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A B S T R A C T

Water containing organic and carcinogenic pollutants has become a serious environmental problem, threatening
the life of the aquatic ecosystem and human beings. Molybdenum disulfide (MoS2), especially monolayered
MoS2 sheets, has been proven as an effective catalyst for degradation of organic contaminants due to its more
exposed edges and active sites for electron transfer. However, monolayered MoS2 nanosheets easily aggregate
due to their high surface energy and strong π-π electron interaction, heavily affecting the catalytic performances.
In addition, monolayered MoS2 nanosheets with small tiny size are difficult to recover from the mixture, re-
stricting the capacity of recyclability and further mass application. Herein, we solved these issues via supporting
the small tiny MoS2 nanosheets on spherical montmorillonite (SMt). The SMt can not only provide large pore
volume and specific surface area for supporting abundant MoS2 but also reduce the fouling and enhance the
transport during the mass production process. The prepared microspheres exhibited a high catalytic activity
towards organic pollutants including methylene blue (MB) and 4-nitrophenol (4-NP) in the presence of NaBH4

due to the strong adsorption capacity of SMt and the large catalytic surface area for electron transfer.
Furthermore, the micro-sized granular catalyst can be facile recovered and reused without any devices involved
due to the excellent self-sedimentary capacity and large size. Moreover, the catalytic performance and the
morphology were almost unaltered after recycling 20 times. Our straightforward strategy to solve the issues
through porous micro-sized self-sedimentary SMt supporting tiny monolayered MoS2 nanosheet with high cat-
alytic activity facilitates the practical application of these kinds of catalyst towards the reduction of organic and
carcinogenic pollutants.

1. Introduction

Most of the organic dyes and their intermediates are carcinogenic
and easily soluble in water [1]. Very low concentration in water can
alter the color, thus changing the refraction index of water, which is not
only caused the visual pollution but also interfered with the absorb
sunlight of aquatic life [2–5]. To solve this problem, a variety of ap-
proaches have been developed to remove these pollutants, including
physical adsorption [6,7], chemical and biological methods [8]. Among
them, chemical catalytic method has been proved as an effective

approach to fast degradation with low cost and easy operation [9–14].
Layered ultrathin two-dimensional (2D) nanomaterials have become
one of the most promising catalytic materials due to their capacity of
providing abundant active sites for catalysis [15,16]. As one of the
typical 2D nanomaterials, molybdenum disulfide (MoS2) nanosheets
consist of covalently bonded S-Mo-S layers [17]. Compared with bulk
MoS2, mono- or few layered MoS2 nanosheets provide abundant active
sites for catalytic reduction of organic pollutants due to its under-co-
ordinated sulfur atoms at the edges [18]. However, the nanosheets
easily stack together due to van der Waals interaction during the
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catalytic process, thereby heavily decrease the number of active sites
and catalytic activity. Previously, nanoparticles such as carbon nano-
tube [19], graphene [20,21], and TiO2 [22] were used as the nano-
supported substrate to disperse and anchor the MoS2 nanosheets. These
nano-sized substrates were well hybridized or wrapped by the MoS2
nanosheets to obtain the stable carbon nanotube/MoS2, graphene/
MoS2, and TiO2/MoS2 nanocomposites. Nevertheless, the application of
these fabricated nanocomposites was still limited by the critical issues
of recyclability due to their tiny nano size.

Montmorillonite (Mt) is a natural nanomaterial, has strong ad-
sorption capacity and has been used as a good substrate for supporting
MoS2 [23–29]. For example, Peng et al. designed and successfully
fabricated Mt/MoS2 catalyst with MoS2 nanosheets intercalating in the
interlayer of Mt [30] and MoS2 nanosheets depositing on the surface of
Mt [31]. Although the prepared Mt/MoS2 catalyst exhibited a good
catalytic activity towards organic pollutant 4-nitrophenol (4-NP), their
mass applications are still restricted by the problem of recyclability
because the deposit rate of Mt based catalyst in the mixture is highly
limited by the excellent hydrophilicity and swelling ability of Mt.
Therefore, a great number of recovered devices are involved which
heavily increases the cost of wastewater treatment.

