts (1997). However, ordinary
(co)kriging was conducted to interpolate the residual instead
of simple kriging. These methods are by nature regression
kriging (Goovaerts and Kerry, 2010).

Ordinary kriging combined with soil type or planting
duration (OK_ST, OK_PD). Soil type is known to be a
principal factor governing the spatial distribution of soil
properties (Liu et al., 2006; Wu et al., 2008). Apart from
the effect of soil type, soil acidification conditions generally
exhibit a strong correlation with planting duration for orchard
soils (Xue et al., 2006; Li et al., 2014). Soil samples within
the same planting duration may not have similar mean pH
values due to differences in soil type, but they may have
a similar degree of acidification (Xue et al., 2006; Li et
al., 2014). That is, mixing soil pH from different planting
duration groups may increase its variability, as well as the
interpolation uncertainty. Thus, the spatial variability of any
particular soil attribute of orchard soils is partly due to the
complex distribution of soil types and planting durations,
not accounting for which can increase the uncertainty of
interpolation prediction. To reduce this uncertainty, we
suggested kriging combined with soil type (OK_ST) or
planting duration (OK_PD) to incorporate their effects in
the interpolation of soil properties. The average soil pH for
each soil type or planting duration was calculated, then the
pH value for each sample (Z(x)) was separated into two
portions, the mean value corresponding to the soil type µ(T )
or planting duration µ(D) and the associated residual rST(x)
or rPD(x):

Z(x) = µ(T ) + rST(x) (1)

Z(x) = µ(D) + rPD(x) (2)

where x is the location of the sample Z(x) and T (or D)

is the soil type (or planting duration) to which x belongs.
The variance of the original Z(x) is also divided into two
portions, variance between different soil types (planting
duration) and variance within a soil type (planting duration)
(Liu et al., 2006; Zhang et al., 2011). The residuals rST(x)
or rPD(x) can be treated as a new stationary regionalized
variable to be interpolated via OK (Liu et al., 2006; Qu et
al., 2013a). The final result was obtained by adding together
the mean pH value for the soil type or planting duration and
the interpolated results of residuals.

Cokriging combined with soil type and planting duration
(OCK_STPD). Cokriging is an extension of the kriging
method that predicts the random variables simultaneously
by utilizing the relationships and coregionalization of the
variables (Odeh et al., 1995; Goovaerts, 1998). If coregiona-
lization exists it is feasible to use the co-variable to improve
the prediction of the target variable through cokriging (Wang
et al., 2013). To describe the auto- and cross-semivariograms
for use in cokriging, a linear model of coregionalization
has to be fitted to these semivariograms, which consider
the spatial dependence of the two variables and their inter-
dependence simultaneously (Wang et al., 2013). Yates and
Warrick (1987) found that cokriging is more effective in
interpolation than kriging when sample correlations exceed
0.5. If strong relationships and spatial co-variability can be
observed between rST(x) and rPD(x), we can use rPD(x)
as auxiliary data to improve the prediction of rST(x) by
ordinary cokriging. The final predicted soil pH map is the
sum of the mean pH value for the soil type and the cokriging
interpolated result of rST(x).

Ordinary kriging combined with soil type and planting
duration (OK_STPD). Similar to OK_ST, the soil pH
value of every unsampled point was estimated by adding the
mean value of the categorical soil type and planting duration
to the interpolated residual (rSTPD(x)). The categorical soil
type and planting duration can be obtained by overlapping
the soil map and planting duration map. The mean values of
the corresponding soil type and planting duration represent
the typical acidification at each planting duration within
each soil type, whereas the residual rSTPD(x) represents the
variation caused by the limitations of soil classification and
the differences in management intensities in different fields.
The form of the equation follows that of OK_ST:

Z(x) = µ(T,D) + rSTPD(x) (3)

