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A B S T R A C T   

In this work, silver nanoparticles (AgNPs) were self-assembled on the micro-needle electrode (MNE) with the 
help of chitosan (CTS) and polyvinylpyrrolidone (PVP) and used for the amperometric (i-t) determination of 
nitrate (NO3

–) in seawater samples. CTS/PVP was electrodeposited on the MNE surface to improve the conduc-
tivity and specific surface area of the MNE, and to provide reduction conditions needed for Ag+ reduction and 
strong binding affinity for combination of AgNPs which had excellent catalytic activity for NO3

–. AgNPs were self- 
assembled uniformly on the surface of MNE with the diameter of about 150–400 nm. Thanks to the unique 
aciform structure of MNE, the outstanding adhesion ability of CTS/PVP, and the excellent electrocatalytic ability 
of AgNPs, the so-prepared AgNPs/CTS/PVP/MNE showed significantly improved performance and stability for 
the amperometric determination of NO3

–. Under the optimal conditions, the AgNPs/CTS/PVP/MNE was found to 
have a wide linear range (5–2000 μM) and a low limit of detection (1.2 μM). Furthermore, the AgNPs/CTS/PVP/ 
MNE was successfully used for the direct determination of NO3

– in coastal seawater samples with satisfactory 
results.   

1. Introduction 

Nitrates (NO3
–) are naturally present in soil, water, and food, which 

has important effects on environmental and human health [1,2]. In 
marine environment, the photosynthesis of phytoplankton is largely 
controlled by N nutrients including NO3

–, nitrite, and ammonium [3]. 
NO3

– is of particular interest because it represents the main source of N in 
marine ecosystems and acts as a marker for water quality [4]. The 
seawater environment with excessive NO3

– concentration will break the 
balance of local marine ecosystems, leading to hyper proliferation of 
algae, generation of red tides, deterioration of water quality, and 
destruction of biodiversity [5]. Moreover, the concentration of NO3

– is 
easy to change with the external environment. Therefore, to understand 

the N cycle and dynamics of marine ecosystems, it is necessary to 
determine the concentration of NO3

– in seawater rapidly and accurately. 
To date, a wide range of analytical methods have been developed for 

determination of NO3
–. The most commonly used techniques include ion- 

exchange chromatography [6], capillary electrophoresis [7], colorim-
etry [8], UV spectroscopy [9], reflectance mid-infrared spectroscopy 
[10], and high-performance liquid chromatography [11]. Although 
many of these methods are sensitive and accurate, most of them require 
sample pretreatment and/or pre-concentration which are relatively 
time-consuming, fiddly and costly [12]. Electrochemical methods 
represent an interesting alternative with the advantages of low cost, ease 
of use, low energy requirements and simple procedures [13]. Further-
more, it presents the possibility to build portable systems that are 
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compatible either for laboratory or on-site measurements. Recently, 
many electrochemical sensors based on different electrodes have been 
prepared for the determination of NO3

–. Different electrode materials 
including copper [14,15], precious metals [16], bimetallic alloys 
[17,18], and base metals [19–21] have been investigated for voltam-
metric and amperometric analysis of NO3

–. For example, the Cu micro-
sphere modified electrode presented in our previous work could be 
successfully used for the determination of NO3

– in river water samples 
[12]. However, these nanomaterials-based electrodes are usually 
applied in the environment with pH value below 3.0. Obviously, it is not 
suitable for the direct detection of NO3

– in natural seawater with pH 
about 8.0. Therefore, there is still an urgent need for novel and effective 
electrodes for direct detection NO3

– in seawater. 
Ag nanoparticles (AgNPs), one of the popular metal nanomaterials, 

have several advantages such as small size, large surface area, high 
surface activity and excellent catalytic performance, and have been 
widely assembled on electrodes to act as electro-catalytic material for 
various reactions [22–24]. Importantly, AgNPs also exhibit an extremely 
fast response for the electrochemical reduction of NO3

– it in natural water 
with no need to change the pH value [25]. Acupuncture which is 
considered as a pivotal component of Eastern medicine has the functions 
of relieving pain, warming the meridians and promoting the blood flow 
through the application of an acupuncture needle into the physical body 
of the patient [26,27]. The stainless steel acupuncture needle has the 
properties of conductivity, small size, large specific surface area, and 
easy operation, which makes it a potential electrode material for elec-
trochemical sensing applications. Therefore, micro-needle electrode 
(MNE) made of stainless steel acupuncture needle provides a promising 
electrochemical sensing platform with large specific surface area for the 
combination of functional nanomaterials for different small bio-
molecules and inorganic ions [28,29]. To achieve the modification of 
AgNPs on MNE, surface modification is clearly needed because of the 
smooth surface of stainless steel MNE [24]. 