Spray-drying is a proven technique in the industry to fabricate
granulation with microsize to millimeter-size [32]. In our previous
work, Mt were granulated to spherical micro-sized microsphere through
this technology [33–35]. The stacked Mt forms a porous structure and
provides abundant surface areas to support active sites. In addition, the
granular treatment can obviously enhance the transport ability during
the productive process, facilitating mass prodution of these kinds of
catalysts [36]. Furthermore, the density of the prepared granular Mt
microsphere is much higher than the mixture, which can be self-sedi-
mentary and easy recovered from the bottom. In this work, we fabri-
cated micro-sized spherical Mt (SMt) with large specific surface areas,
followed by adhering to the tiny MoS2 nanosheets on the surface of SMt
through the polydopamine (PDA) coating [37]. PDA has been demon-
strated the strong adhesion on various substrates [38]. The model or-
ganic pollutants, methylene blue (MB) and 4-nitrophenol (4-NP) were
selected to evaluate the catalytic performances. Moreover, the recycl-
ability was investigated. As we know, this is the first report of syn-
thesized SMt/MoS2 for catalytic reduction of MB and 4-NP, successfully
solving the engineering problem through a physical method.

2. Experimental

2.1. Chemicals

All chemicals and reagents were used as received without any fur-
ther purification. They include dopamine hydrochloride (DA, Sigma
Aldrich, ≥ 98.0%), monolayered molybdenum disulfide (MoS2, Sigma-
Aldrich, ≥ 98.0%), montmorillonite (Mt, (Na, K, Ca)0.33(Al1.67Mg0.33)
Si4O10(OH)2·nH2O), Sinopharm Chemical Reagent Co. Ltd., China,
≥98.0%), methylene blue (MB, Tianjin Guangfu Reagent Co., China,
≥98.0%), 4-nitrophenol (4-NP, Tianjin Guangfu Reagent Co., China,
≥98.0%), sodium borohydride (NaBH4, Sinopharm Chemical Reagent
Co. Ltd., China, ≥99.0%), and Tris-HCl buffer (Beijing Solarbio Science
& Technology Co., Ltd, China).

2.2. Granulation of Mt and fabrication of spherical Mt supported MoS2

Spray drying technology was applied to fabricate spherical Mt
(SMt). First, 10.0 g Mt was mixed with 100 mL ethanol and sonicated
for 4 h. Then the suspension was adding to the spray-dryer (YC-015,
Shanghai Pilotech Instrument & Equipment Co. Ltd) using a peri-
staltic pump. The feed rate was set as 50 mL min−1 and the drying
temperature was set as 110 °C, respectively. Finally, the granular SMt
with the mean size of about 20 μm was obtained. The prepared SMt was
used as the substrate to support MoS2. Typically, 1.0 g DA and 20 mM

Tris-HCl buffer were added in 200 mL water to form the mixture. The
pH was adjusted to 8.5 using 0.1 M of NaOH solution. After the color of
the solution changed to dark yellow, 2.0 g SMt was added to form the
suspension. Through 6 h shaking, the color of suspension changed to
black and then filtered. The black product was fully washed by a 25%
isopropyl alcohol-water solution and then dried in a vacuum oven at
60 °C for 24 h to obtained the black microsphere. On the other hand, the
monolayered MoS2 nanosheets were mixed in aqueous solution with a
concentration of 0.1 mg⋅mL−1, followed by ultrasound treatment for at
least 4 h via a cell disruptor to get the dark black suspension. The dark
black suspension was separated by the centrifugal separation at
12,000 rpm for 2 min. The faint yellow supernatant was extracted and
mixed with the prepared black microsphere using a rotator for at least
6 h. After the filter separation, the microspheres were dried to obtain
the final product.

