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1  |   INTRODUCTION

Invasive plants have caused serious damages to native biodi-
versity, local habitats, and even public health and economy by 
outcompeting with native plants and rapidly expanding (Liao, 
Gao, & Fang,  2013; Pimentel,  2002). Various clearing mea-
sures, such as clipping, pulling, digging, and applying herbi-
cides, are widely used to control invasive plants (Shimeta, Saint, 
Verspaandonk, Nugegoda, & Howe, 2016; Tang et al., 2009; 
Waryszak, Lenz, Leishman, & Downey, 2018). Although some 
successes have been achieved, these measures always bring high 
cost, and chemical measures may impose damages to native 
species (Liao et al., 2013; Simmons et al., 2007). Furthermore, 
physical clearing measures leave amounts of plant wastes, and 

lead to serious environmental pollution (de Lange, Stafford, 
Forsyth, & le Maitre, 2012). Utilizing these wastes as a kind 
of resource presents a promising and sustainable strategy for 
management of invasive plants (Liao et al., 2013).

As an environmentally benign material, biochar attracts 
increasing attentions for the resource utilization of invasive 
plant wastes by transforming them into valued materials 
(Liao et al., 2013). Biochar is produced by pyrolyzing or-
ganic matters at high temperature with limited or no oxy-
gen supply (Ahmad et al., 2014; Moore et al., 2018), and 
has promising use in carbon storage, environmental reme-
diation, soil amelioration, and agricultural productivity im-
provement (Oliveira et  al.,  2017; Xu et  al.,  2017; Zhang 
et al., 2017). These environmental applications of biochar 
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Abstract
Converting feedstocks of invasive plants into biochar is a new and cost-effective 
measure for their control, and benefits for the sustainable development of native 
ecosystems. Spartina alterniflora, an invasive plant widely distributed in coastal 
wetlands of China, was used to produce biochar. We aimed to analyze how S. alterni-
flora biochar properties changed with desalination of feedstocks, pyrolysis tempera-
ture, and residence time. Results showed that desalting feedstocks increased biochar 
pH, stability, porosity, and surface area, but diminished biochar yield and polarity. 
Pyrolysis temperature positively affected biochar pH, surface area, and pore volume, 
while it had negative effects on biochar yield, oxygen and hydrogen contents, hy-
drogen/carbon and oxygen/carbon ratios, pore size, and function groups. However, 
residence time of pyrolysis had slight effects on biochar properties. The results are 
valuable for optimizing pyrolysis temperature and pretreatment measure of feed-
stocks, to tune S. alterniflora biochar properties for specific environmental usage.
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are attributed to its high organic C contents, large specific 
surface area and porosity, and diverse functional groups 
(Oliveira et al., 2017).

Multiple carbonaceous feedstocks were used to produce 
biochar, such as agricultural residues (Vu et al., 2017; Zhao 
et al., 2018), forest residues (Fernandes et al., 2019; Mohan 
et al., 2007), manures (Wang & Liu, 2018; Wei et al., 2018), 
activated sludge (Stefaniuk, Tsang, Ok, & Oleszczuk, 2018; 
Waqas, Khan, Qing, Reid, & Chao, 2014), and waste biomass 
(de Jesus, da Cunha, Cardoso, Mangrich, & Romão, 2017; 
Nie et  al.,  2018). Nowadays, invasive plants have also at-
tracted attentions to produce biochar due to their wide distri-
bution and high biomass, for example, Brazilian Pepper and 
Air Potato in southeastern United States (Liao et al., 2013), 
Sicyos angulatus in Korea (Rajapaksha et  al.,  2014; 
Vithanage et  al.,  2014), and Spartina alterniflora in China 
(Li & Wang, 2009; Li et al., 2013). These biochars showed 
effectiveness in removing pollutants from aqueous solutions 
or agricultural soils.

S. alterniflora, a rhizomatous plant native to Northern 
American coast, was introduced to China in 1979 for protect-
ing beach and promoting siltation (Lu & Zhang, 2013; Zheng 
et al., 2016). It distributes widely in Chinese coastal wetlands 
nowadays, and difficult to clear because of its strong adapta-
tion and propagation ability (Li et al., 2009; Wang et al., 2008). 
The annual biomass of S. alterniflora in China is estimated 
to be higher than 2 × 106  t (Lu & Zhang, 2013), presenting 
a promising and sustainable feedstock for biochar. However, 
S. alterniflora is a salt marsh plant with high salt contents (Qin 
et al., 2016). The produced biochar may present risks during 
its utilization in environmental remediation, thus desalination 
treatment for diminishing salt contents in feedstocks is needed 
to reduce potential environmental risks. Although biochar 
properties vary with feedstock types (Ahmad et al., 2014; Li, 
Harris, Anandhi, & Chen, 2019; Ronsse, van Hecke, Dickinson, 
& Prins,  2013), whether desalination treatment of the same 
feedstock affects biochar properties is not well known.

