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Abstract Although polarization lidar technology has been widely used to detect depolarized particles,
many difficulties still exist in measuring accurate values for the depolarization ratio. This ratio is
basically related to the difference between the optical and the electronic gain of the lidar's channels, the
polarization purity of the laser pulse, and the error in the alignment between the laser's polarization plane
and the polarizer. We propose here an algorithm for the calibration and calculation of polarization lidars.
Numerical simulations showed that the depolarization ratio profile retrieved from the proposed algorithm
agrees well with the simulated profile. The proposed algorithm no longer requires the laser source to be
linearly polarized. Instead, the light polarization can be elliptical or random. During the installation process,
the polarization of the detector is no longer required to be parallel or perpendicular to the polarization
direction of the laser source and can be done in any direction.

1. Introduction

The measurement of depolarization ratio by polarization lidar provides a useful means for detecting non-
spherical mineral dust particles, distinguishing water from ice clouds, and studying the characteristics of
ice clouds (Ansmann et al., 2003; Murayama et al., 1999; Sassen 1991; Shimizu et al., 2004; Scotland et al.,
1971). The general concept includes two receiving channels for detecting the backscattered light parallel
and perpendicular (cross) to the polarization direction of the linearly polarized laser source. This technique
is sensitive to the shape of backscattering particles: spherical particles reflect light in the opposite (180°)
backscattering direction without changing the polarization, while nonspherical particles reflect light
according to their shape, size, and composition (Platt et al., 1987; Sassen et al., 1989). Therefore, polarization
lidars can distinguish different types of particles in the atmosphere and are very sensitive to detecting layers
containing aspheric particles, such as cirrus clouds or some types of polar stratospheric clouds (Browell
et al., 1990).

In spite of the wide use of polarization lidar technology for detecting depolarized particles, many difficulties
in measuring the accurate value of the depolarization ratio still remain (Behrendt & Nakamura, 2002;
Belegante et al., 2018). The uncertainty in depolarization measurements from lidars comes from various
sources but is mostly related to the difference between the optical and the electronic gain of the lidar's chan-
nels, the polarization purity of the laser pulse, and the alignment error between the laser's polarization plane
and the polarizer (Behrendt et al., 2002; Bravo‐Aranda et al., 2016). The two‐parallel and cross‐polarization
components are separated in the receiver by using a polarization beam splitter cube, but this separation is
not perfect. In addition, the polarization splitter may be misaligned with the polarization plane of the trans-
mitted laser beam, and a polarization plane rotation is used for the relative calibration of the two receiving
channels. Therefore, an equation necessary to obtain the angle between the polarization plane of the laser
and the incident plane of the polarization beam splitter cube is necessary and has been devised
(Freudenthaler et al., 2009; Freudenthaler, 2016).

In this paper, we propose an algorithm for the calibration and calculation of polarization lidars, whose pur-
pose is to make lidar results independent of polarization orientation. Section 2 introduces the principle of
this technique, while a simulation of lidar parameters in an idealized environment, and comparison with
actual data is proposed to validate the algorithm in section 3. A discussion based on empirical experiments
and a summary are proposed in sections 4 and 5, respectively.
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2. Methodology

The parallel‐ and cross‐polarized components of the total backscattered power can be written as (Klett,
1981)
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and
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respectively, where E0,Ar, and c are the single pulse energy of laser, the receiver diameter, and the velocity of
light in vacuum; σ(r) is the total extinction coefficient; and η, β(r), and C (∥ and⊥, respectively, represent the
parallel‐ and cross‐polarized channels) are the detection efficiency, the components of the backscatter coef-
ficient at distance r, and the lidar instrumental constant, respectively.

The ratio of the cross‐polarized backscatter coefficient to the parallel‐polarized backscatter coefficient is
called the linear volume depolarization ratio (Sugimoto & Lee, 2006):

δ rð Þ ¼ β⊥

β∥
¼ γP⊥

P∥ ; (3)

where C∥
C⊥

¼ γ accounts for the differences in the entire detector channels.