2.3. Characterization

The Fourier transform infrared (FTIR) spectra of samples were ob-
tained through a Perkin-Elmer 2000 Fourier transform infrared spec-
trometer with KBr pressed pellets. Scanning electron microscopy (SEM)
was performed using a Jeol S4800 scanning electron microscope and an
energy-dispersive detector. Transmission electron microscopy (TEM)
and atomic force microscopy (AFM) were carried out using a JEM-2200
transmission electron microscope and Multi-Mode 8 atomic force mi-
croscope, respectively. X-ray diffraction (XRD) measurements were
performed with Bruker D8-Advantage powder diffractometer using Cu
Kα radiation (40 kV, 110 mA). X-ray photoelectron spectroscopy (XPS)
measurements were taken using Thermo EscaLab 250Xi spectrometer.
Nitrogen adsorption measurements were carried out at 77 K using an
ASAP2020 analyzer. The UV absorption spectra were measured using a
PERSEE UT 1810 UV–vis spectrometer.

2.4. Adsorption experiment

10.0 mg samples were engaged in a 100 mL aqueous solution con-
taining 100 mg L−1 MB and fully mixed. Then the UV–vis absorption
spectra of organic pollutants at a certain interval were recorded. The
removal percentages of organic pollutants are calculated following the
equation (1) [6]:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×R C C
C

100%0 t

0 (1)

Where R is the removal percentage of organic dyes, the Co (mg L−1) and
Ct (mg L−1) are the initial dye concentration and the concentration of
reaction time, respectively.

The equilibrium concentration is calculated according to equation
(2) [39]:

= −q (C C )V/We 0 e (2)

Where qe is the amounts of organic pollutants adsorbed on the samples
at equilibrium, C0 (mg L−1) and Ce (mg L−1) are the initial and equi-
librium concentrations of organic pollutants solution, respectively, V is
the volume of the reaction solution (L) and W is the mass (g) of the
samples.

The reduction efficiency of organic pollutants is calculated fol-
lowing the equation (3):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×E C C
C

100%0 t

0 (3)

Where E is the reduction efficiency of organic pollutants, the Co (mg
L−1) and Ct (mg L−1) are the initial and equilibrium concentration of
organic pollutants, respectively.
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2.5. Catalytic reduction

The catalytic reduction of organic dyes was carried out to assess the
catalytic activity and reusability of the prepared microsphere. The ca-
libration curves of organic dyes and their intermediates are shown in
Fig. S1. Typically, 10 mL organic dyes (250 mg L−1) and 20 mg
(200 mg L−1) catalyst were mixed with 80 mL deionized water. After
fully stirring, 10 mL NaBH4 (0.5 M) aqueous solutions was added. As
the color of organic dyes vanished, the prepared microsphere was easily
separated from the mixture due to the self-sedimentary property. Then,
the catalyst was further added to the new solution containing organic
dyes and NaBH4 to finish one cycle. All the processes were fully re-
corded by the UV–vis spectrometer.

3. Results and discussion

3.1. Synthesis and characterization of SMt/MoS2 microspheres

Porous granular Mt substrates were first prepared through the
spray-drying technology. As shown in Scheme 1, after fully sonicated
with ethanol, the mixed suspension was granulated through a spray
dryer. The granular Mt was modified by dopamine and a black coating
was formed on the surface. The strong adhesion capacity of PDA coating
could easily fix the tiny MoS2 nanosheets and thus fabricated the SMt/
MoS2 microsphere.

