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ABSTRACT
This study investigated the distribution, sources, and potential risks
of polycyclic aromatic hydrocarbons (PAHs) in coastal waters along
over 18,000 km of coastline in China. Concentrations of PAHs in
coastal waters ranged from 141.99 to 717.72 ng/L. Approximately
84.38% of sampling sites were determined at moderate PAH pollu-
tion level. PAHs in coastal waters at most of sampling sites mainly
originated from combustion based on characteristic ratios of PAHs.
Ecological risks posed by PAHs in coastal waters were evaluated as
high level at 59.38% of sampling sites and moderate level at 40.63%
of sampling sites although toxic equivalent quotients of PAHs only
ranged from 2.86 to 126.52 ng/L benzo[a]pyrene that was not
detected at all sampling sites. Maximal cancer risk/hazard quotient
of total PAHs in coastal waters for adults and children reached
6.34� 10�4/5.85� 10�2 and 2.25� 10�3/7.72� 10�2, respectively.
PAHs exerted high cancer risks for children at 31.25% of sampling
sites. Health risks posed by PAHs in coastal waters of this study were
higher than those of Japan, Belgium, Greece, Italy, Spain, USA, and
Australia, but much lower than those of Singapore, Iran, Brazil, and
Egypt. These findings indicate that PAH pollution has become a cru-
cial stress affecting the sustainable development of coastal regions.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs), ubiquitous in the environment, are a group of
over 100 individual persistent organic compounds possessing two or more fused aromatic
rings (Barro et al. 2009). PAHs have exhibited potential/proven carcinogenicity and geno-
toxicity (Capone and Bauer 1992; Purcaro et al. 2013), long-distance transportation features
(Pandey et al. 2011), high persistence (Akhbarizadeh et al. 2016; Marini and Frapiccini
2013), poor biodegradation (Akhbarizadeh et al. 2016), high toxicity (McGrath and Di
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Toro 2009; Qin et al. 2013), and significant bioaccumulation (Li et al. 2016) to attract
increasing attention. Moreover, 16 PAHs have been selected as priority pollutants by the
United States Environmental Protection Agency (USEPA) owing to their carcinogenicity,
toxicity, and mutagenicity (Zheng et al. 2016; USEPA 2014). Furthermore, health issues
including health risks of PAHs have also become scientific and public-concerning hotspot
in recent years (Akhbarizadeh et al. 2016; Qamar et al. 2017; Rajasekhar et al. 2018; Sarria-
Villa et al. 2016). Therefore, it is critical to explore the potential ecological and health risks
posed by PAHs when paying attention to those pollutants in aquatic systems.
It is generally acceptable that PAHs originate from pyrogenic, petrogenic, and diagen-

etic sources (Li et al. 2015; Mostafa et al. 2009). Thereafter, PAHs are also categorized
into pyrogenic group that mainly originates from incomplete combustion of fuels
including coal, petroleum, wood, and grass (Birks et al. 2017; Mostafa et al. 2009), pet-
rogenic group that is mainly from petroleum sources such as fuels, crude oil, and lubri-
cants (Birks et al. 2017; Mostafa et al. 2009), and diagenetic group that is derived from
biogenic precursors (Mostafa et al. 2009). Different sources address different distribu-
tion of PAHs in the environment (Birks et al. 2017) to exert various impacts to the eco-
system and human beings. Therefore, it is of important concern to determine the
sources of PAHs in the environment, especially the aquatic systems.
Coastal regions with intensive land-ocean interactions are not only the critical eco-

logically fragile regions but also the most important regions for human health and social
sustainability because over 45% of people around the world live within approximately
100 km of global coastlines (Zhu et al. 2017). Coastal regions cover 13% of the total
landmass and contain 40% of population in China (Meng et al. 2017). They are also the
areas with the fastest developing pace and the extensive anthropogenic activities in
China. Coastal regions are currently facing two critical issues including rapidly increas-
ing human populations and continually compressed ecosystem services in these eco-
logically fragile areas (Dennison 2008). Environmental pollution has become a crucial
stress affecting the critical ecologically fragile regions such as the coastal zone and the
Qinghai–Tibet Plateau due to the rapid economic development and extensive anthropo-
genic activities (Wang et al. 2018; Wen et al. 2018; Wu et al. 2016; Wu et al. 2018; Zhu
et al. 2017). PAHs in the waters of some local bays, gulfs, and lakes have exerted con-
siderable ecological risks to the aquatic ecosystems (Agah et al. 2017; Li et al. 2015; Qin
et al. 2013; Ranjbar Jafarabadi et al. 2017). Therefore, information on the pollution and
ecological-health risks of PAHs in the coastal waters of the coastal zone at a national or
continental scale is critical for regional sustainability. The objectives of this study are to
investigate the distribution characteristics, analyze the possible sources, and discuss the
potential risks of PAHs in the coastal waters along the over 18,000 km of coastline in
China. The final aim is to provide comprehensive insight for the environment pollution
and sustainable development in the coastal regions.

