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Secondary particles account for a considerable proportion offine particles (PM2.5) and reasonable reapportioning
them to primary sources is critical for designing effective strategies for air quality improvement. This study de-
veloped a method which can reapportion secondary sources of PM2.5 solved by positive matrix factorization
(PMF) to primary sources based on the isotopic signals of nitrate, ammonium and sulfate. Actual PM2.5 data in
Beijing were used as a case study to assess the feasibility and capacity of this method. In the case, 20 chemical
components were used to apportion PM2.5 sources and source contributions of nitrate were applied to reappor-
tion secondary source to primary sources. The model performance was also estimated by radiocarbon measure-
ment (14C) of organic (OC) and elemental (EC) carbons of eight samples. The PMF apportioned seven sources: the
secondary source (36.1%), vehicle exhausts (18.7%), industrial sources (13.6%), biomass burning (11.4%), coal
combustion (8.10%), construction dust (7.93%) and fuel oil combustion (4.24%). After the reapportionment of
the secondary source, vehicle exhausts (28.7%) contributed the most to PM2.5, followed by biomass burning
(25.1%) and industrial sources (18.9%). Fossil oil combustion and coal combustion increased to 8.00% and
11.4%, respectively, and construction dust contributed the least. The average gap between contributions of
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identified sources to OC and EC and the 14C measurements decreased 2.5 ± 1.2% after the reapportionment than
13.2 ± 10.8%, indicating the good performance of the developed method.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Fine particles (PM2.5) attracted significant focus by its strong adverse
effects on human health, visibility, and direct or indirect effects on
weather and climate (Lu et al., 2015; Pui et al., 2014; M. Tao et al.,
2014). Feasible source apportionment of PM2.5 is critical for the control
strategy of PM2.5 pollution. Thus, multiple methods, such as the receptor
model (e.g., the positive matrix factorization (PMF), the chemical mass
balance, the principal component analysis), 3D numerical simulation
and other tracer methods, have been developed and used to assess
PM2.5 sources (Liang et al., 2016). Among these methods, PMF has been
widely used in those studies that quantitatively apportioned sources of
PM2.5 because it does not need prepared source profiles. Its results indi-
cate that high secondary aerosol usually contributes most to the particu-
late pollution in China, consistent with the results estimated by other
methods (Liu et al., 2019). For instance, secondary components accounted
for 51.1%, 73.7%, 77.1% of PM2.5 during haze events in the metropolitan
Beijing, Shanghai and Guangzhou respectively (Huang et al., 2014). How-
ever, the secondary particulate solved by PMFmodel does not point to an
actual type of pollution source, which limits the practical significance for
themanagement and control of air pollution. Therefore, how to apportion
these secondary components to primary sources is an urgent problem in
the current PM2.5 source apportionment.

The secondary components of PM2.5 are mainly composed of sulfate
(SO4

2−), nitrate (NO3
−) and ammonium (NH4

+), which are transformed
from the sulfur dioxide (SO2), nitric oxides (NOx), and ammonia (NH3),
respectively. These secondary components possess their respective signa-
tures of stable isotopes, which can be used to trace their sources. For ex-
ample, the N isotopic signature of NO3

− and NH4
+ was widely used to

assess the contribution of coal combustion,mobile sources, biomass burn-
ing and biogenic soil emissions (Chang et al., 2019; Felix et al., 2012; Pan
et al., 2016;Walters et al., 2015; Zhang et al., 2020); the S isotopes of SO4

2−

were also adopted to assess its multitudinous sources (Han et al., 2016;
Norman et al., 2006). Thus the isotopic signaturesmay provide a pathway
to further reapportion these secondary components identified by PMF
model to primary sources. It is necessary to take the isotopes apportioning
results of NO3

−, NH4
+ and SO4

2− into the source analysis of PMFmodel, and
subsequently, apportioning the secondary particulate source to check
whether the simulation results are improved.

