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ABSTRACT
Simultaneous removal of the antibiotics and heavy metals has attracted increasing attention since
these contaminants are frequently detected in the aquatic environment. In this study, highly active
nano-Mg(OH)2 was synthesized and firstly applied in catalytic ozonation system for simultaneous
removal of metronidazole (MNZ) and heavy metal ions (Cu2+ and Zn2+). The results showed that
the synthesized Mg(OH)2 nanoparticles exhibited high efficiencies of removing both MNZ and
heavy metal ions (Cu2+ and Zn2+) in the catalytic ozonation process. Surprisingly, the removal
efficiency of MNZ in the catalytic ozonation system with nano-Mg(OH)2 catalyst was improved in
the presence of Cu2+ and Zn2+. Some parameters such as catalyst dosage, initial concentration of
MNZ, initial concentration of heavy metal and reaction temperature could affect the
simultaneous removal of MNZ and heavy metal ions (Cu2+ and Zn2+). This study provides an
innovative and effective method for the simultaneous removal of antibiotics and heavy metals
from the aquatic environment.
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1. Introduction

With the fast industrialization and urbanization, pharma-
ceuticals and their metabolites in the environment have
induced important issues threating aquatic organisms,
agricultural products and human health [1,2]. Antibiotics,

an important class of pharmaceutical compounds, have
been widely used for promoting growth and treating
bacterial infections of humans and animals [3,4]. The
used antibiotics constantly enter the aquatic environ-
mental through human and animal excretion, the
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discharged wastewater and sewage, treatment of
unused or expired antibiotics, and other sources [4,5].
These antibiotics are frequently detected in the ground-
water, drinking water, surface water and effluents of
sewage treatment plants since they possess the high
potential of resistance to degradation [6,7]. Therefore,
the advanced oxidation processes (AOPs) such as photo-
catalysis [8], photoelectrocatalytic degradation [3], ozo-
nation [9], photo-Fenton [10] and electro-Fenton
[10,11] technologies have been used to remove anti-
biotics. As an alternative, the catalytic ozonation
process has been found to be very effective in eliminat-
ing refractory organic pollutants with short reaction time
and high removal efficiency [9,12]. Heavy metal ions,
kind of typical inorganic pollutants, are widely used in
various industries and animal breeding, leading to high
concentrations in the wastewater [3,5,13]. Heavy metals
will pose potential risks to human health and ecosystems
due to their high solubility, easy migration, high toxicity
and persistence [14]. Thus, it is of crucial importance to
develop effective strategies to control heavy metal pol-
lution. Many techniques such as adsorption [15], photo-
catalysis [16], chemical precipitation [17], and ion
exchange [18] have been used to remove heavy metal
ions from aqueous environments.

Wastewater usually contains different kinds of con-
taminants such as organic pollutants and inorganic pol-
lutants. In recent years, the combined pollution of
heavy metal ions and antibiotics in aquatic systems has
become an increasing concern in aqueous environ-
ments. Antibiotics can interact with heavy metal ions
to produce complex substances which might possess
stronger toxicity [3,5]. Therefore, it is necessary to estab-
lish an effective method to remove both antibiotics and
heavy metals in aqueous environments.

Nanoscale magnesium hydroxide (nano-Mg(OH)2) as
inorganic metal oxide is the low-cost, non-toxic and
environment-friendly nanomaterial, showing excellent
adsorption capacity for removing the heavy metal ions
from the aqueous solution [15]. Moreover, nano-Mg(OH)2
is also used as the ozonation catalyst with a high catalytic
performance for the degradation of antibiotics by
forminghighly reactive andnon-selective hydroxyl radicals
[1]. Rare reports are available on the simultaneous removal
of antibiotics and heavymetal ions fromaqueous solutions
by catalytic ozonation using nano-Mg(OH)2 as a catalyst.