Methods and materials

Chemicals and reagents

The 16 priority PAH congeners including naphthalene (Naph), acenaphthylene (Acy),
acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Anth), pyrene
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(Pyr), fluoranthene (Flt), benzo[a]anthracene (BaA), chrysene (Chry), benzo[b]fluoranthene
(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno [1,2,3-cd]pyrene (InP),
dibenzo[a,h]anthracene (DbA), and benzo[g,h,i]perylene (BghiP) were analyzed. Standard
mixture stock solution of 16 PAH congeners with concentration of 1000lg/L and mixture
stock solution of deuterated internal standards including phenanthrene-d10, chrysene-d12,
naphthalene-d8, perylene-d12, and acenaphthene-d10 with concentration of 2000mg/L were
purchased from o2si smart solutions, LLC (Charleston, SC, USA). Dichloromethane, n-hex-
ane, and methanol used for sample preparation and analysis were HPLC grade and
obtained from MREDA (Mreda Technology Inc., USA). Anhydrous sodium sulfate was
baked at 450 �C for 8h and stored in sealed containers.

Study area and sample strategy

Sampling was performed in November of 2017. Mixed-surface coastal water sample with
volume of 30 L was composed of six subsamples with volume of 5 L collected along the
coastline of each sampling site at the distance interval of 5 m by using pre-cleaned amber
glass sample bottles and then being quickly transported back to the laboratory for further
analysis. Coastal water samples were collected from 32 sampling sites along Chinese coast-
line covering all the four coastal regions in China including Bohai Area (B1–B8), Yellow
Sea Area (Y1–Y11), East China Sea Area (E1–E6), and South China Sea Area (S1–S7)
(Figure S1 in the online supplementary information (SI)). Over 45% of global people live
in the coastal regions, suggesting that some functional zones such as estuaries, gulfs, bays,
zones, bathing beaches, and ports are critical to human health and ecosystems. Moreover,
mariculture has become one of the most important aquacultures in the coastal regions
(Gao et al. 2012), illustrating that mariculture also has important impacts on human health
and sustainable ecosystems. Therefore, sampling locations involved the main estuaries, gulfs,
bays, maricultural zones, bathing beaches, and ports along the coastline in China to repre-
sent the important functional zones of the coastal regions affecting the ecosystem and
human health.

Sample preparation and analysis

The water samples with volume of 1L were firstly filtered using 0.45-lm membrane filters
(Pall Life Sciences, Ann Arbor, MI, USA). Subsequently, the filtrated samples were spiked
with a 5lL of deuterated internal standard mixture solution (100mg/L) before solid phase
extraction (SPE) to compensate the loss of target analytes during the extraction process as
well as analysis procedure. The water samples were percolated under very low vacuum
through the Oasis HLB 6cc/200mg cartridges (Waters Corp., Mill-ford, MA) that were
conditioned with 10mL of dichloromethane, 10mL of methanol, and 10mL of ultrapure-
water. After extraction, 10mL of dichloromethane was passed through the cartridges to
elute and yield a fraction containing PAHs. The eluent was concentrated to nearly dry
under a gentle nitrogen stream after passing through anhydrous sodium sulfate and re-dis-
solved in 1mL of n-hexane for Gas Chromatography-Mass Spectrometer (GC-MS) analysis.
Samples were analyzed by Agilent 7820A GC system (Agilent technologies Inc., Palo

Alto, CA, USA) with a M7 single quadrupole MS system from Persee (Beijing, China).
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A 30 m� 0.25mm I.D. DB-5MS column (Agilent J&W Scientific, Folsom, CA, USA)
coated with 5% diphenylpoly dimethyl siloxane (film thickness 0.25 lm) was employed
for separation of target compounds during analysis. The injector was operating at
280 �C in splitless mode. Helium (>99.999% pure) was used as carrier gas at 1.0mL/
min during the whole run. The temperatures of the transfer line and ion source were
held at 280 and 230 �C, respectively. The column oven temperature program started at
40 �C for 3min, then programed to 200 �C at 25 �C/min, and held for 5min, finally to
290 �C at 8 �C/min rate, and held for 10min to comprise a total runtime of 35.65min,
including a 7-min solvent cut for all analyses.
All target compounds were identified by full scan mode (m/z 50-400) based on their

mass spectra and GC retention times. Subsequent acquisition and quantification were
performed by a time scheduled selective ion monitoring (SIM) program. The quantita-
tive and qualitative ions for 16 PAHs were presented in Table S1.