In this study, we integrated the isotopic source results of NO3
− into

the simulation of source apportionment by PMF with the assumption
that NO3

−, NH4
+ and SO4

2− had the same linear proportion of primary
source contribution. In addition, specific assessment in Beijing was
also made to verify the feasibility. The main aims of this study are
(1) to develop a method to embed the isotopic apportioning results of
NO3

−, NH4
+ and SO4

2− into the source apportionment of PMF; (2) to reap-
portion the secondary particulate source in PMF using the isotopic re-
sults of NO3

−; (3) to assess the reapportionment performance by the
comparison between the apportionment results of carbonaceous com-
ponents in PMF and 14C measurements.
2. Methods and materials

2.1. Method of source apportionment

2.1.1. Basic source apportionment of PM2.5

The EPA PMF 5.0 model was used to apportion sources of PM2.5 in
this study (Hopke, 2003; Paatero et al., 2014). The factor analysis
2

model of PMFwhere a datamatrix (V) is decomposed into twomatrices
(W and H) can be written as Eq. (1).

Vij ¼
Xp
r¼1

WirHrj þ eij ð1Þ

where Vij is the concentration of jth component in ith sample;Wir is the
relative contribution of the rth source to the ith sample; Hrj is the con-
tent of jth component in the rth source; p is the number of sources
and eij is the residual. Taking the non-negative elements inW (pollution
source load) andH (source profile) as constraint conditions, the PMF al-
gorithm minimizes an objective function (QPMF) by weighted least
square method and the decomposition is performed as Eq. (2).

min QPMF ¼ f W;Hð Þ ¼
Xm
i¼1

Xn
j¼1

Vij−∑
p

r¼1
WirHrj

� �
=uij

� �2
¼ V−WH

u

����
����
2

F

ð2Þ

where u is the uncertainty matrix, and ||•||F is the Frobenius norm.

2.1.2. Reapportionment of secondary sources
The secondary particulate source identified by PMFwas apportioned

to sources related to fossil fuel combustion, mobile sources and
agriculture-related emission (such as biomass burning, agricultural fer-
tilization, and livestock farming) (Li et al., 2016; J. Tao et al., 2014), and
other sources in PMF results were also divided into these three parts.
Assuming that the relative contribution of sources identified by PMF
in each part to the secondary particulate source was the same as that
to secondary components in PM2.5, the secondary particulate source
was apportioned to each source in PMF (taking sources related to fossil
fuel combustion identified by PMF as an example) as shown in Eq. (3):

F 01 ¼ F1 þ S� xf �
F1X f

k¼1
Fk

F 02 ¼ F2 þ S� xf �
F2X f

k¼1
Fk

⋮

F 0f ¼ Fc þ S� xf �
F fX f

k¼1
Fk

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

where F and F′ refer to the contribution rate (%) of sources in PMF results
related to fossil fuel combustion to secondary components before and after
the apportionment of secondaryparticulate, respectively; S is the contribu-
tion rate (%) of the secondary particulate source to secondary components
in PM2.5; f is the number of sources related to fossil fuel combustion iden-
tified by PMF, such as coal combustion and industrial sources; xf is the
proportion of secondary particulate source allocated to fossil fuel combus-
tion. The rightmost termof the equation is the ratio that the secondarypar-
ticulate source was apportioned to the fth source related to fossil fuel
combustion. Similarly, the secondary particulate source was apportioned
to the sources related to mobile sources and agriculture-related emission
sources and the apportionmentproportion to each initial sourcewas calcu-
lated. The secondary source identified by PMF was further refined.

To find out the proportion of secondary particulate source allocated to
fossil fuel combustion, mobile sources and agriculture-related emission
sources, it was assumed that the ratio of contribution to each component
in the secondary particulatewas the sameas that toNO3

−. Then the appor-
tionment results of atmospheric NO3

− based on the nitrogen isotopewere
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introduced, whichwere derived by the improved Bayesianmixingmodel
(Zong et al., 2017). The model considered four sources: coal combustion
(C), mobile sources (M), biomass burning (BB), and biogenic soil emis-
sions (BSE) and the fractionation of the equilibrium/Leighton reaction
wasmerged intoMixSIR (Moore and Semmens, 2008). For minute calcu-
lation methods and model frames of the Bayesian mixing model (Zong
et al., 2020), readers should refer to the SI Text S4.

Sources identified by the improved Bayesian mixing model were
also divided into three parts same as the sources in PMF for the combin-
ing of the twomodels: coal combustion belonged to fossil fuel combus-
tion and biomass burning as well as biogenic soil emissions were
merged into agriculture-related emission sources. NO3

− concentrations
for each part followed an equal relationship as expressed by Eq. (4).