The granulation process of Mt is not only enhanced the size of Mt
but also improved the pore size and flowability of the prepared catalyst
[36]. Therefore, the morphology was observed by the SEM, TEM, and
AFM. As shown in Fig. 1a, the pristine Mt exhibits an amorphous
morphology with the Mt sheets loose stacking (Fig. S2a). After the
spray-drying process, the granular particle with a smooth surface and a
mean diameter of about 20 μm were successfully fabricated (Fig. 1b).
The PDA coated process has almost unaltered the morphology (Fig. 1c).
However, the obviously rough surface could be observed after de-
posited MoS2 nanosheets (Fig. 1d). Difference from the prinstine Mt, a
dense and porous morphology with Mt sheets tight stacking can be
observed from Fig. S2b. As shown in the inset of Fig. 1d and Fig. S3, a
thin ~4 nm layer was well deposited on the SMt. The small nanosheets
were determined to be MoS2, exhibiting strong Mo and S element peaks
by EDX shown in Fig. S4. The crystal phases of MoS2, SMt, and SMt/
MoS2 microsphere were analyzed by X-ray diffraction, and the data is
exhibited in Fig. 2. The SMt with the crystallite size of 14.9 nm cal-
culated from the (100) peak using Scherrer equation contained smec-
tite (fcc, JCPDS card no. 13-0135) and quartz (fcc, JCPDS card no. 46-
1045) [40]. The peaks at 2θ of 14.2°, 32.9°, 39.1°, 48.5°, and 58.3°
appear, which can be assigned to the (002), (100), (103), (105), and
(110) crystal faces of 2H-MoS2 (fcc, JCPDS card no. 37-1492), con-
firming the successfully supported MoS2 on the SMt (Fig. 2) [20,25].
The crystallite size of MoS2 nanosheets was estimated from (002) peak
as 7.7 nm, which is similar to the result of AFM (the thickness of the
nanosheets is about 4 nm, Fig. 1e). The small-sized nanosheets can be
easily supported on the micro-sized SMt substrates and provided
abundant active sites for the reaction. For the SMt/MoS2 microsphere, it
exhibits the peaks of SMt and MoS2, reflecting the good composition of
SMt/MoS2 microsphere. The crystallite size of SMt/MoS2 microsphere
was calculated as 14.5 nm, which is almost the same with the SMt,

demonstrating the higher content of SMt in the SMt/MoS2 microsphere.
XPS measurements were carried out to investigate the surface elemental
composition and chemical status of the prepared microsphere. As
shown in Fig. 1f, the peaks corresponding to C, O, Si, S, Al, and Mo can
be observed, well consistent with the formation of SMt/MoS2 micro-
sphere. The atomic percentages of Mo and S elements on the surface of
the microsphere were calculated as 0.11% and 0.17%, which is well
agreeing with the theoretical values for MoS2. As shown in Fig. S5, for
the pristine MoS2 nanosheets, the peaks of Mo 3d3/2, Mo 3d5/2, and S
2 s are 233.1 eV, 229.7 eV, and 226.9 eV, respectively. The higher peak
at 237.1 eV is assigned to the Mo 3d3/2 of MoO3, which is derived from
the adsorbed oxygen molecule [20]. For the samples of SMt/MoS2 mi-
crosphere, no peak of MoO3 can be observed (Inset of Fig. 1f), de-
monstrating the no effect of catalytic activity of SMt/MoS2 micro-
sphere. Furthermore, the peaks of Mo 3d are shifted to the higher
energy value, reflecting the electronic interaction between MoS2 and
SMt. The enhanced interaction facilitates the improve the stability of
microsphere, thereby maintaining the catalytic activities and benefiting
the recovery and reuse. In addition, corresponding to the TEM image,
the EDX mapping of Mo and S elements exhibit the same region, de-
monstrating the immobilization supporting of MoS2 nanosheet in the
fabricated microsphere (Fig. 3). Furthermore, the loading of Mo was
quantified by ICP/MS to be 0.4 wt% upon dissolving SMt/MoS2 mi-
crosphere in the strong acid, that is, the loading of MoS2 was calculated
to be 0.67 wt%. Considered the small tiny size MoS2 uniformly dis-
persion on the SMt, the content of loading MoS2 nanosheet can provide
the abundant tiny active sites for catalytic reduction of organic pollu-
tants.