The soil map utilized in the present study was obtained
from the Yantai Soil and Fertilizer Station and digitized with
ArcGIS 10.2 (ESRI Inc., Redlands, USA). The soil map
(Fig. 2a) was based on the Genetic Soil Classification of
China (GSCC) mapped in the Second National Soil Survey.
It was difficult to obtain an accurate orchard planting dura-
tion map because of the absence of explicit boundaries. We
therefore generated an approximation based on the sample
points using Voronoi tessellation (Fig. 2b). Voronoi tessel-
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lation has been widely used to model the partition of space
over widely disparate scales (Lark, 2009). The map shows
abrupt changes at the borders between different planting
duration groups, which can be utilized to group the sampled
observations. However, the Voronoi map cannot reliably de-
lineate the spatial distribution of planting durations because
planting duration is influenced by more than distance. Using
Voronoi tessellation to represent the planting duration is an
assumption that was built into our method.

Fig. 2 Soil map (a) and planting duration map (b) of the study area on the
Northeast Jiaodong Peninsula.

Validation

To evaluate the performance of the kriging methods the
soil pH data for the 1 472 sites were randomly partitioned
into two subsets using the Subset Features tool in the ArcGIS
Geostatistical Analyst toolbox (ArcGIS 10.2), a training
dataset (70%, n = 1 030) and a validation dataset (30%,
n = 442). For each of the five methods, the correlation coef-
ficients (r), mean errors (ME), and root mean square errors
(RMSE) were calculated between the predicted maps and
the validation data. Mean error and RMSE were calculated

using the following equations:

ME =
1

n

n∑
i=1

(Pi −Oi) (4)

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Oi)2 (5)

where Pi is the predicted pH value of the ith location xi, Oi

is the observed pH value of the ith location xi, and n

is the number of validation points. The ME measures the
interpolation bias and should ideally be close to 0, and RMSE
measures the accuracy of the interpolation and should also
be as small as possible.

Statistic analysis

All the results were stored in a Microsoft Excel (Mi-
crosoft Corp., Redmond, USA) spreadsheet. Statistical ana-
lysis was conducted using SPSS 20.0 (SPSS Inc, Chicago,
USA). Variances in the soil pH between soil types and plan-
ting durations were determined using a linear mixed effect
model (LMEM). The semivariograms were calculated and
modeled via GS+ 9.0 (Gamma Design Software, Plainwell,
USA), and kriging interpolations were conducted viaArcGIS
10.2. Scatter plot graphs were plotted using Origin Pro 8.0
(OriginLab Corp., Northampton, USA).

RESULTS AND DISCUSSION

Descriptive statistics and LMEM analysis

Summaries of the descriptive statistics for orchard soil
pH are shown in Table I. Soil pH values ranged between
3.87 and 8.82 across the 1 472 samples, with a mean of 5.96
and a standard deviation of 0.91. Soil pH is often considered
to be one of the less variable soil chemical properties (Sun
et al., 2003; Liu Z P et al., 2013; Liu Y et al., 2016).
In the present study, the coefficient of variation (CV) of
all samples was 0.15, indicating medium variation among
different soil types and planting durations. Judging from
the skewness and kurtosis values, the soil pH data fitted an
approximate normal distribution. Samples were classified
into seven groups based on the soil types of their locations, of
which the average pH ranged from 7.46 (Mottlic Hapli-Ustic
Argosols) to 5.74 (Hapli-Udic Cambosols). The LMEM
analysis results (Table II) showed that the variances in soil
pH among the soil type categories were highly significant
(P < 0.001). This indicates that soil type information will
be a valuable input in kriging interpolation of soil pH to
improve the accuracy of its estimation.

The average pH values for five groups of planting dura-
tion were in a clear descending order with increasing year,
from 6.45 (< 5 years) to 5.18 (> 35 years). This indicates
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TABLE I

Descriptive statistics of orchard soil pH across the study area on the Northeast Jiaodong Peninsula