Xf
r¼1

WirHrj þ xfWiSPHSPj ¼ NC

Xm
r¼1

WirHrj þ xmWiSPHSPj ¼ NM

Xa
r¼1

WirHrj þ xaWiSPHSPj ¼ NBB þ NBSE

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where the left and right sides are results of PMF and the improved Bayes-
ian mixing model, respectively;W and H are the same as in Eq. (1); i is a
specified sample, j is the NO3

− species; f,m and a represent the number of
sources identified by PMF that related to fossil fuel combustion, mobile
sources and agriculture-related emission, respectively; SP represents the
secondary particulate source; N is the NO3

− concentration contributed
by each source of the improved Bayesian mixing model.

Taking the NO3
− concentration contributed by the secondary compo-

nents (WiSPHSPj) as the independent variable, and the difference of NO3
−

concentrations between sources of the improved Bayesian mixing
model and the PMF model for each part as the dependent variable, the
linear regression in SPSS (Statistical Product and Service Solutions)
wasperformed in turn. Themethodwas “Enter” and the unstandardized
coefficients were apportionment coefficients (xf, xm and xa). This means
that 100 ∗ xf%, 100 ∗ xm% and 100 ∗ xa% of NO3

− in the secondary partic-
ulate source were from fossil fuel combination, mobile sources and
agriculture-related emission sources, respectively, and the sum of
these three apportionment coefficients was 1 in theory. According to
the significance of F test and the value of adjusted R2 in the output of
SPSS, the regression effect was judged; the unstandardized coefficients
were summed to check if the secondary components in PM2.5 were pro-
rated into three parts well.

2.2. Experimental setup

PM2.5 samples collected at the National Research Center for
Geoanalysis in Beijing were used to verify the feasibility and capacity of
the improved source apportionment method (Liu et al., 2020). The sam-
pling schedule was one month selected for each season and a total of
104 PM2.5 samples were collected. OC and EC were obtained with an
offline carbon analyzer (Sunset Laboratory, Inc., USA) following the
thermal-optical transmittance (TOT) protocol (Birch and Cary, 1996).
The concentrations of water-soluble ions - NH4

+, NO3
−, SO4

2−, chloride
(Cl−), potassium (K+), sodium (Na+), magnesium (Mg2+) and calcium
(Ca2+) were determined using ion chromatography (Dionex ICS3000,
Dionex Ltd., America) based on the analysis method reported by
Shahsavani et al. (2012). The concentrations of metal elements - iron
(Fe), manganese (Mn), arsenic (As), chromium (Cr), lead (Pb), zinc
(Zn), copper (Cu), nickel (Ni), vanadium(V) anduranium(U)were deter-
mined by inductively coupled plasma mass spectrometry (ICP-MS of
ELANDRCII type, Perkin Elmer Ltd., Hong Kong) according to the previous
method (Wang et al., 2006). The nitrous oxide (N2O) isotope analysis
method was employed to admeasure the stable nitrogen isotope (δ15N)
and stable oxygen isotope (δ18O) values for NO3

− (McIlvin and Altabet,
3

2005). 14C measurement of OC and EC was performed at the Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, and the analyti-
cal processes were detailed in the previous studies (Wacker et al., 2013;
Xu et al., 2007; Zhang et al., 2010). Detailed sample information and
chemical analysis are displayed in the SI Text S1-S3 and concentrations
of PM2.5 and chemical components are summarized in Table S1.

In this study, 20 chemical species (including OC, EC, Na+, NH4
+, K+,

Mg2+, Ca2+, Cl−, NO3
−, SO4

2−, V, Mn, Fe, Cr, Ni, Cu, Zn, As, U and Pb)
were loaded into the model to quantitatively apportion PM2.5, of
which the concentration data formed the matrix V and the associated
uncertainty formed the matrix u. In the input concentration data set,
the data below species-specific method detection limit (MDL) were re-
placedwith half of theMDL, and themissing species data were replaced
with the arithmetic mean of corresponding elements (Polissar et al.,
1998). The uncertainty of the variables was calculated based on MDL
and the concentration of each sample. For details of the method, please
refer to the SI Text S5.

