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Abstract Temporal variations of methane flux (FCH4) and its underlying mechanisms still remain
poorly understood. To quantify diurnal and seasonal patterns of FCH4 and investigate its determinants,
we monitored FCH4 using eddy covariance in an alpine meadow on the Qinghai‐Tibetan Plateau, China,
from June 2015 to December 2016. As a strong CH4 sink, the alpine meadow on the Qinghai‐Tibetan Plateau
consumed 0.41 ± 0.04 Tg CH4/year. There was an obvious diurnal pattern with more CH4 uptakes during
the nighttime than the daytime for both growing and nongrowing season. The diurnal FCH4 during the
growing and nongrowing season were positively correlated with air temperature (Ta), volumetric water
content, friction velocity (u*), and vapor pressure deficit. The growing season FCH4 showed a significant
quadratic polynomial relationship with the canopy conductance (Gw) and gross primary production). FCH4

was significantly higher in the growing season than in the nongrowing season. The seasonal FCH4 was
negatively correlated with soil temperature and net radiation (Rn) but not with volumetric water content
and gross primary production. Ridge regression models indicated that Ta and u* explained 83% of the
variation in the diel dynamics of FCH4 during the growing season and explained 72% of the variation during
the nongrowing season. Rn accounted for 49% of variations of FCH4 at the seasonal scale. The temporal
patterns and the environmental controlling factors revealed in this study may improve model
parameterization for biosphere‐atmosphere CH4 exchange simulation as well as the methane
budget estimation.

Plain Language Summary Methane (CH4) is a very important greenhouse gas, responsible for
about 20% of the warming induced by long‐lived greenhouse gases since 1750, and its impact is second
only after carbon dioxide (CO2). However, we know much less about CH4 compared to CO2. Many
basic but important questions about CH4 still remain unanswered, such as the diurnal and seasonal
patterns of CH4 flux as well as the controlling factors of these temporal dynamics of CH4 flux. To
answer these questions, we monitored the CH4 flux continuously in an alpine meadow ecosystem
located on the eastern Qinghai‐Tibetan Plateau, China, from June 2015 to December 2016. At the
diurnal scale, we found that the CH4 uptake at nighttime was higher than at daytime. At the seasonal
scale, we found higher CH4 uptake during summer than winter. We also found that CH4 fluxes were
determined by air temperature and net radiation at the diurnal scale and seasonal scale, respectively.
The temporal patterns and the controlling factors revealed in this study may help to improve the
prediction of CH4 exchange processes and the estimation of methane budget from the regional to the
global scale.

1. Introduction

Methane (CH4)‐induced radiative forcing is 0.97 (0.74–1.2) W/m2 since 1750, responsible for about 20%
of the warming caused by long‐lived greenhouse gases, second only to carbon dioxide (Herbst et al.,
2011; Kirschke et al., 2013; Schulze et al., 2009; Shindell et al., 2009). CH4 has a long lifetime of about
12 years and a high Global Warming Potential 28 times as large as that of carbon dioxide (CO2;
Intergovernmental Panel on Climate Change, 2013). The concentration of atmospheric CH4 has
consistently increased from 700 to over 1,819 ppb since the era of industrialization to 2012 (Wei
et al., 2015). The sources and sinks of CH4 have attracted widespread attention (Heimann, 2011;
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Nisbet et al., 2014; Van Amstel, 2012). Natural aerobic soils are the second largest CH4 sink only after
reaction with OH in the troposphere, accounting for about 10% of the global CH4 sink (Curry, 2007;
Dutaur & Verchot, 2007; Lowe, 2006). However, there remains wide variations and large uncertainties
with respect to the magnitude of the CH4 consumed by global soils during the 2000s in different studies,
ranging from 22.6 to 30 Tg CH4/year based on bottom‐up approaches (Curry, 2007; Kirschke et al.,
2013; Lowe, 2006; Spahni et al., 2011; Tian et al., 2016). The large uncertainty in global soil CH4

consumption is mainly due to sparse observation sites and lack of knowledge of the controlling
mechanism of CH4 variation of different ecosystems. So it is important to study the temporal pattern
of the CH4 sink and the controlling factors in order to achieve a more accurate and precise estimation
of the global methane budget.