Item n Mean SDa) CVb) Minimum Maximum Skewness Kurtosis

Soil typec)
Hapli-Udic Argosolsd) 490 6.00 0.91 0.15 3.93 8.40 0.28 −0.62
Mottlic Hapli-Udic Argosolsd) 54 6.08 0.88 0.14 4.31 7.69 0.12 −0.76
Hapli-Udic Cambosolsd) 588 5.74 0.89 0.16 3.87 8.21 0.48 −0.43
Hapli-Ustic Argosolse) 18 7.09 0.54 0.08 6.06 8.07 0.15 −0.22
Mottlic Hapli-Ustic Argosolse) 6 7.46 0.73 0.10 6.25 8.28 −0.88 0.46
Hapli-Ustic Cambosolse) 84 6.74 1.00 0.15 4.39 8.49 −0.27 −0.73
Ochri-Aquic Cambosolsf) 232 6.02 0.95 0.16 4.03 8.82 0.25 −0.51

Planting duration (years)
< 5 185 6.45 0.96 0.15 4.71 8.82 0.29 −0.67
5–15 567 6.00 0.93 0.16 4.34 8.36 0.36 −0.82
15–25 459 5.88 0.95 0.16 3.87 8.28 0.32 −0.64
25–35 230 5.78 0.84 0.15 4.04 7.68 0.21 −0.78
> 35 31 5.18 0.88 0.17 4.03 7.29 0.56 −0.28

Total 1 472 5.96 0.91 0.15 3.87 8.82 0.33 −0.62
Training 1 030 5.97 0.96 0.16 3.87 8.82 0.28 −0.66
Validation 442 5.94 0.93 0.16 4.19 8.49 0.45 −0.49
a)Standard deviation.
b)Coefficient of variation.
c)Soil type is based on the Genetic Soil Classification of China (GSCC) but referenced to the Chinese Soil Taxonomy (CST) (Gong et al., 2002; Shi et al.,
2010).
d)Brown soil group.
e)Cinnamon soil group.
f)Fluvo-aquic soil group.

TABLE II

Linear mixed effect model for the effects of soil type and plant duration on the soil pH values

Effect dfa) Sum of squares Mean square F value Significance

Corrected model 29 131.119 4.521 5.531 0.000
Soil type 6 31.639 5.273 6.451 0.000
Planting duration 4 16.532 4.133 5.056 0.000
Soil type × planting duration 19 19.688 1.368 1.744 0.020
a)Degree of freedom.

that acidification in orchard soils was significantly related
to planting duration and old orchards usually had lower
soil pH than did the younger ones (Xue et al., 2006; Li et
al., 2014). This is in agreement with Li et al. (2014) who
reported that the soils on the Northeast Jiaodong Peninsula
were significantly acidified in the adult (10–30 years) and
old (> 30 years) orchards (pH decreased by 0.53 and 1.90
units in adult and old orchard soils, respectively, compared
to young orchard soils (< 10 years)). Soil acidification can
be caused by various factors, such as excessive application of
chemical fertilizers, improper irrigation, acid deposition, and
natural acidification (Zhang et al., 2013; Li et al., 2014; Xu,
2015). Chinese agriculture has intensified greatly since the
early 1980s and the limited arable land has been expected to
produce higher outputs through the application of nitrogen
fertilizers and other resources (Guo et al., 2010). Wei and
Jiang (2012) noted that approximately 612 kg fertilizer N
ha−1 year−1 was used in orchards of the Jiaodong Peninsula,
and the amount was still increasing. Goulding and Annis
(1998) showed that 4 kmol H+ can be generated from each
50 kg ha−1 year−1 of added ammonium-N, which requires

approximately 500 kg CaCO3 to neutralize it in field con-
ditions. Moreover, large amounts of base cations, such as
calcium and magnesium in the soils are lost through leaching
and uptake by fruit trees (Rengel et al., 2000; Xu, 2015).
Over a long planting duration, soil acidification might be-
come more severe because of the constant application of
ammonium-N fertilizers and a decline in exchangeable bases
(Li et al., 2014). Planting duration significantly impacted soil
pH, as can be seen in the LMEM analysis results (Table II).
The variances in soil pH among different planting duration
categories were highly significant (P < 0.001), indicating
that planting duration is an important factor influencing
the spatial distribution pattern of soil pH in the study area.
Interactions between soil types and planting durations also
exhibit a strong influence on soil pH (P < 0.05) (Table II).
This indicates that planting duration is an effective measure
of historical practices and has the potential to further improve
the accuracy of interpolation of soil pH along with soil type.