3.2. Adsorption experiments

Through the granulation process, the Mt was stacked to the 2D
microsphere, thus the changes of specific surface area and pore prop-
erties were measured by the N2 adsorption. As shown in Fig. 4a and
Table 1, compared with pristine Mt with a BET specific surface area of
8.2 m2 g−1 and a total pore volume of 0.1 cm−3/g, the values of
granular SMt greatly improved to 60.6 m2/g and 0.38 cm−3/g, re-
spectively, reflecting the well pore-making ability of spray-drying.
Furthermore, the values were slightly decreased to 45.6 m2/g and
0.24 cm−3/g after the surface coating process and further decreased to
31.3 m2/g and 0.20 cm−3/g after the supporting process, which is still
much higher than pristine Mt. The decreased values after the sup-
porting process is mainly due to the weak N2 adsorption capacity of
MoS2, as shown in Fig. 4a and Table 1. The large pore size will benefit
the adsorption and catalytic reduction of organic dyes due to the op-
portunity for contacting with the catalyst and organic dyes. The ad-
sorption towards organic dyes was monitored by UV–Vis absorption
spectra and MB with the band of 665 nm was selected as a model here.
Samples including pristine Mt, SMt, PDA-coated SMt, and SMt/MoS2
exhibited similar adsorption with three stages, the first fast adsorption
process, gradually increased stage, and the final equilibrium stage. Al-
though all samples exhibited similar first fast adsorption behaviors, the
gradual stage is quite different due to the differences of the intra-par-
ticle diffusion-rate controlling process. Compared with the pristine Mt,
the intra-particle diffusion-rate of SMt, PDA-coated SMt, and SMt/MoS2
is prolonged. The samples reach the equilibrium stage as the max

Scheme 1. The synthesized route for the fab-
rication of SMt/MoS2 microsphere, including
the first spray-drying and further fixed tiny
MoS2 nanosheets on the prepared SMt through
dopamine chemistry method.
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adsorption is achieved (Fig. 4b). Among the samples, SMt exhibited the
largest adsorption capacity of 992 mg g−1, which is increased about
68.7% compared with pristine Mt. It can be attributed to the well
granular process of Mt. SMt/MoS2 slightly decreased the adsorption
capacity to 870 mg g−1, the value is much higher than other substrates
reported in the works of literature (150 mg g−1 [41], 365 mg g−1 [22]).
The enhanced adsorption ability can effectively improve the con-
centration of organic pollutants near the surface of the catalyst, thus
improve the catalytic activity [39]. As the high adsorption capacity was
obtained, the high catalytic performance is highly desirable.

3.3. Catalytic properties

The catalytic capacity of the prepared SMt/MoS2 microsphere was
evaluated through the color variation of organic dyes suffering from the
catalytic reduction under NaBH4. The peaks of MB and 4-NP, with the
initial peak at 665 nm and 400 nm, respectively, were decreased with
the prolonging catalytic reduction time. The process can be easily
monitored by UV–vis spectroscopy. As shown in Fig. 5a and 5b, the
absorbance peak decreases rapidly within 7 min and 6 min, respec-
tively. The catalytic reduction process is not only eliminated the visual
pollution but also alter the carcinogenicity to low and no bioactivity
[34]. For example, upon the catalytic reduction process, the color of the
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Fig. 1. SEM images of the Mt (a), SMt (b) with inset enlarging image, PDA@SMt (c) and SMt/MoS2 (d) microspheres with inset high-resolution TEM spectra. AFM
image with inset corresponding thickness of MoS2 nanosheet (e). XPS spectra of SMt/MoS2 with inset high-resolution XPS spectra of Mo 3d and S 2s regions (f).
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MB solution changed from blue to almost colorless, accordingly, the
carcinogenic MB was altered to inactive form leucomethylene blue
(LMB) [35]. Furthermore, reaction kinetics were investigated. As shown
in Fig. 5c, both the catalytic processes of samples exhibit the linear
relationships, demonstrating the pseudo-first-order reaction kinetics.
From the linear relation of ln (Ct/C0) with the reaction time, the ap-
parent reduction rate constant (K) was obtained. The values of K were
0.381 min−1 and 0.307 min−1 for MB and 4-NP, respectively. The
catalytic mechanism of SMt/MoS2 microsphere is based on the electron
transfer from the electron donor to the electron accepter [35]. The
catalytic activity is mainly related to the surface area providing for
electron transfer. Thus, the optimized K can be obtained through tai-
loring the concentration of catalyst. As shown in Fig. 5d, the K values
can increase linearly to 0.755 min−1 with the concentration of SMt/
MoS2 microsphere increasing from 200 mg L−1 to 1000 mg L−1 and
unaltered concentration of 4-NP and NaBH4 (250 mg L−1 and 0.5 M,
respectively). The K towards 4-NP is much higher than the MoS2
(0.235 min−1) and Mt/MoS2 (0.874 min−1 and 0.723 min−1) reported
in the literature due to the good dispersion of MoS2 nanosheets and
high adsorption of SMt substrates towards organic dyes [30,31].