Quality control and quality assurance

Quality control procedures in the laboratory included the analyses of method blanks
(solvent), spiked blanks (solvent spiked by PAH standard mixture solution), and sample
in duplicate. The recovery was checked by analyzing water samples spiked with known
amount of PAH standard. Recoveries of 16 PAHs were in the range of
79.68%–116.84%. Concentrations of PAHs were all corrected according to the recoveries
of internal standards. The limit of detection (LOD) for PAHs ranged from 0.34 to
3.81 ng/L. The information on retention time, mean recovery, relative standard devi-
ation (RSD), and LOD was shown in Table S1.

Source apportionment

Several molecular ratios can serve as indictors to determine the potential sources of
PAHs in water (Agah et al. 2017; Akhbarizadeh et al. 2016; Birks et al. 2017;
Budzinski et al. 1997; Li et al. 2015; Li et al. 2017; Liu et al. 2016; Ranjbar Jafarabadi
et al. 2017; Yuan et al. 2017; Yunker et al. 2002; Zhang et al. 2016; Zheng et al. 2016).
This study selected molecular ratios of Flt/(Fltþ Pyr), BaA/(BaAþChry), Anth/
(Anthþ Phe), InP/(InPþBghiP), Flt/Pyr, Phe/Anth, and LMW (low-molecular-weight
PAHs, 2–3 rings)/HMW (high-molecular-weight PAHs, 4–6 rings) to evaluate the ori-
gin of PAHs in coastal waters. The diagenetic source of PAHs was not discussed in
this study because this source is scarce in the environment (Mostafa et al. 2009) and
typical indicator (perylene) that is not listed in the priority pollutants was not moni-
tored. Detailed characteristic values of selected ratios for source apportionment were
referred to Table S2.

Ecological risk assessment

Potential ecological risks of PAHs in coastal waters were evaluated using risk quotients
(RQs). RQs of PAHs were calculated according to the following equations (Cao et al.
2010; Li et al. 2015; Ranjbar Jafarabadi et al. 2017; Sun et al. 2009):
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RQi NCsð Þ ¼ Ci

CiQV NCsð Þ

RQi MPCsð Þ ¼ Ci

CiQV MPCsð Þ

RQt NCsð Þ ¼
Xn
i¼1

RQi NCsð Þ RQi NCsð Þ � 1
� �

RQt MPCsð Þ ¼
Xn
i¼1

RQi MPCsð Þ RQi MPNCsð Þ � 1
� �

where RQi(NCs) and RQi(MPCs) refer to risk quotients based on the negligible concentra-
tions (NCs) and the maximum permissible concentrations (MPCs) of individual PAHs
in water, respectively; Ci refers to the concentration of individual PAHs in water;
CiQV(NCs) and CiQV(MPCs) are the quality values of NCs and MPCs of PAHs in water,
respectively; n is the number of PAH congeners; RQt(NCs) and RQt(MPCs) refer to sum of
individual risk quotient that is equal or greater than 1 based on NCs and MPCs of indi-
vidual PAHs in water, respectively. The equivalent values of NCs and MPCs of individ-
ual PAHs in water and risk classification thresholds are referred to Tables S3 and S4.
Pollution of PAHs in water can be classified into four levels according to criterion listed
in Table S4 (Li et al. 2015). Therefore, this study also evaluated pollution levels of
PAHs in coastal waters.

Toxic evaluation

The toxicity of each PAH congener was calculated based on toxic equivalent factor
(TEF) method and the total toxicity of PAHs was the sum of individual PAH congener
toxicity as the following equation (Cao et al. 2010; Li et al. 2015; Qamar et al. 2017;
Zheng et al. 2014):

TEQ ¼
Xn
i¼1

Ci � TEFi

where TEQ is toxic equivalent quotient; TEFi is the toxic equivalent factor of each
PAH congener relative to BaP. The TEF values were listed in Table S4 and the max-
imum values were taken if TEF values of the same congener appeared variously in dif-
ferent references.