Geostatistical analysis

Semivariograms can provide clear descriptions of the
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spatial structure of soil properties and insights into possi-
ble processes influencing their spatial distributions (Paz-
Gonzalez et al., 2001; Qu et al., 2013b). As presented in
Table III and Fig. 3, the five auto- and cross-semivariograms
were all well-fitted by exponential models. It has been re-
ported that if the R2 of the semivariogram model is below
0.5, the spatial dependence of the variable is weak (Duffera
et al., 2007). In the present study, the five fitted semivari-
ograms all had moderate R2 of 0.763, 0.702, 0.697, 0.693,
and 0.659, showing that the spatial dependencies of the
variables were moderate. After the mean values of each
categorical group were eliminated, the parameters nugget
(C0)/sill (C0/(C0 + C)), where C is the partial sill, and
sill (C0 + C) as the ranges for the residuals, all decreased
compared with those of the original soil pH data. The large
differences between the semivariograms indicate that the
mean soil pH values (local trend) in each group had substan-

tial effects on the semivariances (Liu et al., 2006; Zhang et
al., 2011). Not accounting for the local trend would increase
the uncertainty of spatial prediction (Liu et al., 2006; Zhang
et al., 2011). Thus, it was necessary to remove the drift to
improve interpolation accuracy (Zhang et al., 2010; Shi et
al., 2011). Among the model parameters for the four kriging
combined with auxiliary information methods (Fig. 4), in
general, the cross-(auto-)semivariograms of rST(x)×rPD(x)
and rSTPD(x) had smaller C0 and C0+ C than rST(x) and
rPD(x). Thus, the local trend was further reduced when
combining together soil type and planting duration informa-
tion. The semivariograms between rST(x) and rPD(x) show
strong spatial co-variability, which echoes the strong rela-
tionship (r = 0.938**, P < 0.01) shown in their scatterplot
in Fig. 4. A linear model of coregionalization was fitted
to the auto- and cross-semivariograms (rST(x), rPD(x) and
rST(x)× rPD(x)), which ensured the same spatial structure

TABLE III

Geostatistical parameters of models fitted to auto- and cross-semivariograms

Parametera) Model Nugget (C0) Sill (C0 + Cb)) C0/C0 + C Range RSSc) R2d)

m
pH Exponential 0.260 0.936 0.278 6 900 1.98 × 10−2 0.763
rST(x) Exponential 0.180 0.835 0.216 4 800 1.18 × 10−2 0.702
rPD(x) Exponential 0.210 0.890 0.236 4 800 2.23 × 10−2 0.697
rST(x) × rPD(x) Exponential 0.120 0.816 0.147 4 800 1.13 × 10−2 0.693
rSTPD(x) Exponential 0.146 0.798 0.183 3 900 6.51 × 10−3 0.659
a)rST(x) = residual in the ordinary kriging combined with soil type method; rPD(x) = residual in the ordinary kriging combined with planting duration
method; rSTPD(x) = residual in the ordinary kriging combined with soil type and planting duration method.
b)Partial sill.
c)Residual sum of squares.
d)Coefficient of determination.

Fig. 3 Auto- and cross-semivariograms of soil pH and the associated residuals pH (a), residual in the ordinary kriging combined with soil type method
(rST(x)) (b), residual in the ordinary kriging combined with planting duration method (rPD(x)) (c), rST(x)× rPD(x) (d), residual in the ordinary kriging
combined with soil type and planting duration method (rSTPD(x)) (e).
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Fig. 4 Relationship between residual in the ordinary kriging combined
with soil type method rST(x) and residual in the ordinary kriging combined
with planting duration method rPD(x).R2 = coefficient of determination.

with equal ranges (only nuggets and sills were different) were
utilized in the semivariograms (Bilgili et al. 2011; Wang et
al. 2013). Therefore, rPD(x) may be chosen as the auxiliary
variable during the interpolation of rST(x).