2.3. Assessment of apportionment performance

To further confirm this apportionment result of secondary particu-
late in PM2.5, the improved source contribution results to OC and EC
were examined by 14C measurement. The role that 14C measurements
play in distinguishing fossil (F) and non-fossil (NF) carbonaceous parti-
cles sources has been found in recent researches (Liu et al., 2014; Zong
et al., 2015). In view of its half-life of 5730 years, 14C has been
completely exhausted in fossil fuel emissions, while 14C levels of non-
fossil carbon sources (e.g., from biomass burning or biogenic emissions)
are similar to those of atmospheric CO2 (Liu et al., 2013; Zhang et al.,
2015). Thus, contributions of fossil and non-fossil sources to OC and
EC in PM2.5 can be quantified by 14C measurements.

For the comparison, the modeled source contributions were classi-
fied into two carbon source groups based on the characteristic of fossil
and non-fossil. The contribution fractions (R) of non-fossil or fossil
sources to OC or EC, classified from PMF results and apportionment re-
sults of secondary particulate, were determined using the formula
shown in Eq. (5).

Rij ¼
Xq
r¼1

WirHrj þ lWiSPHSPj

 !
=
Xp
r¼1

WirHrj ð5Þ

whereW,H, i and SP are the same as in Eq. (4), j is theOCor EC species; q
is the number of fossil or non-fossil carbon sources, p is the total number
of sources; l is the ratio of fossil (fossil fuel combustion as well asmobile
sources) or non-fossil (agriculture-related emission sources) parts to
the secondary particulate source. Values of R were subsequently com-
pared with the 14C measurement of specified samples, which were
expressed with the modern carbon fraction (fm).

3. Results and discussion

3.1. Source apportionment of PM2.5

The concentrations of PM2.5 and its component elements during the
sampling period were listed in the SI Table S1. The range of daily PM2.5

mass concentrationwas 70.8–518 μg/m3, and the average concentration
was 181± 79.3 μg/m3. The concentrations of water-soluble ions, carbo-
naceous fraction and metal elements in PM2.5 were 70.1 ± 55.6 μg/m3,
23.2 ± 15.8 μg/m3 and 5.10 ± 3.39 μg/m3, respectively, accounting for
36.9±19.8%, 12.5±4.71% and 2.73±1.35% of the PM2.5 concentration.
The concentrations of SO4

2−, NO3
−, OC and NH4

+ among the 20 analyzed
components were significantly higher than those of other components,
accounting for 12.7 ± 9.04%, 12.6 ± 9.35%, 11.1 ± 4.21% and 4.83 ±
3.49% of the PM2.5 concentration, respectively. Such the composition in-
tuitively showed the significant role played by the secondary particulate
in atmospheric PM2.5 pollution. In other studies of PM2.5 in Beijing in
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similar years (Gao et al., 2018; Liu et al., 2019; Ma et al., 2017; Yu et al.,
2019), the average mass concentration of PM2.5 was also up to
110–140 μg/m3, in which secondary ions (NO3

−, SO4
2− and NH4

+) and
OC occupied the largest proportion. The level of PM2.5 in this study is ba-
sically comparable to the existing research results and the high average
concentration may be caused by several severe haze days in winter.

To find the apportionment results with the most optimal factor
numbers and profiles in PMF model, five to nine factor solutions were
considered with each model experiment running 100 times from a
random starting point. The solution with the minimum Q (robust)
value of each experiment was determined as the best solution. Be-
sides, PMF was run numerous times with different Fpeak. Finally,
the pattern of seven factors was identified, which reasonably ex-
plained the pollution source category with the lowest Q value
(2891.93) and no rotationwas selected (Fpeak= 0). The uncertainty
of the PMF solution was examined by three PMF error estimation
methods in the SI Text S5. The seven sources were secondary partic-
ulate, vehicle exhausts, industrial sources, biomass burning, coal
combustion, construction dust, and fuel oil combustion. The detailed
recognizing process is described in the SI Text S6 and characteristics
of the seven sources are shown in Figs. S1 and S2.