As a natural biopolymer, Chitosan (CTS) exhibits excellent properties 
such as film-forming ability, biocompatibility, multiple functional 
groups, and pH-dependent solubility in aqueous media [30]. As re-
ported, CTS can form stable membrane with conducting materials and 
enhance their conductivity [31,32]. Many kinds of materials such as 
graphene oxide (GO), carbon nanotubes (CNTs), Ag, Si, and Cu have 
ever been reported to combine with CTS due to its reducibility, abundant 
functional groups, and film-forming ability. These properties make CTS 
a widely used immobilization agent for different nanomaterials to 
fabricate novel electrochemical sensors. Moreover, the functional 
groups of CTS can reduce Ag+ to Ag0, which looks like Tollen reaction 
and provides conditions for the self-assembly of AgNPs on the electrode 
[33,34]. Polyvinylpyrrolidone (PVP) is a well-known macromolecule 
surfactant with advantages of low toxicity, biocompatibility, high sur-
face activity, and strong adsorption ability [35]. In addition, it is known 
that PVP is one of the attractive polymers to immobilize inorganic 

nanoparticles due to its strong affinity of pyridyl group to metals and 
ability to undergo hydrogen bonding with polar species [36]. Further-
more, the composite of CTS and PVP (CTS/PVP) can not only protect the 
electrode, but also enhance the bonding ability with metal nano-
materials [37,38]. 

In this work, AgNPs were self-assembled on the MNE which was 
surface modified with CTS/PVP to fabricate the AgNPs/CTS/PVP/MNE 
for amperometric determination of NO3

– in seawater. As the conductive 
polymer, reducing agent, and adhesion agent, CTS/PVP film offered a lot 
of binding sites for the combination of AgNPs which had excellent cat-
alytic performance for the electrochemical reduction of NO3

–. The so- 
prepared AgNPs/CTS/PVP/MNE exhibited outstanding performance 
for the amperometric detection of NO3

–. Furthermore, the AgNPs/CTS/ 
PVP/MNE was successfully used for the direct detection of NO3

– in 
coastal seawater samples at natural pH condition. 

2. Experimental 

2.1. Materials and reagents 

Silver nitrate (AgNO3), sodium nitrate (NaNO3), ethanol 
(CH3CH2OH), acetic acid (HAc), ammonium hydroxide, PVP, and CTS 
were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, 
China). Unless otherwise stated, phosphate buffer (pH 7.0) was used as 
the supporting electrolyte for electrochemical experiments. Deionized 
water (18.2 MΩ cm specific resistance) obtained from Pall Cascada 
laboratory water system was used throughout. All chemicals were 
analytical reagents and used without further purification. Stainless steel 
acupuncture needles (Suzhou Medical Appliance Factory Co., Ltd, 
China) were used as the electrode substrates. Silicone rubber purchased 
from Liyang Kangda Chemical Co. Ltd., China was adopted as the 
sealant. 

2.2. Apparatus 

The morphologies of the bare and modified MNEs were characterized 
by scanning electron microscopy (SEM, Hitachi S-4800 microscope, 
Japan). X-ray photoelectron spectroscopy (XPS) was carried out on a 
Thermo ESCALAB 250XI (America). All the electrochemical experiments 
including cyclic voltammetry (CV) and amperometric i-t were per-
formed on a CHI660E electrochemical workstation (CH Instruments, 
Inc., Shanghai, China). The modified MNE served as the working elec-
trode, with Ag/AgCl (3.0 M KCl) and platinum foil serving as the 
reference and counter electrode, respectively. All potentials were 
measured with respect to the Ag/AgCl reference electrode. 