Generally, strong spatial dependence of soil properties
can be attributed to intrinsic factors (soil formation factors,
such as soil parent materials and soil type), whereas weak
spatial dependence can be attributed to extrinsic factors (soil
management practices, such as fertilization and planting
duration) (Cambardella et al., 1994; Wu et al., 2009). In the
current study, the C0/(C0 + C) of the soil pH was 0.278,
which was between 0.25 and 0.75, and thus characteristic of
moderate spatial dependence. This indicates that the spatial
variability of soil pH might be affected by both intrinsic and
extrinsic factors. The C0/(C0 +C) for the residuals after re-
moval of local means were all lower than 0.25, demonstrating
strong spatial dependence of the residuals.

Comparison of the accuracy of prediction

The correlation coefficients r, ME, and RMSE of the
five kriging methods are shown in Table IV. For comparison,
statistics for the determined pH values at these same sites are
included. Most of the MEs of soil pH (except for OK_PD)
interpolated with auxiliary information weremuch closer to 0

than OK, which indicates that soil type and planting duration
information may help the interpolator to be a more unbiased
model. The RMSEs were generally in a descending order
for all methods: OK > OK_ST > OK_PD > OK_STPD >
OCK_STPD. The strengths of the correlations between the
observed and estimated pH values obtained using different
interpolation approaches were all significant (P < 0.01). The
lowest r was from the OKmethod (r = 0.457, P < 0.01) and
the largest was from the OK_STPDmethod (r = 0.506, P <
0.01). Compressions in the overall range of predicted soil
pH values were ameliorated by integrating useful auxiliary
information, although no method successfully predicted the
largest and smallest soil pH values. Relative to the OK_ST
and OK_PD methods, OCK_STPD and OK_STPD provided
improvements in accuracy of prediction, implying that using
planting duration along with soil type could improve the
quality of pH predictions. As reported by Goovaerts (1999)
andMiháliková et al. (2015), the contribution of the auxiliary
information to the cokriging estimation depends not only on
the correlation between primary and auxiliary variables, but
also on their patterns of spatial continuity. The OCK_STPD
method demonstrated a clear benefit from cokriging of the
two residuals in the present study, thus the introduction of
planting duration residuals helped improve the accuracy
of prediction. The OK_STPD method generated a better
result than OK_ST or OK_PD, consistent with previous
studies in which soil organic content was interpreted using
information on soil type and land use (Zhang et al., 2010;
2011). The OCK_STPD and OK_STPD methods exhibited
similar efficiencies in mapping soil pH of the study area
but the OK_STPD method was more effective in predicting
the peak and low values. For the reasons mentioned above,
planting duration was one measurement that represented
historical practices related to orchard soils, and thus could
be used along with soil type to further improve the accuracy
of interpolation.

Differences in prediction errors between OK and kri-
ging combined with auxiliary information might have been
derived from a variety of sources (Zhang et al., 2015).
Smoothing effects may be the major source of prediction

TABLE IV

Summary statistics for determined and estimated soil pH at 442 sites of the testing set as predicted by five kriging methodsa)

Parameterb) Determined OK OK_ST OK_PD OCK _STPD OK_STPD

ME −0.014 −0.012 0.019 0.008 0.010
RMSE 0.830 0.820 0.816 0.806 0.811
r 0.457** 0.473** 0.490** 0.494** 0.506**
Minimum 4.19 4.76 4.58 4.54 4.86 4.15
Maximum 8.49 7.80 7.72 7.79 7.91 8.06
Mean 5.94 5.94 5.93 5.96 5.94 5.95
Median 5.83 5.91 5.90 5.91 5.89 5.93
SD 0.93 0.52 0.54 0.57 0.52 0.57
**Significant at P < 0.01.
a)OK= ordinary kriging; OK_ST= OK combined with soil type; OK_PD= OK combined with planting duration; OCK_STPD= cokriging combined with
soil type and planting duration; OK_STPD = OK combined with soil type and planting duration.
b)ME = mean error; RMSE = root mean square error; r = correlation coefficient; SD = standard deviation.
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uncertainty because the least square principle is utilized to
minimize the local error (Kerry and Oliver, 2007; Chai et al.,
2008). Smoothing effects are a widely known characteristic
of geostatistical interpolation techniques that lead to under-
estimation of high values and overestimation of low values
(Lark and Webster, 2006; Xie et al., 2011; Fu et al., 2018).
In the present study, without accounting for the difference
among soil types or planting durations, the interpolated soil
pH data via OK resulted in highest variation. This was pri-
marily because the soil pH data between different soil types
and (or) planting durations were significantly different. If
the original soil pH data are interpolated with OK directly,
a strong smoothing effect will be produced to reduce the
prediction accuracy. However, the impact of the smoothing
effect was gradually reduced when applying the OK_ST or
OK_PD method, which accounted for the variation among
soil types or planting durations. The effects of smoothing on
the OCK_STPD and OK_STPD methods were still smaller,
because account was taken of the variability caused by both
soil type and planting duration, and the estimated soil pH
values were more accurate over a larger range (Zhang et al.,
2010).