In this study, highly active nano-Mg(OH)2 was pre-
pared and firstly used for simultaneous removal of anti-
biotics and heavy metal ions from aqueous solution in
the catalytic ozonation process. Metronidazole (MNZ),
one of the widely used nitroimidazole antibiotics, was
chosen as representative compounds of antibiotics for
removal study. Copper ion (Cu2+) and zinc ion (Zn2+)

which widely exist in aqueous media [3,14] were used
as the representative heavy metal ions. The morphology
and compositions of nano-Mg(OH)2 before and after
removal of antibiotics and heavy metals were character-
ized by SEM-EDS and XPS. In addition, the effect of
various parameters including catalyst dosage, initial
heavy metal concentration, initial antibiotic concen-
tration and reaction temperature on the simultaneous
removal of MNZ and heavy metals were evaluated. This
technology has the potential for energy conservation
compared to individually remove heavy metals and
antibiotic.

2. Materials and methods

2.1. Reagents

MNZ (purity >99%) was provided by Shanghai Macklin
Biochemical Co., Ltd. The analytical grade magnesium
chloride (MgCl2·6H2O), polyethylene glycol (PEG 400)
and ammonium hydroxide (NH3·H2O) used as the raw
materials for synthesizing nano-Mg(OH)2 catalyst were
obtained from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China). HPLC grade acetonitrile used for
high performance liquid chromatography (HPLC) was
purchased from Merck (Germany). The copper chloride
dehydrate (CuCl2·2H2O), zinc chloride (ZnCl2) and
sodium nitrite (NaNO2) were all of analytical reagents.
NaNO2 was used as a quencher. Distilled water was
used throughout the whole experiment process.

2.2. Preparation of nano-Mg(OH)2 catalyst

Nano-Mg(OH)2 was prepared according to the previous
study [1]. Briefly, the MgCl2·6H2O (10.165 g) and PEG
400 (10 mL) were dissolved in the 100 mL distilled
water, and then the mixture was placed in a 50°C con-
stant temperature bath. The 8 mL ammonium hydroxide
(NH3·H2O) was added into the above solution through a
dropping funnel. The mixture was stirred vigorously for
1.5 h at 50°C, cooled down to room temperature, and
aged at room temperature for another 1.5 h. The
obtained white precipitate was filtered and washed
several times with distilled water and ethanol, and then
dried at 60°C for 12 h.

2.3. Ozonation experiments

The batch experiments were carried out in a 100 mL
three-necked flask at 25 ± 2°C. The high-purity oxygen
was introduced into the ozone generator (Wohuan Co.,
Ltd.), and then the required mixture gas flow rate was
adjusted by the rotor flowmeter and continuously
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pumped into the reaction solution. In each experiment,
100 mL aqueous solution containing 50 mg L−1 MNZ, a
certain amount of heavy metal ion solution (Cu2+ and
Zn2+) and desired catalysts dosage was added to the
flask. The solution was stirred by a magnetic stirrer (85-
2, Shuangjie, Shanghai) throughout the process to well
mix the catalyst. During the experiment, the stirring
speed was controlled at 500 r/min. Sample with the
volume of 5 mL was collected periodically over time
and immediately quenched with 200 µL sodium nitrite
(NaNO2) solution (0.015 mol/L) in order to eliminate
residual ozone, and then centrifuged at 12,000 rpm for
6 min to collect the supernatant for further analysis. In
order to consider the adsorption effect of nano-Mg
(OH)2 catalyst on MNZ and heavy metal ions (Cu2+ and
Zn2+), the ozone generator was turned off and the
clean oxygen was introduced into the reaction system
under the same experimental conditions. Each exper-
iment was performed in triplicate.

In order to investigate the influence of catalyst dosage
on the simultaneous removal of MNZ and heavy metals,
the catalyst dosage was set as 0, 0.15, 0.3, 0.6, and
1.0 g L−1. Temperature was set as 15, 25 and 35°C to
evaluate the influence of reaction temperature on the
simultaneous removal of MNZ and heavy metals. The
initial concentration of MNZ and heavy metal ions (Cu2+

and Zn2+) were all set to 10, 30, 50, 100, 200, and
500 mg L−1 to explore the effect of the initial concen-
tration of target contaminant on removal efficiency of
MNZ and heavy metals.

