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Abstract

Aims
The relative roles of ecological processes in structuring beta diver-
sity are usually quantified by variation partitioning of beta diversity 
with respect to environmental and spatial variables or gamma di-
versity. However, if important environmental or spatial factors are 
omitted, or a scale mismatch occurs in the analysis, unaccounted 
spatial correlation will appear in the residual errors and lead to re-
sidual spatial correlation and problematic inferences.

Methods
Multi-scale ordination (MSO) partitions the canonical ordination 
results by distance into a set of empirical variograms which charac-
terize the spatial structures of explanatory, conditional and residual 
variance against distance. Then these variance components can be 
used to diagnose residual spatial correlation by checking assump-
tions related to geostatistics or regression analysis. In this paper, we 
first illustrate the performance of MSO using a simulated data set 
with known properties, thus making statistical issues explicit. We 
then test for significant residual spatial correlation in beta diversity 

analyses of the Gutianshan (GTS) 24-ha subtropical forest plot in 
eastern China.

Important Findings
Even though we used up to 24 topographic and edaphic variables 
mapped at high resolution and spatial variables representing spa-
tial structures at all scales, we still found significant residual spatial 
correlation at the 10 m × 10 m quadrat scale. This invalidated the 
analysis and inferences at this scale. We also show that MSO pro-
vides a complementary tool to test for significant residual spatial 
correlation in beta diversity analyses. Our results provided a strong 
argument supporting the need to test for significant residual spatial 
correlation before interpreting the results of beta diversity analyses.
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INTRODUCTION
Beta diversity, generally defined as species compositional dif-
ference among communities, is a central concept to under-
standing mechanisms of community assembly (Anderson 

et al. 2011; Condit et al. 2002; Kraft et al. 2011). Mechanistic 
hypotheses explaining beta diversity patterns includes dis-
persal limitation, deterministic processes such as habitat fil-
tering or stochastic processes generating ecological drift, or 
larger-scale processes creating differences in the size of species 
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pools (Hubbell 2001; Chase and Myers 2011; Ricklefs and He 
2016). However, inferences of the importance of underlying 
processes strongly depend on the robustness of methods for 
evaluating the contribution of these processes to beta diver-
sity. For example, it has been well recognized that the strong 
dependence of some beta diversity metrics on gamma diver-
sity may bias toward an underestimation of the importance 
of local processes and an overestimation of the importance of 
larger-scale processes (Kraft et al. 2011; Bennett and Gilbert 
2016; Ulrich et al. 2017). One important but neglected issue is 
the residual spatial correlation in beta diversity analysis.

Patterns of beta diversity among communities may exhibit 
spatial correlation induced by community spatial dynamic 
processes (e.g. dispersal, local plant–plant interaction) or spa-
tial dependence of communities on underlying spatially struc-
tured environmental variables (Legendre et al. 2002; Wagner 
2004). Spatial correlation of beta diversity among communi-
ties may be left unaccounted for beta diversity analysis due 
to the following oversights: First, some important environ-
mental or spatial variables may be omitted from the analysis. 
For example, some soil nutrients may not have been meas-
ured. Or, spatial variables generated by trend-surface poly-
nomials based on geographic coordinates may be used in the 
analysis instead of spatial eigenfunctions because a trend-
surface polynomial cannot capture the spatial structures of 
communities at local scales (Borcard et al. 1992). Second, a 
scale mismatch may occur between the scale of ecological 
processes of interest and the scale of environmental or spa-
tial data (Holland et al. 2004; Knegt et al. 2010; Wagner and 
Fortin 2005). For example, a scale mismatch will likely arise 
between community data observed at fine scale and fine-scale 
environmental variables that have been spatially interpolated 
from coarse-scale observations. Finally, the standard forward 
selection procedure used to select spatial variables is not ne-
cessarily appropriate to detect all community-level spatial 
structures because the principle of parsimony results in omis-
sion of spatial variables that do not account for the spatial 
structure of a minimum number of species (Peres-Neto and 
Legendre 2010). Therefore, the unaccounted spatial correl-
ation may appear in the residual errors, resulting in residual 
spatial correlation. The presence of residual spatial correlation 
in the analysis violates the assumption for most statistical 
models that the residual errors are independent (Legendre 
1993) and will lead to problematic inferences in beta diver-
sity studies (Legendre et  al. 2002; Peres-Neto and Legendre 
2010; Wagner 2004). For example, Dormann (2007) com-
pared spatial and non-spatial models in 24 studies of species 
distribution data, and found that spatial correlation leads to 
mis-estimation of model coefficient on average 25%.