Biochar properties are affected not only by feedstock 
types but also by pyrolysis conditions such as pyrolysis tem-
perature and residence time (Zhao, Ta, & Wang, 2017; Zhou 
et  al.,  2018). Characterizing S. alterniflora biochar that py-
rolyzed under different conditions is critical to produce bio-
char with specific properties for environmental usage. Efforts 
have been taken to produce S. alterniflora biochar at 700°C 
and 400°C for 2 hr, and the biochar was used to remove heavy 
metal (e.g., copper and lead) from water (Li & Wang, 2009; Li 
et al., 2013). However, less data can be acquired from previous 
studies to fully understand S. alterniflora biochar properties.

In the study, untreated and desalted S. alterniflora feed-
stocks were pyrolyzed under different temperature and resi-
dence time to produce biochar. Biochar physical (e.g., yield), 
chemical (e.g., pH and elemental composition), and surface 
properties (e.g., surface morphology, surface area, porosity, 

and functional groups) were examined. We aimed to (a) re-
veal whether and how desalination treatment of feedstocks 
affected biochar properties, (b) analyze how S. alterniflora 
biochar properties changed with pyrolysis temperature and 
residence time. These results help identify the optimal pyrol-
ysis conditions to get specific biochar during resource utili-
zation of S. alterniflora, and provide data for environmental 
application of biochar.

2  |   MATERIALS AND METHODS

2.1  |  Feedstock preparation

S. alterniflora was collected from the Yellow River estuary 
in Dongying city, China. The collected S. alterniflora feed-
stocks were washed using deionized water to remove surface 
contaminations. Half of feedstock materials were soaked in 
deionized water to get the desalted feedstocks. Multiple ex-
periments determined that desalting feedstocks for 3  hr in 
deionized water with the feedstock–water ratio of 1 g:25 ml 
can reduce salt contents in feedstocks to a normal level below 
1.84% (Figure  S1). The desalted and untreated feedstocks 
were chopped into short segments (<5 mm) and air-dried for 
7  days. The feedstock segments were dried in an oven for 
24 hr under 105°C, and sealed in plastic bags.

2.2  |  Pyrolysis method for biochar

To avoid air flowing into ceramic crucibles and create an 
oxygen-limited atmosphere, the oven-dried feedstocks were 
tightly packed into ceramic crucibles, which were then cov-
ered by two layers of aluminum foil. The crucibles filled with 
feedstocks were pyrolyzed under high temperature in muffle 
furnace (SX-G16103) with limited oxygen supply. After the 
temperature in muffle furnace decreased to 25°C, the cruci-
bles were taken out. The produced biochar was sealed in plas-
tic bags and marked feedstock type (desalted or untreated), 
pyrolysis temperature, and residence time.

Our previous thermogravimetric analysis showed that 
S. alterniflora feedstocks were not thermally stable due to 
the sharp mass loss as increasing temperature up to 350°C 
(Figure S2). While the feedstocks presented stable mass loss 
at temperature above 350°C, and followed by slight mass loss 
above 650°C. Thus, to reveal the dynamics of biochar prop-
erties with pyrolysis temperature, feedstocks were pyrolyzed 
at temperature of 350°C–650°C in 50°C intervals for 2 hr, 
which is a widely used residence time. Biochar produced 
from S. alterniflora at 450°C had higher adsorption capacity 
(Qiu, Zhou, Han, & Zhang, 2018). Feedstocks were pyrolyzed 
at 450°C for 0.5, 1, 2, and 3 hr based on previous studies to 
reveal the dynamics of biochar properties with residence time 
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(Chandra & Bhattacharya, 2019; Kong, Gao, Zhou, Zhao, & 
Sun, 2018; Shaaban et al., 2014). The temperature in muffle 
furnace was raised at a rate of 5°C/min.

2.3  |  Analysis of biochar properties

The yield, pH, elemental composition, surface morphology, 
surface area, porosity, and functional group of S. alterniflora 
biochar were measured.