2.4. Analytical methods

The surface morphology and elemental composition of
nano-Mg(OH)2 catalyst before and after reaction were
analysed by Hitachi S-4800 field emission scanning elec-
tron microscopy (FESEM, Hitachi, Japan) combined with
energy-dispersive X-ray spectroscopy (EDS). X-ray photo-
electron spectra (XPS) analysis was used to investigate
the surface and metal oxidation state of nano-Mg(OH)2
catalyst before and after reaction by Thermo Scientific
Escalab 250Xi X-ray photoelectron spectrometer with Al
Ka X-ray excitation source operating at a vacuum
pressure (<10−7 Pa). The concentration of MNZ was ana-
lysed by an EX1600 high performance liquid chromato-
graph (HPLC, Wufeng Co., Shanghai, China) equipped
with a Waters SunFire C18 reversed-phase column
(2.1 × 150 mm, 3.5 μm) and a UV detector at a wave-
length of 315 nm. The mobile phase was 90% water
and 10% acetonitrile with a flow rate of 0.2 mL min−1.
In each analysis, 5 μL samples were injected in an iso-
cratic mode. The concentration of metal ions in the reac-
tion process was determined by inductively coupled

plasma optical emission spectrometer (ICP-OES, Optima
DV7000, PerkinElmer, USA).

In this study, the pseudo-first-order kinetic model
(Equation (1)) was used to describe the removal rate of
MNZ:

ln Ct = lnC0 − kt, (1)

where the C0 (mg L−1) and Ct (mg L−1) represents the
initial concentration of MNZ and the concentration of
MNZ at time t (min), respectively; k (min−1) is the
pseudo-first-order degradation rate constant.

3. Results and discussion

3.1. Characterization of nano-Mg(OH)2 catalysts

The SEM image of synthesized nano-Mg(OH)2 catalyst
(Figure 1(a)) indicated that the sample was composed
of uniformly dispersed regular nano-plates with the
size in the range of 50–300 nm. Figure 1(c) and 1e exhib-
ited the morphology of Mg(OH)2 after treating heavy
metal (Cu and Zn) and MNZ. The Mg(OH)2 after reacting
with MNZ and heavy metal still showed plate-like mor-
phology with an average diameter of about 400 nm.
Obviously, the size of the final product after treating
heavy metals and MNZ in solution was larger than that
of Mg(OH)2 before use, which might be attributed to
the adhesion of heavy metals and MNZ.

The chemical element composition of the catalyst was
analysed using EDS technology, and the results were
shown in Figure 1(b,d,f). As depicted in Figure 1(b), the
magnesium and oxygen were the main elements exist-
ing in the prepared catalyst. Comparing the EDS spec-
trum before and after catalytic ozonation reaction, an
obvious peak of Cu and Zn existed in the final product
besides Mg and O elements to demonstrate that heavy
metals (Cu and Zn) were adsorbed on the Mg(OH)2
after the catalytic ozonation.

The XPS analysis further confirmed the composition
and elemental chemical state of the obtained materials.
The survey spectra (Figure 2(a)) clearly indicated that
the prominent peaks of synthesized Mg(OH)2 located
at 1303.1, 531.1, 306.1, 88.1 and 49.1 eV were assigned
to Mg 1s, O 1s, Mg Auger, C 1s, Mg 2s and Mg 2p, respect-
ively. Except for the Mg and O signal, the appearance of a
small peak around 933 or 1021 eV was also observed in
the survey spectra, which further indicated the existence
of Cu or Zn in the product after treating MNZ and heavy
metals. These results were consistent with the EDS
elemental analysis. From the high resolution XPS spec-
trum of Cu 2p (Figure 2(b)), it could be observed that
the peaks centred in the region of 940–930 eV and
960–950 eV corresponded to the Cu 2p2/3 and Cu 2p1/
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2, respectively [5]. Herein, the peaks of Cu 2p3/2 spectra
were split into two components with binding energies of
932.6 and 933.0 eV, which could be attributed to Cu(0)
and Cu(II), respectively [5,19]. The satellite structure was
observed at high binding energies of 944.5 and
940.8 eV due to multiple divisions in the final state of
2p53d9, which was directly related to the presence of
Cu2+ species [20]. According to high resolution, Zn 2p
XPS spectra (Figure 2(c)), the peaks at 1022 and
1045 eV should be assigned to the binding energy of
the Zn 2p2/3 and Zn 2p1/2 level, respectively. The XPS
results also further demonstrated that heavy metals

were adsorbed on Mg(OH)2 after treating MNZ and
heavy metals.