Health risk assessment

Dermal contact such as swimming, surfing, diving, and working in surface seawater is
the main health exposure path of PAHs in coastal waters because coastal waters are not
suitable to drink. Therefore, this study adopted cancer and non-cancer risks through
dermal contact to evaluate the potential health risks of PAHs. The detailed information
on cancer risk (CR) and hazard quotient (HQ) of individual pollutant is shown by the
following equations (Akhbarizadeh et al. 2016; Rajasekhar et al. 2018; Sarria-Villa et al.

972 J. LU ET AL.



2016; USEPA 2004):

CR individualð Þ ¼ DAD� SFO
GIABS

¼ DAevent � EV � ED� EF � SA
BW � AT

� SFO
GIABS

¼ 2� FA� KP � CW �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� sevent � tevent

p

r

� EV � ED� EF � SA
BW � AT

� SFO
GIABS

HQðindividualÞ¼DAD� 1
RfDO�GIABS

¼DAevent�EV�ED�EF�SA
BW�AT

� 1
RfDO�GIABS

¼2�FA�KP�CW�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�sevent� tevent

p

r
�EV�ED�EF�SA

BW�AT

� 1
RfDO�GIABS

CR ¼
X

CR individualð Þ

HQ ¼
X

HQ individualð Þ

where DAD and DAevent refer to dermal absorbed dose and absorbed dose per event,
respectively; EV, ED, and EF refer to the event frequency, exposure duration, and expos-
ure frequency, respectively; SA represents skin surface area; BW is body weight; AT rep-
resents average lifespan; SFO is oral slope factor; GIABS refers to the fraction of
pollutant absorbed in gastrointestinal tract; RfDO is oral reference dose; FA refers to the
fraction of absorbed water; KP stands for dermal permeability coefficient of pollutant;
CW refers to concentration of PAHs in coastal water; sevent is lag time per event; tevent
refers to event duration. The values of parameters were obtained from the references
(Akhbarizadeh et al. 2016; Man et al. 2013; Rajasekhar et al. 2018; Sarria-Villa et al.
2016; USEPA 2004; USEPA 2016) and listed in Table S5.
To evaluate the level of the health risks posed by PAHs at a global scale, data on the

highest concentrations of PAHs in coastal waters of other countries were cited from lit-
eratures (Ahmed et al. 2017; Akhbarizadeh et al. 2016; Cocci et al. 2017; Monteyne
et al. 2013; Obbard et al. 2007; S�anchez-Avila et al. 2010; Sankoda et al. 2017; Shaw
et al. 2004; Silva et al. 2007; Valavanidis et al. 2008; Williams et al. 2017) to assess
health risks of PAHs for adults and children living in corresponding countries. The
highest concentration of PAHs in this study was adopted to evaluate health risks
for comparison.
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Results and discussion

Distribution features of PAHs in coastal waters along Chinese coastline

The total concentrations of PAHs in coastal waters ranged from 141.99 to 717.72 ng/L
with the average value of 390.06 ng/L (Figure 1a). The concentration ranges of 2-ring,
3-ring, 4-ring, 5-ring, and 6-ring PAHs were 1.52-269.52, 23.55-475.28, 17.02-197.12,
ND (not detected)-292.45, and 7.63-165.19 ng/L with the average concentrations of
69.32, 129.83, 75.33, 75.06, and 40.53 ng/L, respectively (Figure 1a). Composition pro-
portions of 2-ring, 3-ring, 4-ring, 5-ring, and 6-ring PAHs were in the ranges of
0.47%–43.07%, 13.68%–70.21%, 7.58%–41.52%, 0.00%–44.84%, and 2.17%–39.42% with
average values of 16.10%, 34.30%, 20.66%, 19.03%, and 9.91%, respectively.
Concentrations of LMW PAHs ranged from 44.95 to 516.43 ng/L with the average value
of 199.15 ng/L, while those of HMW PAHs were in the range of 69.12–470.27 ng/L with
a mean value of 190.92 ng/L. The maximal proportion of LMW and HMW PAHs
reached 77.05% and 70.37% with average proportions of 50.40% and 49.60%, respect-
ively. Interestingly, PAHs in coastal waters near many beaches such as Y5-Y7 and S3-S5
were mainly composed by LMW PAHs which were easy to diffuse in coastal waters
from the adjacent area and might be also introduced by pleasure-boats and/or