However, we are unaware of any previous empirical stud-
ies investigating residual spatial correlation in beta diver-
sity research. Perhaps testing for significant residual spatial 
correlation in beta diversity analysis, particularly in canon-
ical analysis such as redundancy analysis (RDA) or canon-
ical correspondence analysis (CCA), is methodically more 

difficult than in single-species studies of species-environment 
regression models. Multi-scale ordination (MSO) with RDA 
or CCA integrates the ordination results into a framework 
of goestatistics and diagnoses the residual spatial correlation 
by checking assumptions related to geostatistics and regres-
sion analysis (Couteron and Ollier 2005; Wagner 2004). This 
method complements the beta diversity analysis using canon-
ical analysis, and will much improve our understanding of the 
degree to which environmental and spatial processes influ-
ence community structure.

In this study, we employed MSO as a diagnostic tool to 
assess the validity of beta diversity analysis and the inferences 
from the models by examining the significance of residual spa-
tial correlation across scales. We first used a simulated data set 
of known properties to illustrate how MSO examines residual 
spatial correlation in canonical ordination and thus making 
statistical issues explicit. We then performed the assessment 
of validity on variation partitioning models by using data from 
the Gutianshan plot (GTS), a 24-ha plot of a subtropical for-
est in east China. This plot is ideal for this assessment because 
up to 24 topographic and edaphic variables and species dis-
tribution have been mapped at high resolution throughout 
the study site (Zhang et al. 2011). Our investigation provides 
a strong argument for the examination of significance of 
residual spatial correlation for beta diversity analyses when 
quantifying relative contributions of environmental or spatial 
processes.

MATERIALS AND METHODS
Simulated data

In this work, we first used a simulated data set with known 
properties to illustrate how MSO examines residual spatial 
correlation across scales, and thus reveals statistical issues. 
The simulated data set was generated using a regular square 
grid with 100 (10 m × 10 m) quadrats. Three groups of artifi-
cial variables were examined:

(1) Three spatial variables respectively representing spatial 
structures at broad, medium and fine scales induced 
by dispersal limitation and neighborhood competition. 
A  total of 48 dbMEM (distance-based Moran’s eigen-
vector maps) eigenfunctions were created following the 
MEM method to characterize spatial structures at all 
scales based on distances between quadrats in the grid 
(Borcard and Legendre 2002; Borcard et al. 2004; Dray 
et al. 2006). MEM variables 3, 13 and 33 were chosen 
as the three spatial variables to represent spatial pro-
cesses at broad, medium and fine scales in the species 
data (online supplementary Fig. S1a–c).

(2) Three environmental variables consist of two compo-
nents: spatially structured and non-spatially structured 
components. Spatially structured components respec-
tively have spatial structure at broad, medium and fine 
scales. The three environmental variables were gener-
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ated with uniformly distributed random values plus 
MEM variables 5, 15 and 35 for broad, medium and 
fine scales, respectively (as illustrated in online supple-
mentary Fig. S1d).

(3) Nine species were simulated to be equally controlled 
by one environmental variable and one spatial variable 
in 100 quadrats (as illustrated in online supplementary 
Fig. S1e). Species j at quadrat i (Sij) was generated by 
implementing a model that was modified from Legend-
re et al. (2005) and Legendre et al. (2002):

Sij = αjEik + βjSil + εij

where αj is the effect of environmental variable (Eik) k at 
quadrat i on species j, βj is the effect of spatial variable (Sil) l 
at quadrat i on species j and εij is a spatially unstructured ran-
dom error for species j at quadrat i. We set αj and βj to 0.5 to 
simulate equal dependence of species on both environmental 
and spatial processes. The R code for simulation is available in 
online supplementary Appendix B.