Contributions of sources identified by PMF to PM2.5 and NO3
− are

shown in Fig. 1. Among the seven sources (secondary particulate, ve-
hicle exhausts, industrial sources, biomass burning, coal combustion,
construction dust, and fuel oil combustion), secondary particulate
contributed the most to PM2.5 during the sampling period, account-
ing for 36.1%; followed by vehicle exhausts (18.7%), industrial
sources (13.6%), biomass burning (11.4%), coal combustion (8.10%),
construction dust (7.93%) and fuel oil combustion (4.24%). Basically,
this result is similar to those found in other PM2.5 source studies of
Beijing (Gao et al., 2016; Gao et al., 2018; Huang et al., 2014; Liu
et al., 2019; Ma et al., 2017; Yang et al., 2016; Yu et al., 2019;
Zikova et al., 2016) (SI Table S3, Text S6). For NO3

−, the contribution
of secondary particulate (71.3%) was significant, followed by vehicle
exhausts, industrial sources, fuel oil combustion, coal combustion
and biomass burning, accounting for 12.1%, 6.50%, 4.67%, 4.16% and
1.26%, respectively.

3.2. Reapportionment of secondary sources

In order to quantify the contribution of different sources to NO3
− in

PM2.5, the improved Bayesian mixing model was run in four cases.
Fig. 1. The relative contributions of s

4

Related results showed that coal combustion was the main source of
NO3

− in Beijing which contributed 38.5% ± 16.0% to NO3
− in the atmo-

sphere, followed by mobile sources (25.3% ± 6.44%), biomass burning
(21.3%± 6.86%) and biogenic soil emissions (14.9%± 8.07%). However,
corresponding sources of coal combustion, vehicle exhausts and bio-
mass burning identified by PMF only contributed 4.16%, 12.1% and
1.26% to NO3

−, respectively, which is far less than the simulation results
of Bayesianmodel. According to the apportionment results of PMF, sec-
ondary particulate contributed up to 71.3%, 35.7% and 53.4% to NO3

−,
NH4

+ and SO4
2−, respectively, which confirmed that a large part of NO3

−

emissions was classified as secondary sources in the PMF model.
Based on source apportionment of PM2.5 described in Section 3.1,

sources identified by PMFwere divided into three parts (fossil fuel com-
bustion, mobile sources and agriculture-related emission sources) for
linear regression. Therein, coal combustion, fossil oil combustion and in-
dustrial sourceswere classified together as fossil fuel combustion due to
their origins from fossil fuel burning; vehicle exhausts and biomass
burning belonged to mobile sources and agriculture-related emission
sources, respectively; construction dust was not classified due to its
complexity. According to Eq. (4), NO3

− concentrations contributed by
seven sources were calculated based on the output table of the PMF
model and linear regression in SPSS was performed with the method
described in Section 2.1.2. The regression results of fossil fuel combus-
tion, mobile sources and agriculture-related emission sources are
shown in Table 1 after selectively excluding outliers with standard re-
siduals >3 in “Casewise diagnostics”.

In the output results, the significance level of the set test F in the lin-
ear regressionmodel (the P value)was less than 0.05, indicating that the
linear relationship was obvious and the regression model established
had statistical significance; values of adjusted R2 of three linear regres-
sion models were all higher than 0.674, proving the satisfactory regres-
sion effect. Values of regression coefficients xf, xm and xa were 0.348,
0.282 and 0.387, respectively and the sum of the three was 1.02, close
to 1. Results showed that the secondary particulate source was reason-
ably reapportioned to fossil fuel combustion, motor sources and
agriculture-related emission sources by this method.

According to the reapportionment results, 34.8% of the contribution
of secondary particulate to PM2.5 was related to fossil fuel combustion.
As precursors of secondary particulate, SO2, NO2, NO and other harmful
gases produced by coal as well as fossil oil combustion are discharged
into the atmosphere alongwith the smoke and dust. The secondary par-
ticles are subsequently generated after a series of photochemical
even sources to PM2.5 and NO3
−.



Table 1
Linear regression results of NO3

− concentrations of fossil fuel combustion (Model 1), mobile sources (Model 2) and agriculture-related emission sources (Model 3).

Model Independent variable Dependent variable Unstandardized coefficients (xr) Adjusted R2 Standard error of estimate F P

1 WiSPHSPj NC−
P f

r¼1 WirHrj
0.348 0.674 4.97 208 <0.05

2 NM−
Pm

r¼1 WirHrj 0.282 0.892 2.11 823
3 NBB þ NBSE−

Pa
r¼1 WirHrj 0.387 0.767 4.52 340

Fig. 2. The relative contributions to PM2.5 of six sources after the reapportionment of the
secondary particulate. “SP” (the shadow part in each source) refers to the contribution
of related secondary particle source: fossil oil combustion (F), vehicle exhausts (V),
industrial sources (I), coal combustion (C) and biomass burning (B).
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reactions, causing serious air pollution. In addition to the direct emis-
sion of PM2.5, the motor vehicle is also an important source of gaseous
pollutants such as VOC and NOx, which has an important contribution
to the secondary organic compounds and secondary NO3