2.3. Preparation of the AgNPs/CTS/PVP/MNE 

The procedure for the fabrication of AgNPs/CTS/PVP/MNE was 

Scheme 1. Schematic illustration for the fabrication procedure of AgNPs/CTS/PVP/MNE.  
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illustrated in Scheme 1. Firstly, the MNE was manufactured by stainless 
steel acupuncture needles as described in our previous works [12,39]. 
Simply, the needle body part of the acupuncture needle was insulated 
and sealed with silicone rubber; leaving the needle tip about 1 mm and 
needle handle out for the sensing surface and electrode wire, respec-
tively. Secondly, the cleaning of the stainless steel acupuncture needle 
(diameter of 0.25 mm, length of 60 mm) was conducted with the help of 
sonication in ethanol and deionized water for 5 min, respectively. Then 
the CTS/PVP film was deposited on the MNE surface to prepare the CTS/ 
PVP modified MNE (CTS/PVP/MNE) by electrodepositing in the mixed 
solution of 0.1 mg/ml PVP and CTS (0.1 M HAc) at the potential of − 2 V 
for 200 s. Lastly, the CTS/PVP/MNE was put into the AgNO3 solution for 
5 min to achieve the self-assembly of AgNPs on the CTS/PVP/MNE. 
After careful cleaning and drying at room temperature, the AgNPs/CTS/ 
PVP/MNE was obtained eventually. 

2.4. Electrochemical analysis procedure 

The CV plots were obtained in PBS solution (pH 7) in the range of 
− 0.8 to 0.4 V at the scan rate of 100 mV/s. The current responses of NO3

– 

on different MNEs were investigated by amperometric i-t technique 
using the following parameters: potential of − 1.1 V, pulse period of 0.5 
s, and quiet time of 2 s. 

3. Results and discussion 

3.1. Characterization of the AgNPs/CTS/PVP/MNE 

To investigate the surface morphology of AgNPs/CTS/PVP/MNE, 
SEM characterization was conducted (Fig. 1). It can be seen clearly that 
the surface of the bare MNE was very smooth (Fig. 1A). It has been 
described in our previous works that the smooth surface provided few 
binding sites for functional nanomaterials [39]. As shown in Fig. 1B, a 
uniform and dense film deposited on MNE surface after the modification 
of PVP and CTS, which made the electrode surface more rough. The 
existence of CTS/PVP could not only improve the conductivity, but also 
increase the specific surface area and active binding sites of the elec-
trode. Importantly, it was also used as reducing agent for the self- 
assembly of AgNPs and adhesion agent for the immobilization of 
AgNPs. As shown in Fig. 1C and D, AgNPs were distributed uniformly on 

the surface of MNE with the diameter of about 150 to 400 nm after the 
self-assembly of AgNPs. AgNPs were successfully self-assembled and 
immobilized on the electrode because of the reduction capacity of CTS 
and strong affinity of PVP. The results of SEM characterization demon-
strated that both CTS/PVP film and AgNPs were successfully modified 
on the MNE. 

Subsequently, the AgNPs/CTS/PVP/MNE was characterized by 
means of XPS and CV. The XPS spectra of different electrodes were 
shown in Fig. S1. The presence of N and Ag signals proves the successful 
modification of CTS/PVP and AgNPs on the AgNPs/CTS/PVP/MNE. In 
addition, the Ag peaks of AgNPs/CTS/PVP/MNE shifted to higher 
binding energy, which might be caused by the strong interaction be-
tween the O of carbonyl group (C = O) in PVP and the AgNPs. The 
electrochemical properties of AgNPs/CTS/PVP/MNE were further 
investigated by CV (Fig. S2). The results showed that AgNPs and CTS/ 
PVP were modified successfully on MNE, which improved the conduc-
tivity and specific surface area of the electrode. The Electrode kinetics 
information was obtained by the CV behavior of AgNPs/CTS/PVP/MNE 

Fig. 1. SEM images of the MNE (A), CTS/PVP/MNE (B), and AgNPs/CTS/PVP/MNE (C, D).  

Fig. 2. Amperometric i-t curves of the bare MNE (a), CTS/PVP/MNE (b), and 
AgNPs/CTS/PVP/MNE (c) in 0.1 M NaCl solution with successive addition of 
the same concentration of NO3

–. 