3.4. Recyclability examination

Considered the cost of MoS2 and water containing organic pollu-
tants, recyclability is the most promising approach for the application
of the prepared SMt/MoS2 microsphere. In this work, successive 20
cycles were applied to evaluate the recyclability of prepared catalysts.
As shown in Fig. 6a and b, SMt/MoS2 exhibits excellent catalytic sta-
bility achieving almost 100% efficiency in the 15 cycles and slightly
decreasing less than 1.5% in the 20 cycles. Furthermore, as shown in
Fig. 6c and d, the catalytic performance is almost unaltered upon 20
cycles. The K decreased by less than 5%. The mass loss percent of SMt/
MoS2 microsphere after recovery was weighted. After the centrifugation
process, the values of the microspheres after 1, 5, 10, and 20 cycles for
catalytic reduction of MB were decreased by 98.5 wt%, 97.2 wt%,
96.4 wt%, and 95.5 wt%, well agreeing with the decreased ratio of K.
Thus, the slightly decreased K after recyclability experiment can be
attributed to the mass loss of catalyst. Furthermore, as shown in Fig. 6e
and f, the morphology of the prepared SMt/MoS2 microsphere was al-
most unchanged after 20 cycles. In addition, as shown in Fig. S6, the
XRD pattern of SMt/MoS2 microsphere after catalytic cycle 20 times
was almost unaltered. All their results reflect the excellent stability of
the prepared microsphere.

4. Conclusions

The micro-sized granular SMt/MoS2 microsphere was facile fabri-
cated through the polydopamine method. MoS2 nanosheets stably fixed
on the surface of porous SMt, effectively solving the aggregation pro-
blem and further providing the abundant active sites. Besides, the
prepared microsphere can effectively adsorb the organic pollutants due
to its porous structure, thus, improved the concentration of organic
pollutants near the surface of catalysts. These advantages validly fa-
cilitate the catalytic performance of organic pollutants. Furthermore,
the prepared SMt/MoS2 microsphere can be easily recovered from the
mixture without any device involved due to the self-sedimentary
property. After recycling 20 times, the morphology of SMt/MoS2 mi-
crosphere still keep stable and the catalytic reduction efficiency was
almost unaltered. Our straightforward approach to solving the
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problems of aggregation and recyclability through self-sedimentary
micro-sized porous granular nanomaterials as the substrate may pave a
promising way to produce high-performance catalyst for application.
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Table 1
Mesoscale properties of Mt, SMt, PDA/SMt, SMt@MoS2, and MoS2.

Sample BET surface area
(m2 g−1)

Pore volume
(cm3 g−1)

Mt 8.2 0.10
SMt 60.6 0.38
PDA/SMt 45.6 0.24
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