In the following calculation, we also use another definition of the particle depolarization ratio (Sugimotod
et al., 2006)

δ0 rð Þ ¼ β⊥

β⊥ þ β∥
¼ γP⊥

γP⊥ þ P∥ : (4)

The following relationships between δ(r) and δ ' (r) exist

δ rð Þ ¼ δ0 rð Þ
1−δ0 rð Þ : (5)

Without considering the polarization effect, the backscattered power received in the parallel‐ and cross‐
polarized channels are Pp and Ps, respectively. When the laser source is a linearly polarized light, ideally,
Ps should be zero. However, during the installation process, the polarization direction of the light source
and of the detector cannot be made completely parallel; therefore, Ps is not zero. In addition, in some cases
of low purity of linear polarization, Ps is also not 0. The system polarization degree, which is described by R,
can be expressed as

R ¼ γPS

PP
: (6)

Muller matrices describe the linear interaction between polarized light and an optical system (optical
elements or medium). Any input can be represented as a Stokes vector (Freudenthaler, 2016). The total input
power Iin can be represented by the Stokes vector as

Iin ¼

PP þ γPS

PP−γPS

m

0

0
BBB@

1
CCCA; (7)

where PP+γPS is related to the laser energy and the parameter m describes different system
polarization degrees.
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Muller matrix F is used to describe the scattering matrix for randomly oriented particles and can be written
as (Freudenthaler, 2016)

F ¼ F11

1 0 0 0

0 a 0 0

0 0 −a 0

0 0 0 1−2a

0
BBB@

1
CCCA; (8)

where F11 is the backscatter coefficient and a is the polarization parameter. Both F11 and a are range‐
dependent, and the linear volume depolarization ratio is written as (Freudenthaler, 2016)

δ ¼ 1−a
1þ a

⇒a ¼ 1−2δ0: (9)

A polarizing splitter separates the received signals into reflection (cross‐polarized components) and trans-
mission (parallel‐polarized components) signals. Consequently, the reflection (MS) and transmission (MP)
processes are expressed as

MS ¼ 1
2
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MP ¼ 1
2
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0
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1
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respectively.

According to the Stokes‐Muller formalism, the reflected signal P⊥ and the transmitted signal P∥ can be
obtained by multiplying the laser beam Stokes vector (Iin) by the Muller matrix F, that is,

P⊥ ¼ C⊥MSFIin ¼ C⊥F11
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respectively.

Thus, the measured signals P⊥ and P∥ are

P⊥ ¼ C⊥F11
1−að Þ
2

PP þ 1þ að Þ
2

γP
� �

; (14)
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1þ að Þ
2
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2

γPS

� �
; (15)

respectively.
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Substitute equation (9) into equations (14) and (15), The cross‐ and parallel‐polarized components of the
total backscattered power are written as

P⊥ ¼ C⊥F11 γPS 1−δ0ð Þ þ δ0PP½ �; (16)

P∥ ¼ C∥F11 PP 1−δ0ð Þ þ δ0PSγ½ �; (17)

respectively.

Therefore, the ratio of equations (16) and (17) implies

P⊥
P∥

¼ C⊥F11 γPS 1−δ0ð Þ þ δ0PP½ Þ�
C∥F11 PP 1−δ0ð Þ þ δ0PSγ½ �; (18)

and the depolarization ratio δ' can be calculated as

δ0 ¼
1‐ γP⊥

RP∥

1þ γP⊥
P∥

� �
1− 1

R

� � : (19)

This formula is more general than that described in equation (4). It allows for the depolarization ratio to be
calculated under different polarization states and eliminates the errors caused by the nonparallel polariza-
tion of the light source and detector during the installation process. From this formula, we can see that R
cannot equal 1, which means that the laser source can be any kind of polarized light except circularly
polarized light.

Figure 1. (a) Total extinction coefficient, (b) backscatter coefficient, (c) simulated lidar range corrected signal (RCS), and
(d) simulated depolarization ratio δ(r) as a function of altitude.
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The system polarization degree R can be estimated bymonitoring the δ values in themiddle and upper tropo-
sphere, where the effects of aerosols on depolarization are usually small. For determining this value, a pre-
vious study delineated the properties of atmospheric backscatter signals relevant for calculating the
molecular depolarization ratio (depending on the receiver bandwidth of a lidar system) (Behrendt et al.,
2002). According to this research work, the molecule depolarization ratio is δmol =0.00363 (Behrendt
et al., 2002). Since the molecule depolarization ratio is not the object of our study, the molecule depolariza-
tion ratio is set to 0 here. The amount of error this assumption brings to the aerosol depolarization ratio esti-
mation will be analyzed later.