3.2. Simultaneous removal of MNZ and heavy
metals by various systems

The simultaneous removal of MNZ and heavy metals (Cu
and Zn) by catalytic ozonation process with the presence
of nano-Mg(OH)2 catalyst was investigated (Figure 3).
The efficiency of single ozonation in the removal of
MNZ could only reach 51.8% with the reaction of
10 min. The separate addition of heavy metals (Cu and

Figure 1. SEM image (a) and EDS spectra (b) of Mg(OH)2 before the reaction, SEM image (c) and EDS spectra (d) of Mg(OH)2 after
treating MNZ and Cu2+, SEM image (e) and EDS spectra (f) of Mg(OH)2 after treating MNZ and Zn2+.
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Zn) and nano-Mg(OH)2 into the ozonation system caused
an enhancement of the MNZ removal in different levels.
When Cu, Zn and nano-Mg(OH)2 were separately added
to the ozonation system, the removal efficiency of MNZ
reached 96.8%, 93.8% and 61.4% within 10 min, respect-
ively. The removal efficiency of MNZ reached the

maximum when the heavy metals Cu or Zn and Mg
(OH)2 existed in the solution. This might be caused by
the strong chelating capability of heavy metal and anti-
biotic [5]. The heavy metal and antibiotic, partially
adsorbed at different sites of catalyst, could be chelated
in the solution by forming complex species with higher
sorption affinity [5,14]. A similar phenomenon was also
observed by the other study [5]. In addition, the results
of adsorption experiments showed that the MNZ adsorp-
tion onto Mg(OH)2 catalyst was just around 1% within
15 min, indicating that the increase of MNZ removal
efficiency was mainly caused by degradation rather
than adsorption.

The removal data of MNZ were fitted with the pseudo-
first-order kinetic model (Figure 3(c,d)). The reaction rate
constant of MNZ increased by 39.5%, 313.7% and 222.5%
with Mg(OH)2, Cu and Zn added into the single ozonation
system, respectively. However, the removal rate constant
of MNZ increased from 0.089 min−1 to 0.267 min−1 or
0.311 min−1 when Mg(OH)2 was added into the ozonation
system in thepresenceof heavymetals Cu or Zn. This result
confirmed good catalytic performance of Mg(OH)2 on the
ozonation of MNZ and promotion on the removal of
heavy metals during the ozonation process of MNZ.

The removal efficiency of Cu and Zn in the absence of
Mg(OH)2 was very low to be almost neglected (Figure 3
(e,f)). However, 50 mg L−1 of Cu and Zn were almost com-
pletely removed in the presence of nano-Mg(OH)2 after
15 min both in the oxygen or ozone reaction system. This
result indicated that the adsorption of Mg(OH)2 could
explain the removal of heavy metals. Simultaneous
removal of heavy metals and MNZ in the catalytic ozona-
tion process was achieved successfully. The nano-Mg
(OH)2 could significantly promote simultaneous removal
of heavy metals and MNZ in the ozonation process. More-
over, the catalytic performance of nano-Mg(OH)2 was dra-
matically enhanced in the presence of heavy metals.

3.3. Effect of catalyst dosage

In order to study the dose-dependent effect on the
removal of MNZ and heavy metals, the reaction was
run with different dosages of Mg(OH)2 ranging
between 0 and 1.0 g/L (Figure 4). In the mixed system
containing MNZ and Cu, the removal efficiency of MNZ
increased slightly with the increase of catalyst dosage
(Figure 4(a)). The removal rate constant of MNZ only
increased by 1.0% as the catalyst concentration
reached 1.0 g L−1. The removal efficiency of Cu reached
the maximum of 98.4% within 15 min when the catalyst
dosage increased to 0.6 g L−1 and then limited improve-
ments were observed with further increased catalyst
concentration to 1.0 g L−1 (Figure 4(c)).