CH4 flux is the balance between the consumption by methanotrophic microbes and the production by
methanogenic microbes and the transport between the atmosphere and the surface. Therefore, biotic and
abiotic factors that control these processes may also affect CH4 flux. Hence, temporal dynamics in net
methane fluxes is expected to couple with the temporal dynamics of controlling processes (Long et al.,
2010). The diurnal variations of methane emissions have been reported in wetland ecosystems. Some studies
showed one‐peak diurnal pattern or two‐peak diurnal pattern (Ge et al., 2018; Kim et al., 1998; Koch et al.,
2007; Kowalska et al., 2013; Long et al., 2010; Song et al., 2015; Suyker et al., 1996; Whiting & Chanton,
1996), while others exhibited no clear diurnal variation patterns (Herbst et al., 2011; Hommeltenberg
et al., 2014; Kormann & Meixner, 2001; Rinne et al., 2007). Diurnal patterns of methane flux were generally
affected by solar radiation, soil temperature, plant community, and plant morphological and physiological
characteristics (Long et al., 2010). Vascular plants, especially, were able to influence the production, oxida-
tion, and transport of CH4, through modulating rhizosphere exudation, specialized aerenchyma tissue, or
stomatal conductance, all of which had a strong effect on the diurnal variation of CH4 flux (Chu et al.,
2014; Garnet et al., 2005; Long et al., 2010). The net CH4 fluxes (uptake or emission) of many different eco-
systems showed an obvious seasonal pattern, which is significantly higher during the growing season than
that during the nongrowing season (Guo et al., 2016; Hargreaves et al., 2001; He et al., 2014; Herbst et al.,
2011; Hommeltenberg et al., 2014; Long et al., 2010; Rinne et al., 2007; Wang et al., 2000; Wilson et al.,
2009). However, the diurnal and seasonal dynamics of net methane uptake and its controlling factors in
grassland, especially the alpine grassland, were rarely investigated (Qi et al., 2002; Wang et al., 2003;
Zhang et al., 2004).

Known as the third pole of the world with an average elevation about 4,000 m, Qinghai‐Tibetan Plateau is
very sensitive to the global climate change (Liu & Chen, 2000; Yao & Zhu, 2006; Zhang et al., 2015).
Alpine meadow is one of the most important ecosystems on the Qinghai‐Tibet Plateau, covering an area
of ~70 × 104 km2 and accounting for ~35% of the total plateau (Cao et al., 2008; Ni, 2002; Zhang & Liu,
2003; Zheng et al., 2012). The alpine meadow of Qinghai‐Tibetan Plateau is generally the sink of the atmo-
spheric CH4, with a mean methane absorption rate about 31.29 ± 21.78 mg CH4·m

−2·hr−1 (Kato et al., 2013;
Wang et al., 2014). Qinghai‐Tibetan Plateau grassland ecosystem is dominated by alpine meadow, which is
ranked the first largest methane uptake of grasslands in China. It consumed about 0.284 Tg CH4/year, ~44%
of the total CH4 uptake of grasslands in China (Wang et al., 2014). Some studies have shown that soil
methane uptake of alpine meadow tended to increase under the joint impacts of climate change and anthro-
pogenic activities (Chen et al., 2013a, 2013b; Zheng et al., 2012). However, the temporal patterns and its con-
trolling factors of the CH4 flux of alpine meadow remain unclear because almost all of the previous studies
were conducted in chambers with only few discontinuous measurements during the growing season. It is
impossible to monitor the diurnal and seasonal dynamics, especially in the nongrowing season. The
mechanisms underlying the temporal dynamics of CH4 fluxes are far from clear.

The eddy covariance technique provides integrated continuous measurements over a large area and may
increase our understanding of the temporal dynamics and the controlling factors of CH4 emissions. In this
study, we continuously monitored the CH4 flux of an alpine meadow ecosystem located on the eastern
Qinghai‐Tibetan Plateau with half hour resolution based on the eddy covariance technique for two growing
seasons. The main objectives are (1) revealing diurnal and seasonal patterns of the methane flux in an alpine
meadow, (2) investigating key factors controlling the diurnal and seasonal variation of themethane flux, and
(3) quantifying the role of alpine meadows across the plateau in consuming methane.
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2. Materials and Methods
2.1. Site Description

The methane flux was measured at an alpine meadow in the Qinghai‐Tibetan Plateau Research Center of
Southwest Minzu University (32°48′N and 102°33′E; 3,500 m a.s.l), located in Hongyuan County, Sichuan
Province, China, on the Eastern edge of the Qinghai‐Tibetan Plateau (Figure 1a). The Hongyuan alpinemea-
dow has a continental plateau monsoon climate which is characterized by strong solar radiation (the annual
total solar radiation is about 6,194 MJ/m2) with long, cold winters and short, cool summers. The annual
mean temperature of this region is ~1.5 °C (based on the routine meteorology data from 1961 to 2013).
July is the warmest month with a mean monthly temperature of 11.1 °C, while January is the coldest month
with a mean monthly temperature of –9.7 °C. The annual mean precipitation is 747 mm (1961–2013), and
more than 80% of the precipitation is concentrated in the growing season from May to September.

The vegetation in this alpine meadow is dominated by Deschampsia caespitosa, Poa Pratensis, Elymus
nutans, Agrostis hugoniana, Kobresia setchwanensis, Oxytropis kansuensis, Vicia sepium, Anemone rivularis,
Potentilla anserine, Polygonum viviparum, and Ligularia virgaurea. The soil in the region is classified as Mat
Cry‐gelic Cambisol according to the Chinese classification (Song et al., 2017). The soil thickness is 0.3–0.5 m,
and the surface soil bulk density (0–20 cm) is 0.89 ± 0.04 g/cm3. The soil pH value is 6.24 ± 0.09. Top soil (0–
10 cm) organic carbon (C) is 37.36 ± 0.51 g/kg, and the total nitrogen (N) is 3.51 ± 0.04 g/kg.