Molecular extinction coefficient σm(r) and backscatter coefficient βm(r) can be got from a standard atmo-
spheric model (U.S. Standard Atmosphere). We substitute σm(r) and βm(r)into equation (1) to obtain
Rayleigh signal. In order to find the range where we assume clean air without aerosols, the measured signals
are first fitted to the Rayleigh signal profile in the aerosol‐free middle‐to‐upper troposphere (Rayleigh‐fit)
(Bockmann et al., 2004). The Rayleigh‐fit is a normalization of the range corrected lidar signal to the

Figure 2. (a) Simulated lidar range corrected signal (RCS) fitted to the Rayleigh signal profile, (b) simulated and
calculated depolarization ratio for different values of polarization purity R, (c) error between simulated and calculated
depolarization ratios (for given R values), and (d) mean absolute error as a function of R.

Table 1
Statistics of Mean Relative Errors Between Simulated and Calculated Depolarization Ratio for Different Values of R

System polarization degree 0.01 0.2 0.4 0.6 0.8 0.9 0.95 0.98 1.02 1.04 1.1 1.2 1.3 1.6 1.8 2

Mean relative error (%) 2.46 2.88 2.86 4.45 7.42 15.00 33.28 69.35 67.23 34.45 14.71 6.47 4.28 2.13 1.36 0.88
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calculated attenuated molecular backscatter coefficient in a range where the calculated signal fits the lidar
signal sufficiently good. The corresponding depolarization ratio was set to zero for the molecular signal or
the Rayleigh signal. Therefore, from equation (19), R can be calculated as

R ¼ γP⊥
ry

P∥
ry ; (20)

with P∥
ry and P⊥

ry as the parallel‐ and the cross‐polarized molecular signals, respectively.

In summary, we can fit the measured signals to the Rayleigh signal profile to find the range where we
assume clean air without aerosols and calculate the system polarization degree R, then substitute R into
equations (19) and (5) to obtain the depolarization ratio. It can eliminate the errors caused by the nonparallel
polarization of the light source and detector during the installation process. From equation (19), we can see
that R cannot equal 1. Therefore, the proposed algorithm does no longer require the laser source to be line-
arly polarized, as elliptical polarized or randomly polarized light (except circular) can be used.

Figure 3. Polarization lidar installation at the (a) Shenzhen and (b) Yantai stations.

Figure 4. Lidar range corrected signal for the (a) parallel‐ (RCS‐P), (b) cross‐polarized (RCS‐S) channel, and (c) depolarization ratio calculated by the traditional
and proposed methods at the Shenzhen lidar station on 18 December 2018.
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3. Numerical Analysis

To verify the proposed algorithm accuracy, we first simulate the range corrected signal (RCS). It is assumed
that the detection efficiency of both channels (η∥ and η⊥ ) is equal to 1. The receiver diameter is set to 100 cm,
and the single laser pulse energy of laser is set to 100 μJ. So for given σ(r) and β(r), as shown in Figures 1a and
1b, we substitute them into equations (1) and (2) to obtain RCS (Xian et al., 2018), as shown in Figure 1c.
Figure 1d shows the given depolarization ratio δ(r). At altitudes of 5 km and above, the molecular signal
dominates, whereas the level of aerosol concentration is almost 0, and the depolarization ratio is set to
0.00363 (Behrendt et al., 2002). The simulated lidar was set to a horizontal resolution of 15 m and a laser cen-
tral wavelength of 532 nm, although the algorithm is wavelength independent. To verify the accuracy of
the algorithm, while considering different laser pulse polarization purity and different alignments between
the polarization plane of the laser and the detector, we set a series of R to simulate the RCS‐P (RCS in the
parallel‐polarized channel) and the RCS‐S (RCS in the cross‐polarized channel). For a given RCS‐P and
under Poisson noise condition, we set a series of R to calculate RCS‐S. The values RCS‐P, RCS‐S, and δ(r)

Figure 5. Time‐height cross sections of (a) RCS‐P, (b) RCS‐S, and (c) depolarization ratio obtained from the proposed algo-
rithm for the lidar data acquired at the Shenzhen station from 18 to 19 December 2018.
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are then substituted in equations (16) and (17) to obtain the backscattered power received in the cross‐ and
parallel‐polarized channels.

The proposed algorithm is used to solve the simulated signal and obtain the depolarization ratio δ(r) profile.
No data filtering was applied for retrieving the depolarization ratio. Figure 2a shows the fitting of RCS with
the Rayleigh signal. For different values of RCS‐P and RCS‐S, and by fitting the signals of the two channels
with the Rayleigh signal at altitudes of 8‐10 km, the system polarization degree R is calculated. Then, using
equations (19) and (5), the depolarization ratio is estimated and compared with the simulated depolarization
ratio, as shown in Figure 2b. It can be seen from this figure that the solution obtained is in good agreement
with the simulated depolarization ratio. We subtract the calculated results with different R from the simu-
lated depolarization ratio and get error curves for each R value, as shown in Figure 2c. Due to the Poisson
noise at altitudes of 8‐10 km, the value of R calculated by equation (20) has a range of errors. For different
values of R, the mean absolute error is obtained by averaging the error of the aerosol depolarization ratio
within the first 5 km, as shown in Figure 2d. It can be seen from the figure that for R values less than 1, there
is a positive average error and for R values greater than 1, the average error is negative.