The weight ratio of biochar to feedstock was used to rep-
resent biochar yield (Chandra & Bhattacharya,  2019). The 
pH was measured using pH probe (SL1000, Hach) at the bio-
char-deionized water ratio of 1 g:20 ml after shaking for 1 hr 
and standing for 5 min (Ahmad et al., 2018). Elemental com-
position (C, H, O, and N) was measured with elemental ana-
lyzer (Vario EL cube, Elementar). Surface morphology was 
obtained using scanning electron microscopy (SEM, JSM-
6480LV, Hitachi). The nitrogen gas adsorption/desorption 
isotherms were analyzed at −196°C with automatic instru-
ments (ASAP 2460, Micromeritics). The pore size and vol-
ume were calculated using Barrett–Joyner–Halenda equation, 
and the surface area was calculated using Brunauer–Emmet–
Teller equation (Zhao et al., 2018). Functional groups were 
identified using Fourier transformed infrared spectroscopy 
(FTIR; Zhao et al., 2018). FTIR spectra were obtained from 
400 to 4,000 cm−1 in 4 cm−1 intervals with an FTIR spec-
trometer (Nicolet 6700, Thermo Fisher).

2.4  |  Statistical analysis

SPSS Statistics software version 17.0 (SPSS Inc.) was used 
to perform the statistical analysis of the data. Basic analysis 

of mean, minimum, and maximum was conducted for bio-
char properties. The correlations between biochar proper-
ties (yield and pH) and pyrolysis (temperature and residence 
time) were fitted using the Curve Estimation procedure.

3  |   RESULTS

3.1  |  Biochar yield and pH

S. alterniflora biomass experienced a weight loss near 60% 
at 350°C, and biochar yield ranged from 23.82% in 650°C 
to 42.39% in 350°C (Figure 1a). S. alterniflora biochar yield 
showed a steady decreasing trend as increasing tempera-
ture from 350°C to 650°C. The yield of biochar produced 
from untreated and desalted feedstocks decreased 30% and 
40% as increasing temperature up to 650°C, respectively 
(Figure 1a). The yield of biochar produced from untreated 
and desalted feedstocks decreased only 3.64% and 3.45% 
with residence time increased from 0.5 to 3 hr, respectively 
(Figure 1b). The yield of biochar produced from untreated 
S. alterniflora was higher than that produced from desalted 
feedstocks (Figure 1).

S. alterniflora biochar was strongly alkaline with pH 
ranging from 10.04 to 11.46 (Figure  2a). The pH showed 
a sharp increase as increasing temperature from 350°C to 
500°C, and became steady above 500°C with slight de-
cline from 600°C to 650°C (Figure 2a). The maximum pH 
of S.  alterniflora biochar occurred at 500°C, 11.46, and 
11.04 for biochar produced from desalted and untreated 
feedstocks, respectively. As residence time of pyrolysis in-
creased from 0.5 to 3  hr, the pH only increased 0.21 and 
0.24 units for biochar produced from desalted and untreated 
feedstocks, respectively (Figure 2b).

F I G U R E  1   Changes in biochar yield with pyrolysis temperature (a) and residence time (b)
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3.2  |  Elemental composition

Pyrolysis of raw feedstocks decreased O and H con-
tents, and increased C and N contents (Figure  3a,b). 

Carbonization during pyrolysis induced the increase of C 
contents in S. alterniflora biochar, although the increas-
ing trend was observed with slight fluctuation. The O 
and H contents declined as increasing pyrolysis temper-
ature, and N contents in S. alterniflora biochar showed 

F I G U R E  2   Changes in biochar pH with pyrolysis temperature (a) and residence time (b)

F I G U R E  3   Changes in biochar elemental contents (a, b), H/C ratio (c), and O/C ratio (d) with pyrolysis temperature. C, carbon; H, hydrogen; 
O, oxygen
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no significant changing trend with pyrolysis temperature 
(Figure 3a,b).

The H/C and O/C ratios in S. alterniflora biochar de-
creased as increasing temperature (Figure 3c,d). However, 
the O/C ratio in biochar produced from desalted feedstocks 
increased as increasing temperature from 600°C to 650°C, 
and that of biochar produced from untreated feedstocks in-
creased as increasing temperature from 550°C to 650°C. 
Although O/C ratio increased at high temperature, they 
were still lower at high temperature of 500°C–650°C than 
that at low temperature of 350°C–450°C (Figure 3d).