2.2. Eddy Covariance Measurements and Meteorological Measurements

An open‐path eddy covariance measurement system was installed at a height of 2 m above the alpine mea-
dow from 1 June 2015 to 31 December 2016 (Figure 1b). The eddy covariance system consists of a three‐
dimensional sonic anemometer (CSAT3; Campbell Scientific Inc. (CSI), Logan, USA), an open‐path CO2/
H2O infrared gas analyzer (LI‐7500A; Li‐COR Inc, Lincoln, NE, USA), and an open‐path CH4 infrared gas
analyzer (LI‐7700; Li‐COR). Data are logged at 10 Hz with a datalogger (CR5000, Campbell Scientific,
Utah, USA).

Meteorological data were measured simultaneously with the eddy covariance system. Air temperature (Ta)
and relative humidity were measured using HMP45C temperature probe (VAISALA, Finland). Soil volu-
metric water content (VWC) and soil temperature (T_soil) were measured at a depth of 5, 10, 20, 40, and
80 cm using CS655 probe (CSI). Precipitation (mm) was measured with a tipping bucket rain gauge
(TE525, CSI), and net radiation (Rn) was measured with a four‐component radiometer (CNR4, Kipp and
Zonen, Delft, Netherlands). Meteorological data are logged half‐hourly with a datalogger (CR1000,
Campbell Scientific, Utah, USA).

Figure 1. (a) Study site on the Tibetan Plateau. (b) The eddy covariance measurements at our study site.

10.1029/2019JG005011Journal of Geophysical Research: Biogeosciences

CHEN ET AL. 1733



2.3. Data Processing and Analysis

We preprocessed raw data (.ghg) using EddyPro 6.2.0 software. In this software, methane flux (FCH4 ) were
computed in terms of the covariance between vertical wind velocity (w) and mixing ratio (χc) fluctuations,
times the density in dry air (ρ) with averaging time set as 30 min

FCH4 ¼ ρw′χ ′c (1)

where “—” represents time average and “′” represents the fluctuation, that is, the deviation between the
instantaneous value and the mean value.

The Eddypro software applied processing as follows: double axis rotation, block averaging, maximum covar-
iance with default, fully configurable statistical tests (including spike count/removal, amplitude resolution,
dropouts, absolute limits, skewness, and kurtosis), Webb‐Pearman‐Leuning density fluctuations (WPL cor-
rection), sonic virtual temperature correction, spectral correction, the incorporated frequency response cor-
rection, angle of attack correction, quality check‐flagging, and spectroscopic corrections for LI7700. We
applied an approximate analytical footprint model (Hsieh et al., 2000) to estimate the contributing source
areas to scalar flux measurement. Under unstable atmospheric conditions, the observed fluxes were mainly
contributed by the nearby area within 250 m (Figure S1a in the supporting information), while under stable
atmospheric conditions, the flux contributing source of our eddy covariance flux tower could be as far as
about 4,000 m. The footprint model showed that peak distance from measuring point to the maximum con-
tributing source area was 8.8 m (Figures S1c and S1d), and the Fetch to Height ratio was 90:1. After prepro-
cessing of EddyPro, methane fluxes were converted from 10 Hz to half hour interval and the data coverage
was 58%. First, we filtered the data beyond the range of −0.1 to 0.005 μmol/m2/s based on empirical value
and 38% of the data was left in the database. Second, because precipitation may disturb the atmosphere flow
and interfere with the observation, we removed the data during the rainfall event and 37% of the data was
left in the database. Finally, to avoid errors due to CH4 storage during calm conditions, we removed the data
when the friction velocity (u*) was less than 0.1 m/s at nighttime. After this final step, 34% of the data were
kept in the database. Days with data coverage larger than 30% were considered as valid days and used for
further calculation and analysis. We investigated the diurnal cycle by averaging every half hour flux data
across all valid days and created a representative day with 48 data points. For the monthly average, to avoid
the bias caused by the unbalanced data points in different days, we first calculated a representative day for
that month by averaging every half hour flux data across valid days during the month. Then the monthly
average was calculated by averaging the half hour flux data of the representative day. A detailed description
of the data coverage in each time of the day and year is provided in Tables S1 and S2. The positive value
means CH4 emission from soil to atmosphere, while the negative value means CH4 uptake from atmosphere
to the underlying surface.

CH4 flux data were divided into two time periods according to physical conditions and plant growth: (a) a
growing season, ranging from 21 April to 31 October and (b) a nongrowing season, ranging from 1
November to 20 April of the next year.