Figure 2. X-ray photoelectron spectroscopy (XPS) investigation
of the Mg(OH)2 before and after treating MNZ and heavy
metals, survey scan (a), Cu 2p of Mg(OH)2 after treating MNZ
and Cu2+ (b) and Zn 2p of Mg(OH)2 after treating MNZ and
Zn2+ (c).
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In the mixed system containing MNZ and Zn, the cata-
lytic effect was obvious and the MNZ removal rate con-
stant increased by 45.2% as nano-Mg(OH)2 with a
concentration of 0.15 g L−1 was added into the system
(Figure 4(b)). The removal efficiency of MNZ reached the
maximum capacity with the catalyst dosage of 0.6 g L−1

and then the removal efficiency gradually decreased
with further increased catalyst dosage. The variation
trend of removing Zn from the aqueous solution was
similar to that of removing Cu (Figure 4(d)). In generally,
the removal efficiency of MNZ and heavy metals (Cu
and Zn) firstly increased and then decreased with the
increase of catalyst dosage in the above-mentioned two
mixed systems. The results were consistent with previous
studies reporting the simultaneous removal of hexavalent
chromium and dye using zero-valent iron or zero-valent
iron composite [21,22]. This was attributed to the avail-
able actives sites [22,23]. The active sites and surface

areas increased as the increase in catalyst dosage to
improve the reaction rate. However, the removal
efficiency of MNZ decreased with the amount of catalyst
exceeding a certain value due to the limited amount of
ozone in the system [24]. Thus, 0.6 g L−1 was chosen as
the catalyst dosage in the following experiments by con-
sidering the maximum removal efficiency of MNZ and
heavy metal.

3.3. Effect of the initial concentration of heavy
metal

The influence of initial concentration of heavy metals (10,
30, 50, 100, 200, and 500 mg/L) on the simultaneous
removal of MNZ and heavy metals (Cu and Zn) from a
mixed solution containing MNZ and Cu or Zn was evalu-
ated (Figure 5). MNZ removal rates increased by 35.5%
and 28.0% with the initial concentration of Cu and Zn

Figure 3. Simultaneous removal of MNZ and heavy metals by various systems. MNZ removal (a), kinetic fitting (c) and Cu removal (e) in
the mixed system containing MNZ and Cu. MNZ removal (b), kinetic fitting (d) and Zn removal (f) in the mixed system containing MNZ
and Zn.
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Figure 4. Effect of catalyst dosage on simultaneous removal of MNZ and heavy metal. MNZ and Cu removal within 15 min in the mixed
system containing MNZ and Cu (a, c), and MNZ and Zn removal within 15 min in the mixed system containing MNZ and Zn (b, d). Inset:
Pseudo-first-order kinetic fitting for MNZ removal at different catalyst dosage.

Figure 5. Effect of initial heavy metal concentration on simultaneous removal of MNZ and heavy metal. MNZ and Cu removal within
15 min in the mixed system containing MNZ and Cu (a, c), and MNZ and Zn removal within 15 min in the mixed system containing MNZ
and Zn (b, d). Inset: Pseudo-first-order kinetic fitting for MNZ removal at different initial heavy metal concentration.
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increasing from 10 to 50 mg/L, respectively (Figure 5(a,b)).
Moreover, no obvious increase in MNZ removal rate was
observed as the Cu and Zn concentration was further
increased to 500 mg/L, which might be explained by the
fact that most of the active sites of the catalyst were occu-
pied by heavy metals [16,25]. The removal efficiency of Cu
andZn reduced from99.9% and 99.8% to29.7% and 33.1%
with the initial concentration of Cu and Zn increased from
10 mg L−1 to 500 mg L−1, which might be caused by the
limited active sites of the composites [26].

3.4. Effect of the initial concentration of MNZ

The removal efficiency of MNZ decreased in the mixed
solution containing MNZ and heavy metals with an

increase in the initial concentration of MNZ (Figure 6
(a)–(d)). In the mixed solution containing Cu and MNZ,
the MNZ removal rate constant decreased by 96.9%
from 0.681 to 0.021 min−1 as the MNZ initial concen-
tration increased from 10 to 500 mg L−1. A similar vari-
ation pattern of MNZ removal was observed in the
mixed solution containing Zn and MNZ. The concen-
tration of organic intermediates might increase as MNZ
concentration increased, which would result in the for-
mation of more available ozone for further removal of
intermediates [1,9,27]. In addition, excessive antibiotics
and degradation intermediates could be adsorbed on
the catalyst surface with the increase of the initial pollu-
tant concentrations, which inhibited the surface reaction
and led to lower removal efficiency [26,28,29]. No