J. Wang et al.                                                                                                                                                                                                                                    



Microchemical Journal 164 (2021) 105965

4

in 0.1 M NaCl solution containing 1 mM NO3
– at different scan rates 

(Fig. S3). The current response had a linear relationship with the square 
root of the scan rates, showing that the reduction of NO3

– on the AgNPs/ 
CTS/PVP/MNE was a diffusion-controlled electrode process. 

3.2. Electrochemical responses of AgNPs/CTS/PVP/MNE to NO3
– 

To explore the electrocatalytic reduction performance of CTS/PVP/ 
AgNPs/MNE to NO3

–, the current responses of MNE (a), CTS/PVP/MNE 
(b), and AgNPs/CTS/PVP/MNE (c) were compared by amperometric i-t 
method in 0.1 M NaCl solution with the potential of − 1.1 V (Fig. 2). It 
can be seen that there was no response signal of NO3

– could be obtained 
on the bare MNE. A much small cathodic response to NO3

– (0.12 μA) 
could be detected by the CTS/PVP/MNE, which indicated CTS/PVP 
played a limited role for the amperometric detection of NO3

–. Although 
the promotion effect of CTS/PVP was limited, it provided a large specific 
surface area and improved conductivity. PVP has the advantages of high 
surface activity and strong adsorption capacity, which are helpful for the 
detection of NO3

– [35]. Compared to MNE and CTS/PVP/MNE, the 
AgNPs/CTS/PVP/MNE showed the best performance for NO3

– detection 
(2.6 μA) thanks to the excellent catalytic performance of AgNPs. CTS can 
form stable conductive membrane with PVP and provide conditions for 
the self-assembly of AgNPs on the MNE. In addition, due to the strong 
affinity between AgNPs and pyridyl group of PVP which formed film 
with CTS, the stability of the AgNPs/CTS/PVP/MNE is significantly 
improved. So, the enhanced performance of AgNPs/CTS/PVP/MNE was 
caused by the combination of the excellent properties of CTS/PVP and 
AgNPs. 

3.3. Optimization for NO3
– determination with the AgNPs/CTS/PVP/ 

MNE 

The following parameters were optimized for the amperometric 
detection of NO3

–: mass ratio of CTS to PVP (Fig. S4A); deposition time of 
CTS/PVP (Fig. S4B); self-assembly time of the AgNPs (Fig. S4C); 
Respective data and Figures were given in the Supporting Information. 
The following experimental conditions were found to give best results: 
mass ratio of CTS to PVP (1:1); deposition time of CTS/PVP (400 s); self- 
assembly time of the AgNPs (5 min). 

3.4. Calibration curve 

Fig. 3 shows the calibration curve and corresponding amperometric 
i-t plots obtained at AgNPs/CTS/PVP/MNE in 0.1 M NaCl solution under 

the optimal conditions described above. The current response was linear 
with the concentration of NO3

– ranging from 0.005 to 2 mM. The 
regression equation was I = 0.04C + 13.39 (R2 = 0.996), where I rep-
resented the current in μA, and C was NO3

– concentration in mM. The 
detection limit (LOD) of AgNPs/CTS/PVP/MNE for NO3

– determination 
was calculated as 1.2 μM under the optimal conditions. The comparison 
of the AgNPs/CTS/PVP/MNE fabricated here with other electrodes 
published previously for NO3

– determination is presented in Table 1. It 
can be seen that when compared with other electrodes, the so-fabricated 
AgNPs/CTS/PVP/MNE showed superior performance for NO3

– determi-
nation with higher sensitivity and wider linear range. 

3.5. Repeatability, selectivity and stability 

To investigate the suitability of the AgNPs/CTS/PVP/MNE for NO3
– 

determination in complex water samples, its repeatability, selectivity 
and stability were all evaluated. The repeatability of the AgNPs/CTS/ 
PVP/MNE was evaluated by detecting 1 mM NO3

– at the same electrode 
for fifty measurements, and the relative standard deviation (RSD) was 
calculated to be 3.1%, indicating a good repeatability of the AgNPs/ 
CTS/PVP/MNE. The effects of possible interfering species for the 
amperometric determination of NO3

– were investigated by adding 
foreign species into the 0.1 M NaCl solution containing 1 mM NO3