Gross primary productivity (GPP) was partitioned from CO2 flux data (NEE, net ecosystem exchange) of the
same eddy covariance measurement system as CH4 flux. First, missing data of daytime NEE during the
growing season were gap filled by a rectangular hyperbolic regression as follows (Falge et al., 2001).

NEEdaytime ¼ −
αFmaxPPFD

αPPFDþ Fmax
þ Reco (2)

where NEEdaytime (umol/m2/s) is NEE at daytime, α is the apparent quantum yield, Fmax (umol/m2/s) is the
maximum CO2 flux at infinite light, PPFD (umol/m2/s) is photosynthetic photon flux density, and Reco
(umol/m2/s) is the ecosystem respiration.

Second, nighttime missing NEE data were gap filled by using an exponential equation against the air tem-
perature (Lloyd & Taylor, 1994).

NEEnighttime ¼ a exp bTairð Þ (3)

where NEEnighttime is nighttime NEE, that is, the ecosystem respiration (Reco) and a and b are two empirical
coefficients. Daytime ecosystem respiration can be estimated by expanding this equation to daytime.
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Finally, GPP can be calculated as

GPReco−NEE (4)

where Reco is the daytime ecosystem respiration, NEE is the daytime net ecosystem exchange of carbon.

The canopy conductance for water vapor (Gw, mm/s) was calculated by inverting the Penman‐Monteith
equation (Xu et al., 2018):

1
Gw

¼ ra
γ

ΔRnþ ρCpVPD=ra
λET

−Δ−γ
� �

(5)

where ra is the inverse of aerodynamic conductance (s/mm), γ is the psychrometric constant (kPa/K), VPD is
the saturation water vapor pressure deficit (kPa), Δ is the slope of the VPD curve with temperature (kPa/K),
Rn is the net radiation, ρ is the air density (kg/m3), Cp is the specific heat capacity of air (J/kg/K), and λET is
the latent heat (LE) measured by the eddy covariance (W/m2).

ra is the inverse of aerodynamic conductance; it is calculated as

ra ¼ ln z−dð Þ=z0½ �
k2u*

(6)

where z0 is the surface roughness (0.1 hr), h is the mean canopy height (0.2 m), z is the measurement height
(2 m), d is the zero plane displacement (0.65 hr), k is the von Kármán constant, and u* is the friction velocity
at height z.

We used three regression analyses to investigate key factors controlling the diurnal and seasonal variation of
the methane flux. First, we used bivariate regression to explore the relationship between methane flux and
each environmental or biotic factor, respectively, including Ta, Rn, T_soil at the depth of 10 cm and VWC at
the depth of 5 cm, u*, VPD, Gw, GPP on different time scales. Second, partial regression statistics were used
to evaluate the relationship (slope and variance) between net methane flux and each covariate while control-
ling for the influence of all other independent model covariates. Third, to solve the collinearity problem and
determine the relative importance of each influencing factor while explaining correlated variation among all
variables, we used ridge regression for different time scales. Considering the large spatial heterogeneity of
soil moisture and the little representativeness and accuracy of its diurnal dynamics, VWC was excluded
for the ridge regression at diurnal scale during the growing season and the nongrowing season.

In addition, we performed time lag analysis for net methane flux and GPP on the diurnal scale in the
growing season.

Based on the above analysis, we further estimated the total annual CH4 uptake of alpine meadows on the
Qinghai‐Tibetan Plateau by upscaling our seasonal regression equation to the same ecosystem in the whole
region. Since only net radiation (Rn) entered the regression model at the seasonal scale (Table 1), we applied
zonal statistics to Rn raster data set and the corresponding map of vegetation type on the Qinghai‐Tibetan
Plateau to calculate the mean Rn of the alpine meadows. Substituting this mean value into the seasonal
equation the total CH4 consumption by alpine meadows on the Qinghai‐Tibetan Plateau can be obtained.
Net radiation (Rn) data were from the National Earth System Science Data Sharing Infrastructure,

Table 1
Ridge Regression Model at Diurnal Scale During the Nongrowing Season and the Growing Season and at Seasonal Scale,
Their Equation, Adj. R2(Adjusted R2), and Significance

Period Equation model Adj.R2 Significance

Diurnal scale during the nongrowing season FCH4 = 0.009*u* + 0.009*Ta 0.72 ***
Diurnal scale during the growing season FCH4 = 0.015*Ta + 0.016*u* 0.83 ***
Seasonal scale FCH4 = (−4.300E‐03)*Rn 0.49 **

Note. FCH4 = net methane flux; u* = friction velocity; Ta = air temperature; Rn = net radiation. Coefficients of these
equation models were standardized.
**P < 0.05. ***P < 0.001.
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National Science & Technology Infrastructure of China (http://www.geo-
data.cn). The raster data were the mean annual value of the surface net
radiation data in the 2000s and spatially interpolated from 127 meteorol-
ogy stations on the Qinghai‐Tibetan Plateau. The spatial resolution of
both the Rn data set and the vegetation type map is 1 km × 1 km.