− in PM2.5.
After linear regression, 28.2% of the secondary source was allocated to
mobile sources. Analogously, pollutants generated by the complete
combustion of biofuels such as NOx, SO2, acid gases, dioxins, etc. are
also contributors to secondary particulates in PM2.5. And 38.7% of the
secondary source was reapportioned to agricultural emission sources
that were closely related to biomass combustion.

After the process of reapportionment, 34.8%, 28.2% and 38.7% of the
contribution ratio of secondary particulate source to PM2.5 were allo-
cated to fossil fuel combustion, mobile sources and agriculture-related
emission sources, respectively. In the apportionment results of PMF,
the contribution of coal combustion, fossil oil combustion and industrial
sources to NO3

− were 4.16%, 4.67% and 6.50%, respectively. According to
the method described in Eq. (3), 34.8% of the secondary particulate
source was apportioned to coal combustion, fossil oil combustion and
industrial sources as the ratio of 9.44%, 10.6% and 14.8%, respectively.
As mobile sources and agriculture-related emission sources only re-
ferred to one source in the PMF model results, 28.2% and 38.7% of the
secondary particulate source were all apportioned to vehicle exhausts
and biomass burning, respectively. Finally, the secondary particulate
source identified by PMF was legitimately reapportioned to five
sources: coal combustion, fossil oil combustion, industrial sources, vehi-
cle exhausts and biomass burning, with the allocation ratio of 9.44%,
10.6%, 14.8%, 28.2% and 38.7%, respectively.

Zhang et al. (2012) applied the source-oriented chemical transport
model to the apportionment ofNO3

− and SO4
2− in PM2.5 anddemonstrated

that power sector was the dominating source, followed by transportation
sector and industry sector. The high contribution of power plants may be
caused by the large proportion of coal-fired power plants and low level of
coal emission control technology in China around 2009. Vehicle exhausts
and industrial sources made great contributions to NO3

− and SO4
2− in

PM2.5, which is consistent with the results in this study. Simultaneously,
Wang et al. (2018) utilized a regional source-oriented chemical transport
model and two emission inventories to apportion sources of secondary
organic aerosol in 2013. The conclusions of both emission inventories em-
phasized contributions of biogenic emissions and industrial sources,
followed by transportation sector and residential sources. Hence, it is
comparatively reasonable to reapportion the secondary particulate source
identified by PMFmainly to biomass burning, vehicle exhausts and indus-
trial sources herein in consideration of these previous studies.

The number of sources obtained from the PMFmodel was finally re-
duced to 6 and contributions of these final sources to PM2.5 were calcu-
lated as shown in Fig. 2. After adding the contribution of the secondary
particulate source to PM2.5 (the shadow part in the pie), vehicle ex-
hausts (28.7%) contributed the most to PM2.5 and biomass burning
(25.1%) became the second largest source, surpassing industrial sources
(18.9%). Fossil oil combustion and coal combustion increased to 8.00%
and 11.4%, respectively, and construction dust contributed the least.

3.3. Comparison of the source apportionment with 14C measurement

The contributions of coal combustion, fossil oil combustion, vehicle
exhausts, and industrial sources derived from the PMF modeling to OC
and EC were classified as fossil fuel combustion; biomass burning was
taken as non-fossil source contribution. However, construction dust
5

was not considered in this classification because they originated from
hybrid sources of fossil and non-fossil carbon emissions. Calculated by
the reapportionment results of the secondary particulate source, values
of l in Eq. (5)were 0.630 (xf+ xm) and 0.387 (xa) for fossil and non-fossil
carbon emissions, respectively. Contributions of fossil and non-fossil
sources to the carbon content before and after the reapportionment of
secondary particulate were calculated based on Eq. (5) and then com-
pared with measured values of 14C, which were selected for eight
days. The comparison results are shown in the SI Table S4 and Fig. S3.