We used three environmental variables as explanatory 
variables, and six spatial variables (MEM variables 5, 15 and 
35 representing spatial structures of environmental vari-
ables, and MEM variables 3, 13 and 33 representing spatial 
processes) as covariates to explain variation of simulated 
communities using pRDA. Subsequently, we conducted the 
following analyses: (i) we omitted either one of the environ-
mental variables (e.g. environmental variable 1), the spatial 
variable representing the spatial structure of the environmen-
tal variable (e.g. MEM variable 5), or both simultaneously, 
then examined residual spatial correlation with MSO. (ii) We 
omitted one of the MEM variables 3, 13 or 33 from the spatial 
data respectively; then examined residual spatial correlation 
with MSO. These analyses allowed us to illustrate how MSO 
can be used to examine missing spatially structured environ-
mental variables, missing spatial variables or both at different 
scales.

Field data

Description of study site and plot

The Gutianshan Forest Dynamic Plot, an old-growth 
evergreen broad-leaved subtropical forest, is located in 
Gutianshan National Nature Reserve (29°10′19′′-29°17′41′′N, 
118°03′49′′-118°11′12′′E), Zhejiang Province, East China. 
Detailed descriptions of climate, topography and flora can be 
found in Legendre et al. (2009) and Zhu et al. (2010).

We sampled soil in the Gutianshan (GTS) plot following 
BCI soil sample protocols (http://ctfs.si.edu/datasets/bci/soil-
maps/BCIsoil.html) (John et al. 2007). We divided the 24 ha 
plot into 30 × 30 m2 cells. All cell intersection points were 
taken as base points, and two extending points within the 
boundary of the plot were selected at 2, 5 or 15 m from each 
base point along a random compass direction (N, E, S, W, NE, 
NW, SE or SW). All base and extending points were sam-
pled. Overall, we took 892 soil samples from the whole plot 

(Zhang et al. 2011). We measured soil moisture, bulk density, 
nitrogen mineralization rate (Nmin), pH and 16 soil nutrients 
[including total carbon (TC), total nitrogen (TN), total phos-
phorus (TP), available Fe, Mn, Zn, Cu, K, P, Ca, Mg, Na, B, 
Si, N (including NH4+ and NO3-) and Al] following BCI soil 
sampling protocols (John et al. 2007; Zhang et al. 2011).

Community data

We grouped the trees into territory units of four grain sizes 
(i.e. size of each observational unit) of 10 × 10 m2, 20 × 20 
m2, 40 × 40 m2 and 50 × 50 m2 then counted the abundance 
of the 159 tree species in each unit.

Environmental data

Mean elevation, convexity, slope and aspect using elevational 
data at all grain sizes were calculated following the method 
of Legendre et al. (2009). Aspect is a circular variable, and sin 
(aspect) and cos (aspect) were used in linear models. So there 
were five variables in total in the topographic data matrix. For 
edaphic variables, we obtained spatial predictions for 5 × 5 m2 
blocks using ordinary kriging following the method of John 
et al. (2007). Then we calculated block averages at all grains 
from 10 × 10 m2 to 50 × 50 m2. Twenty edaphic factors were 
used to create third-degree polynomial equations including a 
total of 60 monomials. The combination of the original vari-
ables and their high order functions allowed modeling of non-
linear relationships between species composition and edaphic 
predictors (Jones et  al. 2006). Then forward selection (with 
permutation tests, at the 5% significance level, of the increase 
in R2) was employed to select parsimonious subsets of the 
edaphic and topographic variables at different scales.

Spatial data

At all four grain sizes, the spatial relationships among the grid 
units were represented by MEM variables. The MEM vari-
ables were computed across all points of the spatial grid with 
different truncation distances for the different grain sizes 
(Legendre et al. 2009). In the present study, forward selection 
(with permutation tests, at the 5% significance level, of the 
increase in R2) was employed to select parsimonious subsets 
of the MEM variables before variation partitioning and MSO.

Statistical methods

Variation partitioning

Variation partitioning of community composition data using 
environmental variables and spatial eigenfunctions decom-
poses the beta diversity into four fractions of variation: pure 
environmental [a], pure spatial [c], joint effect of environmen-
tal and spatial [b] and unexplained [d] (Borcard and Legendre 
2002; Legendre et al. 2009). Here, we aim to examine the sig-
nificance of residual spatial correlation in beta diversity analy-
sis based on spatial coordination, such as redundancy analysis 
(RDA) and canonical correspondence analysis (CCA), which 
is methodologically more difficult than other beta diversity 
analysis.
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Multi-scale ordination

MSO integrates direct ordinations such as simple or partial 
redundancy analysis (pRDA) into a geostatistical framework 
to partition the canonical ordination results by distance into 
a set of empirical variograms (Wagner 2004). These empiri-
cal variograms estimate the explained and residual variance 
versus distance to characterize the spatial structure of these 
variance components (Wagner 2004).