3. Results
3.1. Diurnal Dynamics

CH4 flux showed similar diurnal dynamics in the growing season and
nongrowing season (Figure 2). The diurnal CH4 flux pattern of the grow-
ing season was characterized by a strong uptake during the nighttime and
a weak uptake during the daytime. The mean diurnal uptake rate of CH4

flux fluctuated around −0.0125 μmol/m2/s between 0:00 and 9:00, then
gradually declined until 11:00, fluctuated around 0 μmol/m2/s between
11:00 and 18:00, and increased again after 18:00. Compared with the
growing season, the diurnal variation of the CH4 flux in the nongrowing
season was relatively small. The alpine meadow was a methane sink
between 0:00 and 9:00 and 18:00–24:00 and a nearly methane neutral
between 11:00 and 18:00.

3.2. Seasonal Dynamics

The CH4 flux showed a seasonal dynamic with a significantly higher net uptake during the growing season
(May–October) than the nongrowing season (November–April; Figure 3). The highest uptake rate of CH4

flux occurred in the peak growing stage (July and August) in 2015 and 2016, with a value of −927.5
μmol/m2/day in July of 2015 and −703.9 μmol/m2/day in August of 2016. There was a gap from
November 2015 to January 2016 due to instrument malfunction, so the CH4 flux variation of these 3 months
was not clear.

3.3. Controlling Factors for the Diurnal and Seasonal Dynamics

At the diurnal scale in the nongrowing season, the net CH4 flux significantly increased with the air tempera-
ture (Ta; p < 0.001), VWC at 5 cm (VWC at 5 cm; p < 0.01), friction velocity (u*; p < 0.001), and vapor pres-
sure deficit (VPD; p < 0.001; Figures 4a–4d). During the growing season, there were significant positive
linear correlation relationships between the net CH4 flux and Ta (p < 0.001), VWC at 5 cm (p < 0.001),
u*(p < 0.001), and VPD (p < 0.001; Figures 5a–5d). CH4 flux and the canopy conductance for water vapor

(Gw) had a significant quadratic polynomial relationship (p < 0.001) with
stronger CH4 uptake under both low and high canopy conductance
(Figure 5e). There was a significant quadratic polynomial relationship
between net CH4 flux and GPP with a lag time of 1.5 hr (p < 0.001;
Figure 5f). Partial regression found no significant relationship between
net CH4 flux and climate factors during the nongrowing season (Figures
S2a–S2d), indicating collinearity among these climate variables. For the
growing season, partial regression showed that the net CH4 flux increased
with Ta (p = 0.01), VWC at 5 cm (p < 0.001) and VPD (p = 0.01; Figures
S3aa, S3b, and S3d). Net methane flux decreased with u* (p = 0.01;
Figure S3c) while Gw and GPP had no independent influence on the var-
iation of net CH4 flux (Figures S3e and S3e f).

At the seasonal scale, CH4 flux was negatively correlated with soil
temperature at 10 cm (T_soil at 10 cm; p < 0.05; Figure 6a) and net radia-
tion (Rn; p < 0.01; Figure 6c) and CH4 uptake was greater when T_soil
and Rn were higher, but VWC at 5 cm did not affect CH4 flux
(Figure 6b). There was no significant relationship between the net CH4

flux and GPP (Figure 6d). When the influences of all other influencing

Figure 2. Diurnal patterns of net methane flux during the nongrowing sea-
son and the growing season. The black line represents the moving average of
3 hr during the growing season; the red line represents the moving‐average
of 3 hr during the nongrowing season. Vertical bars represent the standard
error of the mean.

Figure 3. Seasonal dynamic of net methane flux from June 2015 to
December 2016. Vertical bars represent the standard error of the mean.
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variables were controlled, only Rn had a significant influence on the seasonal variation of net methane flux
(Figure S4c; p < 0.05).

3.4. Predictors of Net Methane Flux and the Regional Estimation

We used ridge regression to establish the regression equations between net methane flux and influencing
factors at different time scales (Table 1). Ta and u* in combination explained 72% of the variation in CH4

at the diurnal scale during the nongrowing season. For the diurnal dynamics in the growing season, Ta
and u* were also the main predictors and explained 83% variation of CH4. Rn was the only factor included
in the seasonal model and accounted for 49% of the variation in CH4.

We then used those equations to estimate the annual CH4 uptake by alpine meadow on the Qinghai‐Tibetan
Plateau. The estimated CH4 uptake ranged from 0.33 to 0.81 g CH4·m

−2·year−1 (Figure 7). The CH4 sink
strength in the Southwest area was higher than that in the Northeast area of alpine meadow. The total
annual CH4 consumption by the whole alpine meadow on the Qinghai‐Tibetan Plateau was estimated to
be 0.41 ± 0.04 Tg CH4/year.