Figure 1. Concentrations (a) and composition box plot of PAHs (b) in coastal waters of the study
area. LP, MP, and HP refer to light pollution, moderate pollution, and heavy pollution, respectively. In
each box, the bottom and top of the box illustrate the 25th and 75th percentiles; the mid-line of box
means the median value; the small square represents the average value of the target compound; the
bottom and top of the whiskers refers to the minimal and maximal concentrations.
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aquaculture vessels. Distribution and composition of PAHs in coastal waters along
Chinese coastline exhibited significant site-specific feature (Figure 1). PAHs in most of
coastal water samples collected from Haihe Estuary (B4) and Shandong Peninsula (B6,
B7, B8, Y3, Y4, Y5, Y6, Y7, and Y8) showed high concentrations.
Concentrations of individual LMW PAH congeners ranged from below detection limit

(Acy, Ace, Flu, and Anth at multiple sites) to 269.52 (Naph at Y5) ng/L while those of
individual HMW PAH congeners ranged from below detection limit (Pyr, Flt, BaA, Chry,
BbF, BkF, BaP, InP, and DbA at multiple sites) to 204.90 (BbF at E4) ng/L (Figures 1b
and S2). BaP was not detected at all sampling sites, while Naph, Phe, BghiP, InP, and
DbA were the most frequently detected with detection percents of 100%, 100%, 100%,
93.75%, and 93.75%, respectively. Generally, 3-ring PAHs served as the dominant conge-
ners of LMW PAHs, contributing to 50.23%–99.00% of LMW PAHs for 75.00% of sam-
pling sites, whereas 4-ring and 5-ring PAHs were the dominant groups for HMW PAHs,
contributing to 59.76%–95.09% of HMW PAHs for 93.75% of sampling sites.
Based on pollution evaluation criterion (Li et al. 2015), 84.38% of sampling sites were

determined at moderate PAH pollution, while the rest were at light pollution level
(Figure 1a). Considering coastal water samples were all collected from the sites with
extensive anthropogenic activities, the pollution status deserved more attention.

Source apportionment of PAHs in coastal waters along Chinese coastline

Seven characteristic ratios were adopted for source apportionment of PAHs in coastal
waters (Figure 2) to avoid the possible false-positive and false-negative phenomena
caused by single index. For ratios with value of 0 or error (divided by 0) due to non-
detected congeners, source of PAHs was determined according to the remaining ratios.
PAHs of some sampling sites such as B1-B8, Y1-Y2, E4-E6, and S1-S7 mainly originated
from coal and biomass combustion based on identical evaluation results of Flt/
(FltþPry) and InP/(InPþBghiP). PAHs of some sampling sites such as Y4-Y6, Y10-
Y11, and E1-E3 possibly originated from combustion of petroleum, coal, and biomass
due to inconsistent evaluation results of Flt/(FltþPry) and InP/(InPþBghiP). PAHs of
Y9 might originate petroleum combustion based on results of InP/(InPþBghiP). The
combustion was the main source of PAHs for most of sampling sites along the coast-
line, indicating the great influence of anthropogenic activities on the pollution of coastal
waters. The evaluation results were reasonable because sampling occurred in late
autumn and early winter during which combustion frequently occurred for heating.
According to previous investigation, combustion had been identified as the main source
of PAHs in the South China Sea (Cai et al. 2017).

Potential ecological risks of PAHs in coastal waters along Chinese coastline

Potential ecological risks of individual PAH congeners and total PAHs in coastal waters
of the study area were calculated and expressed as risk quotients including RQ(NCs) and
RQ(MPCs) (Table 1 and Figure S3). Except BaP that was not detected in this study,
RQ(NCs) of individual PAHs ranged from ND to 2049.03 (BbF at E4) with the average
values from 1.02 (Chry) to 574.86 (BbF), while RQ(MPCs) of individual PAHs ranged
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Figure 2. Cross plots of PAHs for the ratios of (a) Anth/(Anthþ Phe) vs. Flt/(Fltþ Pyr), (b) BaA/
(BaAþ Chry) vs. Flt/(Fltþ Pyr), (c) InP/(InPþ BghiP) vs. Flt/(Fltþ Pyr), (d) Phe/Anth vs. Flt/(Fltþ Pyr),
(e) Flt/Pyr vs. Flt/(Fltþ Pyr), and (f) LMW/HMW vs. Flt/(Fltþ Pyr).

Table 1. Statistical summary of ecological risk assessment on PAHs in coastal waters.