Table 1 summarizes the mean relative error between simulated and calculated depolarization ratio for
different values of R. When R is less than 0.8 or more than 1.2, the mean relative error is less than 5%.
From equation (19), we can see that R cannot be equal to 1. For values of R close to 1, the error is very high,
reaching up to 69.35%. Therefore, in actual measurements, R should be kept as far away as possible from 1.
Compared to uncertainties, which are typically in the range of 5–10 % in the retrieval products discussed by
Mamouri et al. (Mamouri et al., 2013), the algorithm proposed in the current study yields lower uncertainty.

4. Results and Discussion

To validate the proposed algorithm performance, we performed a series of experiments in December at the
Shenzhen (22.498085°N, 113.920647°E) and Yantai (37.472229°N, 121.446365°E) lidar stations, shown in
Figures 3a and 3b. The Shenzhen's polarized lidar light source has a very high degree of linear polarization,
which can reach 1000:1, while the Yantai's lidar system polarization degree is relatively low, about 100:30.
The wavelength of both lasers is 532 nm.

For the polarization lidar in Shenzhen, the two channel signals RCS‐P and RCS‐S measuring during
cloudless weather conditions were selected and fitted with the Rayleigh signal, as shown in Figures 4a
and 4b. Above an altitude of about 1.5 km, the ratio of the two channels is approximately 0.011, and the ratio
of optical to electronic gain of the two channels is 0.998. Using equation (20), a value R=0.0109 is obtained.
Because the linear polarization degree of the laser is very high, it can be considered that the backscattered

Figure 6. Lidar range corrected signal for the (a) parallel‐ (RCS‐P), (b) cross‐polarized (RCS‐S) channel, and (c) the ratio of two channel signals at the Yantai lidar
station on 05 December 2018.
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power of RCS‐S is caused by the imperfect parallel alignment between the polarization direction of the laser
and the polarization direction of the detector. The depolarization ratio is obtained by equations (19) and (5).
Figure 4c shows depolarization ratio calculated by the traditional and proposed methods. It can be seen that
the inversion results of those two methods are relatively consistent for well‐polarized‐calibrated lidar with
high system polarization degree. Figures 5a–5c depict, respectively, the time‐height cross sections of RCS‐
P, RCS‐S, and the depolarization ratio yielded from the proposed algorithm for the lidar data measured at
Shenzhen between 18 and 19 December 2018. Those graphics demonstrate the very high stability and
continuity of results enabled by our algorithm.

The same procedure displayed in Figure 4 is used for the Yantai's polarized lidar, with results shown in
Figure 6. In this case, the ratio of the two channels is about 0.369 for altitudes exceeding 7 km. The ratio
of optical and electronic gain of two channels has been measured to be 0.83, and using equation (20),
R=0.306 is obtained. It can be concluded that this part of the backscattered power is caused by the low
system polarization degree. Similar to the Shenzhen site, the depolarization ratio is calculated by

Figure 7. Time‐height cross sections of (a) RCS‐P, (b) RCS‐S, and (c) depolarization ratio obtained from the proposed algo-
rithm for the lidar data acquired at the Yantai station on 5 December 2018.
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equations (19) and (5). Figure 7 displays the same cross sections as Figure 5, but for the Yantai lidar data
measured on 5 December 2018. Similar to the Shenzhen case, the algorithm yields very high stability and
continuity (Figure 7). Although the Yantai's lidar system polarization degree is relatively low, the
depolarization ratio can still be calculated by the proposed algorithm.

5. Conclusions

An algorithm was proposed to retrieve the depolarization ratio from polarization lidar data. Results from
numerical simulations showed a good agreement between the simulated depolarization ratio profile and
the one obtained from the proposed algorithm, while experimental results demonstrated that the proposed
algorithm yields very high stability and accuracy. Thus, the proposed algorithm no longer requires the laser
source to be linearly polarized, allowing for elliptical or random polarization (except circular) to be used.
During the installation process, the polarization of the detector is no longer required to be parallel or perpen-
dicular to the polarization plane of the laser source and can be done in any direction.
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