4. Discussion
4.1. Diurnal Dynamics and Their Controls

Previous studies have conflicting results on the diurnal dynamics of CH4 flux, which was detected in some
ecosystems (Dong et al., 2000; Qi et al., 2002; Wang et al., 2003; Zhang et al., 2004) but not in others (Imer
et al., 2013; MalJanen et al., 2002; Steinkamp et al., 2001). We observed a very clear diurnal dynamic in
methane flux during both growing and nongrowing seasons in an alpine meadow. Based on discontinuous
measurements, some previous studies also found diurnal variations in grassland and forest ecosystems.
Some of the reports agreed with our study with a strong uptake during nighttime and a weak uptake during
daytime (Dong et al., 2000; Qi et al., 2002; Wang et al., 2003; Zhang et al., 2004), while others reported oppo-
site patterns with a weak uptake during nighttime and a strong uptake during daytime (Qi et al., 2004). All of
these previous reports did not explore mechanisms contributing to the diurnal pattern. In this study, changes
in temperature and soil moisture determined the diurnal CH4 flux variations. Therefore, previous reports

Figure 4. Relationship between net methane flux (CH4 Flux) and (a) air temperature (Ta), (b) volumetric water content at the depth of 5 cm (VWC at 5 cm), (c) u*

(Friction velocity), and (d) vapor pressure deficit (VPD) at diurnal scale during nongrowing season. Shaded areas represent 95% confidence intervals.
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Figure 5. Relationship between net methane flux (CH4 Flux) and (a) air temperature (Ta); (b) volumetric water content at the depth of 5 cm (VWC at 5 cm); (c)
Friction velocity(u*); (d) Vapor pressure deficit (VPD); (e) Canopy conductance (Gw); (f) gross primary productivity (GPP) at diurnal scale during growing sea-
son. Shaded areas represent 95% confidence intervals.

Figure 6. Relationship between net methane flux (CH4) and (a) soil temperature at the depth of 10 cm (T_soil at 10 cm), (b) volumetric water content at the depth of
5 cm (VWC at 5 cm), (c) net radiation (Rn), and (d) gross primary productivity (GPP) at seasonal scale. Shaded areas represent 95% confidence intervals.
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that did not find the diurnal pattern of CH4 flux can be partly explained by the fact that the amplitude of
changes in daily temperature or soil moisture in the ecosystems they studied is too small to cause obvious
dynamics in net CH4 flux. For example, a coniferous forest ecosystem in the Black Forest of Germany did
not show any significant diurnal pattern of CH4 flux due to the fact that this ecosystem has too small fluctua-
tion in the diurnal dynamics of soil temperature (maximum 3.98 °C at the soil depth of 5 cm) to cause sig-
nificant changes in CH4 oxidation rates (Steinkamp et al., 2001).

A number of possible mechanisms were proposed to explain the diurnal variation in net methane flux in pre-
vious studies. First, higher temperature sensitivity of CH4 production than CH4 oxidation might account for
diel variation in CH4 flux (Castro et al., 1995; Dunfield et al., 1993; Steinkamp et al., 2001). Second, plant‐
mediated transport of CH4 by diffusion and convective flow from soil to plant has diurnal variation, which
might contribute to the diurnal pattern in CH4 flux (Brix, 1992; Chanton et al., 1992; Joabsson et al., 1999;
Käki et al., 2001; Kim et al., 1998; Kowalska et al., 2013; Thomas et al., 1996; Van Der Nat et al., 1998).
Third, diel variation in the physiological activity of stomatal conductance can be another mechanism that
influences the diurnal pattern of CH4 flux (Garnet et al., 2005; Schimel, 1995). Fourth, plant photosynthesis
could influence the diurnal pattern of net methane flux by providing recently fixed carbon as a substrate for
methanogenesis (Chanton et al., 1995; Joabsson et al., 1999; Ström et al., 2003).

In our study, in the nongrowing season, u* and Ta were the dominant factors controlling the diurnal changes
in net CH4 flux (Table 1). This can be partly explained by the following mechanism. Field and lab studies
have shown that the response of the methane oxidation rates to variations in soil temperature was strongest
at low temperatures and became weak even negligible above a threshold of temperature (10 °C; Castro et al.,
1995; Steinkamp et al., 2001). During the nighttime under relatively low temperature, the oxidation rates of
CH4 are higher than production rates and the ecosystem is characterized by net CH4 uptake; as the tempera-
ture rises at daytime, the increasing methane production becomes more predominant, leading to a fluctua-
tion up and down near zero. u* and Ta also can control the diurnal changes in net CH4 flux by influencing
the diffusion of CH4. Turbulence gets stronger as the temperature rises at daytime, which might benefit the
transport of methane from soil to atmosphere. In summary, we suggest that lower temperature sensitivity of
CH4 oxidation and beneficial diffusion condition at daytime are the two major mechanisms accounting for
the diurnal variation observed in net CH4 flux during nongrowing season.