Spatial distribution maps of orchard soil pH

The soil pH spatial distribution maps predicted by the
OK, OK_ST, OK_PD, OCK_STPD, and OK_STPDmethods
are shown in Fig. 5. Themaps are displayedwith the same soil
pH range classification scale to facilitate comparisons among
the various methods. All maps showed the same distribution
trends of soil pH values over the study area. Apart from
this, the maps estimated and generated by diverse methods
differed significantly. The soil pH range 5.00–6.00 was the
largest in area, as expected from the sample statistics. The
OK method generated a very smooth map. The predicted soil
pH values were very flat and their differences among various
soil types and (or) planting durations cannot be distinguished
easily. However, the OK_ST, OK_PD, OCK_STPD, and
OK_STPD methods generated maps with detailed struc-
tures, which had higher and lower values in local areas than
OK. The polygons were more fragmented and with abrupt
changes that reflected the variations in soil type and planting
duration. Thus, kriging combined with auxiliary information
methods exhibited better interpolation quality than the OK
method. Among the four kriging combined with auxiliary

Fig. 5 Interpolated soil pH maps of the Northeast Jiaodong Peninsula generated using five kriging methods. OK= ordinary kriging; OK_ST=OK combined
with soil type; OK_PD = OK combined with planting duration; OCK_STPD = cokriging combined with soil type and planting duration; OK_STPD = OK
combined with soil type and planting duration.
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information methods, to a lesser degree, the OCK_STPD
and OK_STPD methods produced more detailed maps than
OK_ST or OK_PD, indicating the advantage of integrating
planting duration along with soil type information. However,
extremely high and low soil pH values were rarely observed
in the four interpolated maps, indicating that the smoothing
effect was evident even in the kriging combined with au-
xiliary information methods. Only the OK_STPD method
seemed effective in reducing the smoothing effect compared
with other methods. In conclusion, the OCK_STPD and
OK_STPD methods better modeled the local pH spatial
variability and are recommended for interpolating soil pH,
or even other soil properties, in the orchards. However, the
delineation of planting duration based on Voronoi tessella-
tions might be inaccurate because the shape and area of the
Voronoi polygons did not match the outlines of the true or-
chards. More observations of planting duration are required
to further improve the interpolation accuracy of soil pH.

CONCLUSIONS

On the Northeast Jiaodong Peninsula, orchards have
recently been exhibiting soil acidification, and a clear cor-
relation has been observed between soil acidification and
planting duration. Soil pH exhibited wide spatial variabi-
lity in the region owing to complicated variations in soil
type and different planting durations. The OCK_STPD and
OK_STPD methods were more promising spatial interpo-
lation methods for improving the accuracy of prediction
compared to OK, OK_ST, and OK_PD, clearly accounting
for differences among soil types and planting durations. The
results of this study suggest that planting duration may be
used as a measurement that represents historical practices
related to orchard soils. Categorical soil type and planting
duration information may be used as ancillary information
to improve the mapping quality of orchard soil pH. The
OCK_STPD and OK_STPD methods were practical and
efficient methods for spatial prediction of orchard soil pH
on the Northeast Jiaodong Peninsula. These methods may
be used to map the spatial variability of soil pH in other
orchards in China and elsewhere in the world.
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