Chemical

RQi(NCs) or RQt(NCs) RQi(MPCs) or RQt(MPCs) Risk level percent (%)

Mean Min Med Max Mean Min Med Max Low Moderate High

Naphthalene (Naph) 5.78 0.13 6.31 22.46 0.06 0.001 0.06 0.22 15.63 84.38 0.00
Acenaphthylene (Acy) 36.12 0.00 23.79 330.16 0.36 0.00 0.24 3.30 18.75 75.00 6.25
Acenaphthene (Ace) 24.89 0.00 17.50 208.28 0.25 0.00 0.17 2.08 25.00 68.75 6.25
Fluorene (Flu) 39.66 0.00 39.77 279.20 0.40 0.00 0.40 2.79 34.38 62.50 3.13
Phenanthrene (Phe) 11.91 1.23 10.75 29.25 0.12 0.012 0.11 0.29 0.00 100.00 0.00
Anthracene (Anth) 33.76 0.00 43.20 160.50 0.34 0.00 0.43 1.61 37.50 59.38 3.13
Pyrene (Pyr) 37.35 0.00 37.62 156.07 0.37 0.00 0.38 1.56 18.75 78.13 3.13
Fluoranthene (Flt) 9.40 0.00 11.18 29.29 0.09 0.00 0.11 0.29 25.00 75.00 0.00
Benz[a]anthracene (BaA) 175.18 0.00 271.21 460.70 1.75 0.00 2.71 4.61 46.88 0.00 53.13
Chrysene (Chry) 1.02 0.00 0.00 20.02 0.01 0.00 0.00 0.20 87.50 12.50 0.00
Benzo[b]fluoranthene (BbF) 574.86 0.00 555.30 2049.03 5.75 0.00 5.55 20.49 28.13 0.00 71.88
Benzo[k]fluoranthene (BkF) 43.93 0.00 3.32 383.15 0.44 0.00 0.03 3.83 40.63 53.13 6.25
Benzo[a]pyrene (BaP) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
Indeno[1,2,3-cd]pyrene (InP) 35.84 0.00 17.19 128.46 0.36 0.00 0.17 1.28 6.25 81.25 12.50
Dibenz[a,h]anthracene (DbA) 31.07 0.00 12.22 144.47 0.31 0.00 0.12 1.44 6.25 84.38 9.38
Benzo[ghi]perylene (BghiP) 35.51 0.54 23.56 147.05 0.36 0.005 0.24 1.47 0.00 90.63 9.38
RPAHs 1096.22 470.16 1102.73 2491.94 8.49 1.753 8.47 22.74 0.00 40.63 59.38

Note: Min, Med, and Max mean minimal value, median value, and maximal value, respectively.
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from ND to 20.49 (BbF at E4) with the average values from 0.01 (Chry) to 5.75 (BbF).
According to evaluation criterion (Cao et al. 2010), BaP showed the lowest ecological
risks since it was not detected. HMW PAHs including BbF, BaA, InP, DbA, and BghiP
were the individual PAH congeners that exhibited high ecological risks to the ecosys-
tems. BbF and BaA exerted high risks to 71.88% and 53.13% of sampling sites when
comprehensively considering RQ(NCs) and RQ(MPCs), respectively. InP, DbA, and BghiP
exerted high risks to 12.50%, 9.38%, and 9.38% of sampling sites and moderate risks to
81.25%, 84.38%, and 90.63% of sampling sites, respectively. LMW PAH congeners
mainly exhibited moderate ecological risks to the ecosystems.

Figure 3. Toxic equivalent quotients and corresponding compositions for (a) total PAHs, (b) low-
molecular-weight (LMW) PAHs, and (c) high-molecular-weight (HMW) PAHs in coastal waters.
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Maximal RQ(NCs) and RQ(MPCs) of total PAHs reached 2491.94 and 22.74 with the aver-
age values of 1096.22 and 8.49, respectively. HMW PAHs mainly including BbF and BaA
contributed significant proportion to RQ(MPCs) of total PAHs. All individual PAH conge-
ners with concentrations exceeding their corresponding NCs contributed RQ(NCs) of total
PAHs. Total PAHs exerted high risks to 59.38% of sampling sites and moderate risks to
40.63% of sampling sites based on RQ(NCs) and RQ(MPCs), more serious than individual
congeners. Complex relationship might exist among the individual PAHs when they co-
occurred in the environment and exerted potential risks to the ecosystems. Therefore, it
is more reasonable to use RQ(NCs) and RQ(MPCs) of total PAHs to explore their potential
ecological risks.