Figure 7. Spatial distribution of estimated annual CH4 uptake (g CH4m
2/year) by alpinemeadow on the Qinghai‐Tibetan

Plateau.

10.1029/2019JG005011Journal of Geophysical Research: Biogeosciences

CHEN ET AL. 1739



For the growing season, Ta and u* were the dominant factors controlling the diurnal changes in net CH4 flux
(Table 1). This can be also explained by the first mechanism mentioned above. Since Gw and GPP did not
have independent influence on the variation of net CH4 flux (Figures S3e and S3f) and were not included
in the ridge regression model, the third and fourth mechanisms may contribute little in this study.
Anatomic studies on structures of different alpine plants have shown that most alpine plants have a well‐
developed aerenchyma (intercellular gaps, canal, or crevice) because of adaptation to the lack of oxygen
on the Qinghai‐Tibetan Plateau (He et al., 2007; Liu et al., 2009; Wu & Niu, 2017; Zhou et al., 1990; Zhou
et al., 1992). In our study site, dominant species like Taraxacum mongolicum, Aster alpinus L.,
Leontopodium leontopodioides, Potentilla anserine, Polygonum viviparum, and Ligularia virgaurea all have
advanced aerenchyma. So the second mechanism mentioned above, CH4 transport from soil to atmosphere
by diffusion at nighttime and additional plant‐mediated convective flow transport by aerenchyma during
daytime, may contribute to the diurnal dynamics of CH4 flux in our study. However, there is little difference
in net CH4 flux variation at daytime between growing season and nongrowing season (Figure 2), so we
suggest that the influence from plant‐mediated transport on the diurnal pattern of net CH4 flux is negligible
during the growing season. In summary, same as the nongrowing season, we suggest that lower temperature
sensitivity of methane oxidation and beneficial diffusion condition at daytime are the two major
mechanisms accounting for the diurnal variation observed in net CH4 flux during the growing season.

4.2. Seasonal Dynamic and Its Controls

We also detected a clear seasonal dynamic of CH4 in this study, with higher uptake rates in summer and
lower rates in winter. The similar seasonal variations of net CH4 fluxes have been reported in alpine grass-
lands (Guo et al., 2016; He et al., 2014; Pei et al., 2003; Wang et al., 2009), temperate grasslands (Chen et al.,
2010; Du et al., 1997; Du et al., 2005; Liu et al., 2007; Wang et al., 1998; Wang et al., 2000; Wang et al., 2013),
and forests ecosystem (Steinkamp et al., 2001; Wei et al., 2018). In our study site, net CH4 uptake occurred
during the nongrowing season with freezing soil surface and low soil temperature, consistent with observa-
tions in a shortgrass steppe in North American (Mosier et al., 1996), an alpine grassland in the Qinghai‐
Tibetan Plateau (Pei et al., 2003), and a typical semiarid steppe grassland in Inner Mongolia (Wang et al.,
2005). Contrasting to our observation, Wang et al. (2009) found, the alpine meadow was weak sink during
the growing season but was neutral during the nongrowing season, probably due to higher altitude
(4,600–4,800 m), deeper permafrost depth, thicker snow cover, and lower temperature during winter. No
clear seasonal trend of the net methane uptake flux was found in a tropical rainforest in southern China
due to its relatively high and stable soil temperature all year‐round (Wei et al., 2018). This study suggested
that the net CH4 flux is highly dynamic at both diurnal and seasonal scales, which are predominately deter-
mined by the temporal changes in climate factors.

Rn was the most dominant factor controlling the seasonal changes in net CH4 flux at our study site (Table 1).
Bivariate regression results showed that T_soil at 10 cm and Rn were all negatively correlated with net CH4

flux at the seasonal scale, but only Rn had a significant correlation with CH4 flux in ridge regression
(Figures 6 and S4 and Table 1). Therefore, solar radiation may control the seasonal variation in net CH4 flux
by influencing soil temperature and plant growth condition, which can be explained by the following
mechanisms. First, higher radiation can increase CH4 oxidation rate by increasing soil temperature.
Second, radiation can also stimulate growth rate and abundance of methanotrophic microbes by enhancing
temperature and C‐substrates through increasing plant productivity. In addition, radiation can affect the
plant‐mediated transportation of CH4 and O2 from atmosphere to soil by affecting plant growth and ecosys-
tem productivity, which influences net methane flux indirectly (Long et al., 2010). Similar to our results, Li
et al. (2016) found that radiation promoted CH4 uptake by releasing oxygen to the soil and providing abun-
dant rhizosphere exudates that serve as oxidation substrates of methane through enhancing plant photo-
synthesis at a tundra ecosystem in the High Arctic. Soil temperature is generally considered to be a
critical factor influencing seasonal patterns of net CH4 uptake in both grassland and forest ecosystems
(Chen et al., 2010; Liu et al., 2007; Wei et al., 2015; Wei et al., 2018). But our results indicated that the effects
of temperature on the seasonal CH4 uptake confounded with solar radiation. Although soil moisture is com-
monly considered a critical factor controlling methane production and oxidation, we found no correlation
between soil moisture and the seasonal CH4 uptake in this study. Our result differed from some other studies
in grassland ecosystems (Bai et al., 2018; Dijkstra et al., 2013; Zhao et al., 2017), mainly due to that soil
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moisture is not the most important limiting factor in alpine meadow as that in the temperate
semiarid steppe.