Figure 6. Effect of initial MNZ concentration on simultaneous removal of MNZ and heavy metal. MNZ removal (a), kinetic fitting (c) and
Cu removal (e) in the mixed system containing MNZ and Cu. MNZ removal (b), kinetic fitting (d) and Zn removal (f) in the mixed system
containing MNZ and Zn.
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significant changes in Cu and Zn removal efficiency were
observed, regardless of increasing or decreasing the con-
centration of MNZ (Figure 6(e,f)), similar to the previous
report [21].

3.5. Effect of reaction temperature

The effect of reaction temperature on the removal of
MNZ and heavy metals (Cu and Zn) by catalytic ozona-
tion process was shown in Figure 7. Figure 7(a,b)
showed that the reaction temperature had little
influence on the removal efficiency of MNZ no matter
whether Cu or Zn existed in the catalytic ozonation
process. In the presence of Cu during the catalytic ozona-
tion, the removal rate constant of MNZ slightly increased
from 0.215 to 0.267 min−1 as the reaction temperature
increased from 15°C to 25°C. However, the reaction
rate constant of MNZ slightly decreased by 15.0%
when the reaction temperature continued to increase
from 25°C to 35°C (Figure 7(a)). The same phenomenon
was observed by the other scientists when they investi-
gated the effect of reaction temperature on bisphenol-
A ozonation in the presence of α-MnO2/graphene com-
posites [24]. In the presence of Zn during the catalytic
ozonation, the reaction rate constant of MNZ only
increased by 1.5% with the reaction temperature

increasing from 15°C to 35°C (Figure 7(b)). The above
phenomenon might be caused by the balance
between the reaction rate of ozonation and solubility
of ozone. On the one hand, the chemical reaction rate
and mass transfer were improved with the increased
reaction temperature, which directly accelerated the
MNZ removal efficiency [30,31]. On the other hand, the
solubility of ozone in aqueous solution would decrease
when the reaction temperature increased, which
reduced the ozone concentration in the aqueous sol-
ution to suppress the MNZ removal [12,24]. The com-
bined result of these two opposite processes caused
the effect of reaction temperature on the catalytic ozona-
tion of MNZ in the presence of heavy metals. Figure 7(c,
d) showed that the reaction temperature had very
limited impact on the removal of Cu and Zn in the cata-
lytic ozonation process. The removal efficiency of Cu and
Zn did not change much no matter whether the reaction
temperature was increased or decreased.

4. Conclusion

Nanoscale magnesium hydroxide (nano-Mg(OH)2) were
successfully prepared and firstly applied to simul-
taneously remove MNZ and heavy metal ions (Cu2+

and Zn2+) in water through catalytic ozonation process.

Figure 7. Effect of reaction temperature on simultaneous removal of MNZ and heavy metal. MNZ and Cu removal within 15 min in the
mixed system containing MNZ and Cu (a, c), and MNZ and Zn removal within 15 min in the mixed system containing MNZ and Zn (b, d).
Inset: Pseudo-first-order kinetic fitting for MNZ removal at different reaction temperature.
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The prepared nano-Mg(OH)2 exhibited higher efficien-
cies for removing MNZ and heavy metals. The multiple
factors such as catalyst dosage, initial concentration of
MNZ, initial concentration of heavy metal and reaction
temperature had an important influence on the simul-
taneous removal of MNZ and heavy metals. Increase in
the catalyst dosage within a certain range could
improve the removal efficiency of MNZ and heavy
metals. Increase in the initial concentration of heavy
metals led to the decrease in the removal efficiency of
heavy metals while the removal efficiency of MNZ did
not significantly change. Increase in the initial MNZ con-
centration caused the sharp decrease in the removal
efficiency of MNZ while an increase in the reaction temp-
erature led to the increase in the removal efficiency of
MNZ within a limited range. No significant changes in
the removal efficiency of Cu and Zn were observed as
the initial MNZ concentration and reaction temperature
varied. This work offers an available approach for the
simultaneous removal of antibiotics and heavy metals
from aquatic environments.
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