Toxicity of PAHs in coastal waters along Chinese coastline

Toxicity of PAHs in coastal waters was expressed as TEQs relative to the reference con-
gener BaP that is a carcinogenic compound (Figure 3). The TEQs of total PAHs ranged
from 2.86 to 126.52 ng/L BaP with the average value of 39.99 ng/L BaP. HMW PAHs
were the dominant toxicity contributor of PAHs, accounting for 94.41%–99.87% of total
TEQs for sampling sites except Y8 where DbA and InP were not detected (Figure 3a).
Except six sampling sites (B6, Y3, Y4, Y5, Y7, and S2), 3-ring PAHs served as dominant
contributor for toxicity of LMW PAHs in the remaining sampling sites (Figure 3b).
These six sampling sites included all types of functional zones, exhibiting site-specific
features of toxicity of LMW PAHs. Except eight sampling sites (Y8, Y10, Y11, E4, E5,
S1, S3, and S4), 6-ring PAHs accounts for over 50% of toxicity of HMW PAHs with
maximal contribution proportion of 99.50% (Figure 3c). For sampling sites including
Y10, Y11, E4, E5, S1, S3, and S4, 5-ring PAHs were dominant toxicity contributor of
HMW PAHs, while 4-ring PAHs accounted for 73.09% of toxicity of HMW PAHs at
Y8. These eight sampling sites included all types of functional zones, also exhibiting
site-specific features of toxicity of HMW PAHs.
Owing to TEF values of 1, InP and DbA served as the main toxicity contributors for

total PAHs. Moreover, BbF was also an important toxicity contributor due to its rela-
tively high detection frequency, concentrations, and TEF value. Interestingly, BaP that is
one of the most common PAHs was not detected in this study. Since BaP is one of the
most toxic compounds among PAHs, it is safe to argue that the toxicity of PAHs in the
coastal waters along the coastline of China should increase further when BaP existed
with relatively high concentrations.

Potential health risks of PAHs in coastal waters along Chinese coastline

Potential health risks of PAHs in coastal waters of the study area for both children and
adults were express as cancer risks and hazard quotients (Figures 4, S4, and S5). Cancer
risks of total PAHs in coastal waters for adults and children were in the ranges of
8.24� 10�5–6.34� 10�4 and 2.93� 10�4–2.25� 10�3 with the average values of
2.65� 10�4 and 9.40� 10�4, respectively (Figure 4a). Based on ranking criterion (Ge
et al. 2013), cancer risks of PAHs in coastal waters at 93.75% and 6.25% of sampling
sites for adults were classified into moderate and low levels, respectively. In contrast,
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cancer risks of PAHs in coastal waters at 68.75% and 31.25% of sampling sites for chil-
dren were classified into moderate and high levels, respectively. Moreover, cancer risks
of PAHs for children were nearly 3.6 times those for adults, illustrating that children
will be more susceptible to potential harm posed by PAHs. Except BaP that was not
detected, cancer risks posed by individual PAH congeners for adults/children ranged
from negligible/negligible to 2.45� 10�4/8.71� 10�4 (BbF) with average values of
(2.38� 10�6–6.88� 10�5)/(8.45� 10�6–2.44� 10�4), respectively (Figures S4, S5).
Except Y8, HMW PAHs served as the dominant health risk contributor in the remain-
ing sites, accounting for 57.36%–95.62% of total cancer risks. Cancer risks posed by
3-ring PAHs accounted for 74.30%–99.87% of those posed by LMW PAHs at all sam-
pling sties while cancer risks of 5-ring and 6-ring PAHs contributed to 59.94%–97.05%
of cancer risks posed by HMW PAHs at sites except Y8. Cancer risks of PAHs exhibited
the site-specific and compound-specific distribution features so that the risk control
measures should be unique for different sites.
Hazard quotients of total PAHs in coastal waters for adults and children ranged

from 7.59� 10�3 to 5.85� 10�2 and from 1.00� 10�2 to 7.72� 10�2 with the average
values of 2.44� 10�2 and 3.22� 10�2, respectively (Figure 4b), all lower than risk
safe threshold value of 1.0. Moreover, hazard quotients of PAHs for children were
about 1.3 times those for adults, illustrating cancer risks of PAHs were more serious
than non-cancer risks for children who are still more susceptible to non-cancer
harm of PAHs than adults. Except BaP that was not detected, hazard quotients
of individual PAH congeners ranged from negligible to 2.26� 10�2 and from negli-
gible to 2.98� 10�2 with the average values of 2.19� 10�4–6.34� 10�3 and

Figure 4. Potential cancer risks (a) and hazard quotients (b) of PAHs in coastal waters. A and C refer
to adults and children, respectively.