– under 
the optimal conditions. The results showed that 30-fold Na+, Mg2+, Cr3+

and Cu2+, 10-fold Zn2+, As3+ and 4-nitrophenol, and equivalent Fe2+

and Cl- did not affect the determination of NO3
– (<5% of response current 

change). The CV curves of AgNPs/CTS/PVP/MNE in 1 mM NO3
– solution 

with and without typical reducible species including Cu2+ (30 mM) and 
4-nitrophenol (10 mM) were presented in Fig. S5. These results showed 
that the AgNPs/CTS/PVP/MNE proposed here had a good selectivity for 
NO3

– determination. Additionally, the stability of the AgNPs/CTS/PVP/ 
MNE was investigated by measuring the current response of 1 mM NO3

– 

every day with the same AgNPs/CTS/PVP/MNE. There was no obvious 
decrease of the current response after 15 days, indicating the good sta-
bility of the AgNPs/CTS/PVP/MNE. 

3.6. Practical application for NO3
– determination in seawater 

To evaluate the practical application of the so-fabricated AgNPs/ 
CTS/PVP/MNE, it was used for the determination of NO3

– in real coastal 
seawater samples. In July 2019, seawater samples were collected at 9 
stations at the Yellow River Estuary, DongYing, China. The sampling 
locations and corresponding latitude and longitude information of each 

Fig. 3. Amperometric i-t curve obtained on the AgNPs/CTS/PVP/MNE with 
successive addition of NO3

– from 0.005 to 2 mM in 0.1 M NaCl solution. Inset 
shows the corresponding calibration curve. 

Table 1 
Comparison of AgNPs/CTS/PVP/MNE with previously reported electrodes for 
NO3

– determination.  

Electrode Method Linear range 
(mM) 

Detection limit 
(μM) 

Ref. 

Cu DPV 0.1–2.5 11.0 [40] 
L-SCMNPs-CPEs SWV 0.10–1.982 87.0 [41] 
Pd/Sn/microband 

electrode 
LSV 0.016–0.333 – [42] 

CNT–PPy–Pt 
electrode 

CV 0.0005–0.01 0.2 [43] 

AgNS on carbon and 
Ag UMEs 

CV 0.004–1 3.2–5.1 [44] 

Nano-Ag/gold 
electrode 

CV 0.2–1.4 24 [45] 

Ag/GCE i-t 0.01–5 4 [46] 
AgNPs/CTS/PVP/ 

MNE 
i-t 0.005–2 1.2 This 

work 

L-SCMNPs, 3,6-bis(2-[2-sulfanyl-ethylimino-methyl]-4-(4-nitro-phenylazo)- 
phenol)pyridazine coated SiO2@Fe3O4; CPEs, carbon paste electrodes; CNT, 
carbon nanotubes; PPy, polypyrrole; AgNS, Ag nanostructures; UMEs, ultra-
microelectrodes; GCE, glassy carbon electrode; DPV, differential pulse voltam-
metry; SWV, square wave voltammetry; LSV, linear sweep voltammogram. 
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location was presented in Fig S6 and Table S1 respectively. After 
collection, the samples were filtered (0.45 μm membrane) and kept in a 
refrigerator at 4 ◦C until detection. Before determination, all the samples 
were diluted ten times and determined directly without pH adjustment. 
The concentrations of NO3

– in the real seawater samples were determined 
by standard addition method. As shown in Table 2, the results obtained 
with the AgNPs/CTS/PVP/MNE were in agreement with that detected 
by ion chromatography (IC) method. The results indicated that the 
AgNPs/CTS/PVP/MNE fabricated here might be a reliable and suitable 
candidate for the direct determination of NO3

– in seawater. 

4. Conclusions 

In summary, a novel and effective AgNPs/CTS/PVP/MNE was 
fabricated for sensitive and direct determination of NO3

– in seawater. The 
CTS/PVP not only improved the conductivity and specific surface area of 
the MNE, but also provided the reduction conditions needed for Ag+

reduction and strong binding affinity for combination of AgNPs which 
had excellent catalytic activity for NO3

–. The combined outstanding 
properties of MNE, CTS/PVP and AgNPs made the AgNPs/CTS/PVP/ 
MNE a promising sensor for the direct determination of NO3

– in seawater. 
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