The C, H, O, and N contents in biochar showed 
no significant changes with different residence time 
(Figure 4a,b). The H/C and O/C ratios showed slight de-
creasing trends as residence time increased from 0.5 to 
3 hr (Figure 4c,d).

The C, H, O, and N contents in biochar produced from un-
treated S. alterniflora were lower than that produced from de-
salted feedstocks (Figures 3 and 4). The O/C ratio of biochar 
produced from desalted S. alterniflora generally was lower 
than that produced from untreated feedstocks (Figures 3 and 4).  

The H/C ratios showed no significant difference between 
biochar produced from desalted and untreated feedstocks 
(Figures 3 and 4).

3.3  |  Surface morphology

Raw feedstocks had little pore, and pores appeared in 
biochar as increasing pyrolysis temperature (Figure  5). 
S. alterniflora biochar pyrolyzed at 350°C showed visible 
tube-like pore structures, and the pore wall of tube-like 
structures became thinner and even collapsed as increas-
ing temperature. Micropores occurred on the pore wall and 
micropores quantity increased as increasing temperature 
(Figure  5). Contrasting with pyrolysis temperature, resi-
dence time had no significant effects on biochar surface 
morphology (Figure 6).

The pore shape of biochar produced from desalted 
S. alterniflora was more irregular than that produced from 
untreated feedstocks, and the quantity of meso- and micro-
pores in desalted biochar was higher than untreated biochar 

F I G U R E  4   Changes in biochar elemental contents (a, b), H/C ratio (c), and O/C ratio (d) with residence time. C, carbon; H, hydrogen; O, 
oxygen
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F I G U R E  5   SEM images of raw feedstocks and biochar produced at different temperatures (only images at 350°C and 650°C were shown). 
SEM, scanning electron microscopy

F I G U R E  6   SEM images of Spartina alterniflora biochar produced at residence time of 0.5, 1, and 3 hr. SEM, scanning electron microscopy
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(Figures 5 and 6). The difference of SEM images was con-
sistent with results of biochar surface area and porosity 
(Figure 7).

3.4  |  Surface area and porosity

Biochar surface area and porosity significantly varied with 
pyrolysis temperature in the study, but showed no apparent 
changing trends with residence time (Figure 7). Surface area 
and pore volume of S. alterniflora biochar were relatively 
low, and showed no significant changing trends with temper-
ature increased from 350°C to 500°C (Figure 7). Significant 
increases of surface area, mesopore volume, and total pore 
volume were found as increasing temperature from 550°C to 
650°C (Figure 7).

Average pore diameter of biochar produced from un-
treated feedstocks decreased as increasing temperature, and 
presented a sharp decrease from 450°C to 500°C (Figure 7). 
Average pore diameter of biochar produced from desalted 
feedstocks showed a changing trend of single peak curve 
as increasing temperature, and the peak occurred at 450°C 

(Figure 7). The surface area and porosity of biochar produced 
from desalted S. alterniflora were higher than that produced 
from untreated feedstocks (Figure 7).

3.5  |  Functional groups

The FTIR spectra showed changes in functional groups with 
various pyrolysis temperature and residence time (Figure 8). 
In the given spectra, the peak at 3,400 cm−1 was linked with 
-OH group. The peaks at 2,923 and 1,435 cm−1 were linked 
with aliphatic -CHx stretching. The peak at 1,574 cm−1 cor-
responded to the presence of C=C stretching. The peak 
at band range of 1,110–1,114 cm−1 was linked with ether 
C-O-C group. The peak at 875  cm−1 was linked with the 
C-H group.

The intensity and diversity of functional groups on 
S.  alterniflora biochar surface decreased as increasing py-
rolysis temperature. At 650°C, there were almost no func-
tional groups on biochar surface. The intensity of the -OH 
group was weak, and became negligible at temperature 
above 500°C. The -CHx group at 2,923 cm−1 only observed 

F I G U R E  7   Changes in biochar surface area (a), average pore diameter (b), total pore volume (c), and mesopore volume (d) with pyrolysis 
temperature
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at temperature of 350°C and 400°C. The intensity of the 
C=C group was higher at temperature below 450°C, and de-
clined at temperature above 450°C. Maximum intensity of 
the C-O-C group for biochar produced from untreated feed-
stocks was observed at 500°C. However, the C-O-C group 
for biochar produced from desalted feedstocks only observed 
at 350°C. The intensity of the C-H group became negligible 
at 650°C (Figure 8a,b).