HUMAN AND ECOLOGICAL RISK ASSESSMENT 979



2.89� 10�4–8.37� 10�3 for adults and children, respectively (Figures S4, S5). Similar
to distribution feature of cancer risks, HMW PAHs mainly contributed to hazard
quotients, while 3-ring PAHs served as the dominant contributor for non-cancer
risks posed by LMW PAHs and 5-ring and 6-ring PAHs accounted for over 59% of
non-cancer risks posed by HMW PAHs.

Figure 5. Concentrations (a), potential cancer risk (b), and hazard quotient (c) of PAHs in coastal
waters in the world. A and C refer to adults and children, respectively. TS means this study.
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Comparison on potential health risks of PAHs in coastal waters at a global scale

Concentrations, potential cancer risks, and hazard quotients of PAHs in coastal waters
around the world are illustrated in Figure 5. Concentrations of PAHs in coastal waters
around the world ranged from 3.56 ng/L (Japan) to 1.25mg/L (Egypt), showing drastic
fluctuation. Accordingly, health risks posed by PAHs in coastal waters around the world
also exhibited significant variation. Cancer risks of PAHs ranged from 3.57� 10�6

(Japan) to 7.93� 10�1 (Egypt) for adults and from 1.27� 10�5 (Japan) to 2.82 (Egypt)
for children. Hazard quotients of PAHs ranged from 3.30� 10�4 (Japan) to 73.15
(Egypt) for adults and from 4.35� 10�4 (Japan) to 96.56 (Egypt) for children, respect-
ively. PAHs in coastal waters of Egypt posed very high cancer risks and unacceptable
non-cancer risks for both adults and children. PAHs in coastal waters of Iran,
Singapore, and Brazil posed high cancer risks for adults, while those from Iran,
Singapore, Brazil, and China exerted high cancer risks for children. PAHs in coastal
waters of Japan, Belgium, Italy, and Australia posed low cancer risks for adults, while
those from China, Greece, Spain, and USA exerted moderate cancer risks for adults.
PAHs in coastal waters of Japan and Australia posed low cancer risks for children, while
those from Belgium, Greece, Italy, Spain, and USA exerted moderate cancer risks for
children. Except Egypt, non-cancer risks posed by PAHs in coastal waters from other
countries were at acceptable levels. Health risks posed by PAHs in this study were
higher than those from Japan, Belgium, Greece, Italy, Spain, USA, and Australia but
much lower than those from Singapore, Iran, Brazil, and Egypt.

Conclusions

Concentrations of PAHs in coastal waters along Chinese coastline were in the range of
141.99–717.72 ng/L, exhibiting that moderate and light PAH pollution occurred at
84.38% and 15.62% of sampling sites, respectively. PAHs in most of coastal water sam-
ples collected from Haihe Estuary and Shandong Peninsula showed relatively high con-
centrations. Naph, Phe, BghiP, InP, and DbA were the most frequently detected PAH
congeners in coastal waters along the coastline. PAHs in coastal waters at most of sam-
pling sites mainly originated from combustion based on characteristic-ratio source
apportionment. PAHs exerted high ecological risks to 59.38% of sampling sites and
moderate risks to 40.63% of sampling sites based on risk quotients. Toxic equivalent
quotient of PAHs ranged from 2.86 to 126.52 ng/L BaP with InP and DbA serving as
main toxicity contributors for total PAHs. Cancer risks of total PAHs in coastal waters
for adults and children were in the ranges of 8.24� 10�5–6.34� 10�4 and
2.93� 10�4–2.25� 10�3. Cancer risks of PAHs in coastal waters at 93.75% of sampling
sites for adults were classified into moderate level, while those at 31.25% of sampling
sites for children were classified into high level. Hazard quotients for adults and chil-
dren ranged from 7.59� 10�3 to 5.85� 10�2 and from 1.00� 10�2 to 7.72� 10�2 to
exert acceptable non-cancer risks. Potential health risks of PAHs in coastal waters along
coastline of China were higher than those of Japan, Belgium, Greece, Italy, Spain, USA,
and Australia, but much lower than those of Singapore, Iran, Brazil, and Egypt. These
findings indicate that PAH pollution has become a crucial stress affecting the
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sustainable development of the coastal regions. It is urgent to take effective and efficient
measures to control PAH pollution in the coastal regions.
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