Results of bivariate regression and partial regression in this study indicated that influences of different
controlling factors on the diel and seasonal variation of net CH4 flux are quite complex and difficult to dis-
tinguish. All the influencing factors had significant relationships with net CH4 flux in the bivariate regres-
sion at the diurnal scale, but most were not significant in the partial regression. Especially for the analysis
of diurnal variation in the nongrowing season, none of the factors were significant in the partial regression.
This might be attributed to the confounding effects of different controlling variables. Most previous studies
did not consider those confounding effects, causing conflicting results on the main drivers for CH4 variation.
Nevertheless, how to explicitly distinguish the influences of different controlling factors from each other
need to be further explored in future studies.

4.3. Implications for Methane Budget Estimation

Only a few studies have estimated the methane sinks on the Qinghai‐Tibetan Plateau with very limited data
acquired from chamber observations, ranging from 0.19 to 0.28 Tg CH4/year (Jin et al., 2015; Kato et al.,
2011; Wang et al., 2014). In this study, our estimation showed that alpine meadows on the Qinghai‐
Tibetan Plateau acted as a strong net CH4 sink with ~0.41‐Tg CH4/year uptake. The CH4 uptake by alpine
meadow on the Qinghai‐Tibetan Plateau was higher than previous estimations mainly because the previous
studies may neglect or underestimate CH4 uptake in the nongrowing season. According to previous studies,
the estimated CH4 emissions of natural wetland ecosystems on the Qinghai‐Tibetan Plateau range from 0.7
to 1.49 Tg CH4/year (Chen et al., 2013; Jin et al., 1999; Jin et al., 2015). Our results showed that CH4 con-
sumption by alpine meadows can offset a relatively high portion of methane emissions from wetlands on
the Qinghai‐Tibetan Plateau. In fact, we only calculated the CH4 uptake by alpine meadow. If alpine steppe
was taken into consideration, alpine grassland might be a more considerable methane sink. Nevertheless,
there has been no report or measurement of CH4 consumption in the alpine grassland at ecosystem scale.
So it is necessary to conduct field researches of methane fluxes in different ecosystems.

The temporal patterns and the determinants revealed in our observation may benefit the models to simulate
the biosphere‐atmosphere CH4 exchange and estimate the methane budget. Explicit biological processed‐
based models for methane consumption at the regional and global scales are difficult to formulate, due to
large uncertainties in both structure and parameters (Bousquet et al., 2006; Curry, 2007; Smith et al.,
2000). In this study we established regression models with high explanatory power between the net CH4 flux
and the controlling factors at different time scales (Table 1), which are useful for model validation, parame-
terization, structure improvement, and benchmark. On the other hand, because of sparse observation and
lack of knowledge on the controlling mechanism of CH4 variation, estimating the regional or global terres-
trial methane sink remains a large challenge with large uncertainty (Curry, 2007; Kirschke et al., 2013;
Lowe, 2006; Spahni et al., 2011; Tian et al., 2016). In this study we comprehensively revealed the mechan-
isms underlying the diurnal and seasonal dynamics of net CH4 uptake at the ecosystem scale in an alpine
meadow, which is of critical importance for methane budget estimation of Qinghai‐Tibetan Plateau. Most
previous studies only measured CH4 flux a few times in a day or during a season, and these measurements
were used to represent the average daily or seasonal CH4 fluxes (Liu et al., 2017; Voigt et al., 2017; Wang
et al., 2017; Zhao et al., 2017). However, using average values of a period in a day or a season to represent
daily or annual methane fluxes may lead to large misestimation of CH4 budget in ecosystems with highly
variable diurnal and seasonal methane flux.

5. Conclusions

The alpine meadow ecosystem on the Qinghai‐Tibetan Plateau acted as a strong methane sink and con-
sumed about 0.41 Tg CH4/year. An obvious diurnal dynamic characterized by a strong uptake in the night-
time and weak uptake in the daytime was observed in the net CH4 flux during both the growing and
nongrowing seasons. The net CH4 flux was significantly higher in the growing season than in nongrowing
season. The key controlling factors for the temporal dynamics varied with scales. The diurnal variation of
net CH4 flux was mainly explained by temperature and turbulence during the growing season (R2 = 0.83)
and the nongrowing season (R2 = 0.72). The seasonal dynamics of CH4 flux was best explained by the
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combined effects of temperature and solar radiation (R2 = 0.49). The findings in this study are crucial to
attain better understanding of themechanisms underlying the temporal variation of CH4 flux and improving
model predictions.
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