As shown in Table S4, the average contribution of fossil (F) and non-
fossil (NF) sources to OC accounted for 36.8 ± 18.5% and 37.1 ± 11.1%
in the original results of the PMF model, which were 6.62% and 19.5%
lower than the average measured values of 14C (43.4 ± 13.1% and
56.6 ± 13.1%), respectively. In general, contributions to the carbon con-
tent in the source apportionment results of PMF were lower than the
measured values of 14C because the contribution of construction dust to
OC and EC was unallowable to be neglected (Wang et al., 2017). After
the secondary particulate source identified by PMF was reapportioned,
the average contribution of fossil andnon-fossil sources, including the fos-
sil and non-fossil part of the secondary particulate, to OC increased to
41.0 ± 17.5% and 39.7 ± 12.1%, respectively, which were more approxi-
mate to the average measured values. The average contribution rates to
EC were 45.4 ± 16.6% and 28.0 ± 9.30%, respectively. The former was
24.9% lower than the average measured values of 14C (70.3 ± 11.5%),
while the latter was very close to the measured value. Simultaneously,
the reapportionment of the secondary particulate sourcemade the contri-
bution rates to EC closer to themeasured values of 14C,which increased to
47.4 ± 17.0% and 29.3 ± 9.63%, respectively. It can be seen more intui-
tively from Fig. S3 that OC (orange column) and EC (yellow column),
representing contribution fractions of fossil and non-fossil sources identi-
fied by PMF to OC and EC, respectively, were generally lower (except a
small number of abnormal samples) than 14C measured results (horizon-
tal line); after adding the green column, representing contribution frac-
tions of fossil and non-fossil part in the secondary particulate source
(SP), themodel analysis resultsmatchedmeasured values to a greater ex-
tent. Therefore, the reapportionment of the secondary particulate source
made the PMF results more consistent with the real situation, showing
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that itwas reasonable and feasible to reapportion secondary particulate to
primary sources combining the PMF model with the improved Bayesian
mixing model.

4. Conclusion

Amethod to reapportion the secondary source of PM2.5 identified by
PMF to primary sources with source contributions of NO3

−, NH4
+ and

SO4
2− in PM2.5 estimated by their isotopes was proposed in this study.

Based on the practical PM2.5 data of Beijing, the feasibility and capacity
of the model were evaluated. In this study, 20 chemical species were
loaded into the PMFmodel to quantitatively apportion PM2.5 and source
contributions of NO3

− were applied to reapportion secondary source to
primary sources. Seven sources (secondary particulate, vehicle ex-
hausts, industrial sources, biomass burning, coal combustion, construc-
tion dust, and fuel oil combustion) of PM2.5 were identified by PMF,
among which secondary particulate (36.1%) contributed the most,
followed by vehicle exhausts (18.7%), industrial sources (13.6%), bio-
mass burning (11.4%), coal combustion (8.10%), construction dust
(7.93%) and fuel oil combustion (4.24%).

Utilizing the isotopes apportioning results of NO3
− by the improved

Bayesian mixing model, the secondary particulate source identified by
PMF was reapportioned to coal combustion, fossil oil combustion, in-
dustrial sources, vehicle exhausts and biomass burning with the ratio
of 9.44%, 10.6%, 14.8%, 28.2% and 38.7%, respectively. The number of
contribution sources obtained from PMF simulationwas finally reduced
to 6. After the improvement that apportioning the secondary particulate
source, vehicle exhausts (28.7%) contributed themost to PM2.5 and bio-
mass burning (25.1%) became the second largest source, surpassing in-
dustrial sources (18.9%). Fossil oil combustion and coal combustion
increased to 8.00% and 11.4%, respectively, and construction dust con-
tributed the least.

The apportionment performance was also assessed by comparing
the source apportionment results of OC and EC in PM2.5 with 14C mea-
surements in 8 PM2.5 samples. The average gap between contributions
of identified sources to OC and EC and the 14Cmeasurements decreased
2.5 ± 1.2% after the reapportionment of secondary particulate source
than 13.2 ± 10.8%, indicating that the reapportionment was reasonable
and feasible. In addition, this method is based on the assumption that
the contributions of each primary source identified by PMF to all com-
ponents in the secondary particulate of PM2.5 are the same. The appor-
tionment results of the secondary particulate source will be more
logical if the isotopic source analysis results of SO4

2− and NH4
+ are con-

sidered at the same time, which can be of great significance to the for-
mulation of PM2.5 control strategy.
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