Residence time showed no influence on the intensities of 
C=C, -CHx, and C-H groups. The intensity of the -OH group 
was weak, and decreased as residence time increased from 
0.5 to 3 hr. While the intensity of the C-O-C group decreased 
as residence time increased from 0.5 to 2 hr, and increased at 
a residence time of 3 hr (Figure 8c,d).

Except the C-O-C group, the intensity and diversity of the 
other functional groups had no significant difference between 
biochar produced from desalted and untreated S. alterniflora. 
The intensity of the C-O-C group in biochar produced from 
untreated S. alterniflora was higher than that produced from 
desalted feedstocks (Figure 8).

4  |   DISCUSSION

4.1  |  Effects of pyrolysis conditions and 
desalination on biochar yield and pH

Biochar yield rapidly declined as increasing tempera-
ture at initial pyrolysis stage, and followed by steady de-
cline (Keiluweit, Nico, Johnson, & Kleber,  2010; Zhao 
et  al.,  2018). The rapid decline of S. alterniflora biochar 
yield as increasing temperature was attributed to the re-
moval of water and labile volatile matters from feed-
stocks (Zhao et al., 2018). The steady decreasing trend of 
S. alterniflora biochar yield as increasing temperature was 
linked with the dehydration and thermal decomposition 
of cellulose and lignin (Chandra & Bhattacharya,  2019). 
Biochar yield slightly decreased as increasing residence 
time, which indicated the carbonization of S. alterniflora 
was almost completed in a short residence time. Mineral 
matters played catalytic roles in biochar formation 
(Raveendran, Ganesh, & Khilar,  1995). Desalination of 

F I G U R E  8   Changes in biochar functional groups with pyrolysis temperature (a, b) and residence time (c, d)
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feedstocks reduced S. alterniflora biochar yield due to the 
reduction of alkali metals.

The pH is one crucial factor determining the inter-
actions between biochar and polar pollutants (Oliveira 
et  al.,  2017). High pH provided more negative surface 
charge and increased the electrostatic interactions with 
pollutants, while low pH increased the π-electron donor–
acceptor interactions and improved H-bonding for pollut-
ants (Oliveira et  al.,  2017). Changes in biochar pH were 
attributed to the decomposition of organic and inorganic 
components and the formation of alkaline ash (Shinogi & 
Kanri, 2003). Similar to the changing trends of biochar al-
kalinity produced from canola, soybean, and peanut straws 
(Yuan, Xu, & Zhang,  2011), S. alterniflora biochar pH 
showed a sharp increase as increasing temperature from 
350°C to 500°C. Biochar pH remained almost constant 
at high temperature due to the constant contents of ash 
(Shinogi & Kanri, 2003).

Four categories of biochar alkalinity have been proposed, 
that is, surface functional group, soluble organic compound, 
carbonate, and inorganic alkali salt (Fidel, Laird, Thompson, 
& Lawrinenko, 2017; Shi, Li, Ni, & Xu, 2019). The inorganic 
alkali salt was separated from feedstocks at pyrolysis tem-
perature over 300°C, and thus increased biochar pH (Cao & 
Harris, 2010). Although alkali metals (e.g., Na+, Mg2+, and 
K+) were leached from feedstocks by desalination, the pH of 
biochar derived from desalted S. alterniflora was higher than 
that of untreated feedstocks. In addition, the diversity and 
intensity functional groups had no significant difference be-
tween the two types of biochar. Therefore, the concentrations 
of soluble organic compound and carbonate in biochar were 
probably the main causes of S. alterniflora biochar alkalinity.

4.2  |  Effects of pyrolysis conditions and 
desalination on elemental composition

The O and H contents declined due to deoxygenation and 
dehydration of feedstocks as increasing pyrolysis tempera-
ture (Li et al., 2015). The N contents in biochar were always 
affected by feedstock type instead of pyrolysis conditions 
(Zhao et  al., 2018); thus, N contents in S. alterniflora bio-
char showed no significant changing trend with pyrolysis 
temperature.

The H/C and O/C ratios indicate biochar aromatic-
ity and polarity, respectively (Cao et  al.,  2019; Tang 
et al., 2019). The lower H/C and O/C ratios indicated bio-
char pyrolyzed at higher temperature were more aromatic 
and less polar, which makes it more stable in environments 
(Leng & Huang, 2018; Wang, Li, Li, Yu, & Wang, 2019; 
Zhao et  al.,  2018). At lower temperature, high O/C ratio 
indicated more O-containing functional groups appeared in 
biochar surface, and high H/C ratio indicated more H-C 

bonds appeared in forms of biodegradable organic matters, 
which is available for plants and microorganisms (Chandra 
& Bhattacharya, 2019).

Most of metal salts were deposited in biochar during py-
rolysis process, thus desalination reduced C, H, O, and N 
contents in S. alterniflora biochar. The low O/C ratio demon-
strated low polarity and high stability of biochar produced 
from desalted S. alterniflora (Zhao et al., 2018).

4.3  |  Effects of pyrolysis conditions and  
desalination on surface morphology, surface  
area, and porosity

S. alterniflora biochar pyrolyzed at 350°C showed vis-
ible tube-like pore structures, which were attributed to 
the carbonaceous skeleton of feedstocks (Zhang, Liu, & 
Liu,  2015). As increasing temperature, the pore wall of 
tube-like structures became thinner and even collapsed due 
to the destruction of cell structures in feedstocks, which im-
proved biochar porosity. The increase of biochar porosity 
as increasing temperature was conducive to the diffusion of 
substances into biochar inner, and provided more interfaces 
for pollutant adsorption and colonization of soil microor-
ganisms (Chandra & Bhattacharya,  2019; Tan, Sun, Xu, 
Wang, & Xu, 2016).

The increase of surface area from 300°C to 500°C was 
attributed to the decomposition of cellulose, which induced 
the appearance of amorphous carbon structure and microp-
ore as shown by SEM images (Shen et al., 2019). Significant 
increases of surface area, mesopore volume, and total pore 
volume from 550°C to 650°C were attributed to the degrada-
tion of lignin and release of hydrogen and methane (Taskin 
et al., 2019; Zhao et al., 2017). Low average pore diameter at 
high temperature (>500°C) was attributed to the formation of 
meso- and micropores (Shen et al., 2019).

The residence time and condensation of volatiles in bio-
char pores can be reduced by demineralization, which in-
crease the amount and rate of volatiles release (Raveendran 
et al., 1995). Desalination treatment of feedstocks improved 
the surface area and porosity of S. alterniflora biochar. The 
higher surface area and porosity of biochar produced from 
desalted S. alterniflora indicated their higher adsorption ca-
pacity, because larger surface area and richer pore structures 
provide more opportunity for pollutants adsorption in biochar 
(Jiang, Lin, & Mbog, 2018).

4.4  |  Effects of pyrolysis conditions and 
desalination on functional groups

The -OH group indicated the occurrence of H-bonding 
interactions in biochar (Li et  al.,  2013). The decrease of 
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-OH group with increasing temperature was attributed to 
the dehydration of feedstocks (Chen, Yang, Wang, Zhang, 
& Chen,  2012; Zhao et  al.,  2017). The C  =  C group ap-
peared in forms of aromatic hydrocarbons (Chandra & 
Bhattacharya, 2019). The C = C group intensity declined 
at temperature above 450°C due to the condensation of 
aromatic compounds (Li et  al.,  2017; Shen et  al.,  2019). 
The C-O-C group is one of the O-containing functional 
groups (Cui, Hao, Zhang, He, & Yang, 2016). The inten-
sity of C-O-C group was changed by desalination, which 
was linked with the different forms of oxygen in desalted 
and untreated S. alterniflora that were converted to car-
bon chains containing C-O bonds during pyrolysis process 
(Wang et  al., 2019). The C-H group appeared in form of 
aromatic ring and heteroaromatic compounds, and aro-
matic ring provides π-electrons to bond inorganic pollut-
ants (Wang et al., 2019).

5  |   CONCLUSIONS

S. alterniflora, an invasive plant in Chinese coastal wet-
lands, was pyrolyzed to produce biochar. Pyrolysis tem-
perature and desalination treatment of feedstocks affected 
biochar properties. S. alterniflora biochar with high alka-
linity, stability, surface area, and porosity can be achieved 
at pyrolysis temperature above 550°C. However, S. al-
terniflora biochar with diverse functional groups can be 
achieved at temperature below 500°C. Reducing metal salt 
contents in feedstocks improved the stability, surface area, 
and porosity of S. alterniflora biochar. The above pyrolysis 
parameters can be used by other researchers and manag-
ers to produce biochar with specific properties for environ-
mental usage.
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