In geostatistics, data stationarity is an important property 
that refers to the approximately constant variance or semi-
variance of data properties over the study area (Rossi et al. 
1992). Community composition data may display prominent 
trends along environmental gradients. The community com-
position data could be detrended by environmental data and 
spatial variables in pRDA before performing MSO analysis.

We employed MSO as a diagnostic tool to check the follow-
ing three assumptions related to geostatistics and regression 
analysis:

(1) Stationarity: For a stationary process, spatial correlation 
among community compositions results in reduced var-
iance within short distances, whereas at larger distanc-
es beyond the range of spatial correlation, community 
compositions are spatially independent and thus the 
variance reaches a constant level, which is termed the 
sill. If the variogram of the residual variance does not 
reach a sill, it violates the assumption of intrinsic sta-
tionarity required in geostatistics, indicating that impor-
tant explanatory factors were not included into analysis 
(Wagner 2004).

(2) Residual spatial correlation: The residual variances were 
tested against distance classes for significant correlation 
using multivariate Mantel correlograms with permuta-
tion test (Borcard and Legendre 2002; Legendre and Leg-
endre 2012). Spatial correlation of the residual variances 
indicates that some significant spatial structures in com-
munities remain unaccounted for in some distance class-
es. The violation of assumptions one and two suggests 
that some important explanatory variables were not 
incorporated in the analysis or that the spatial structure 
was not the same in the spatial and environmental varia-
bles (Wagner 2004). Therefore, the statistical significance 
of fractions explained by environmental and spatial vari-
ables as well as regression coefficients of species-habitat 
relationships in RDA or pRDA cannot be determined us-
ing parametric or ordinary permutation tests.

(3) Scale-dependent correlation structure: Containment 
of the empirical variogram of the sum of the explained 
and residual variance entirely within a point-wise en-
velope indicates the relationships between community 
compositions and explanatory variables do not vary sig-
nificantly with scale. Else, if the sum of the explained 
and residual variance exceeds the point-wise envelope 
for the sum of explained and residual variance, the re-

lationship between community composition and the 
explanatory variables may be dependent on scale, and 
thus, relationships between community composition 
and explanatory variables derived from RDA or pRDA, 
which are based on global analysis of all examined 
scales, should not be interpreted (Wagner 2004).

The RDA analyses, variation partitioning, tests of significance 
of the fractions and MSO were computed using the R pack-
age ‘vegan’ (Oksanen et al. 2015). Geostatistical analyses were 
carried out using the R package ‘gstat’ (Pebesma 2004). MEM 
variables were created with the R package ‘PCNM’; forward 
selection was computed using the ‘packfor’ package (Both 
packages are available on website: http://www.bio.umon-
treal.ca/legendre/indexEn.html).

RESULTS
In the simulation, environmental variable 1 was synthesized 
by addition of a uniform distributed random variable and 
MEM variable 5. When using all environmental and spatial 
variables as explanatory factors or omitting either environ-
mental variable 1 or MEM variable 5 from explanatory vari-
ables, all three assumptions were satisfied: residual variance 
reached a sill, residual variance showed no significant spatial 
correlation and sum of explained and residual variance fell 
into the point-wise envelope (Fig. 1a–c). This indicated that no 
significant residual spatial correlation was found in canonical 
analysis. Only when both environmental variable 1 and MEM 
variable 5 were omitted, residual spatial correlation could be 
found; although the sum of residual and explained variance 
fell into the point-wise envelope, residual variance did not 
reach a sill and significant residual correlation were found in 
most distance classes (Fig. 1d). This significant residual spatial 
correlation occurs when the community compositional dif-
ference in species 1, 4 and 7 remains unexplained, thus the 
results are problematic. Similarly, significant residual correla-
tions and other parts of community compositional differences 
that are not fully explained could also be found when omit-
ting both environmental variable 2 and MEM variable 15 or 
environmental variable 3 and MEM variable 35 (Fig. 1e and f) 
or any of the MEM variables 3, 13 and 33 (data not shown).

After the illustration of the performance of MSO, we then 
examined the significance of residual spatial correlation in the 
beta diversity of the Gutianshan plot. As shown in Table 1, all 
testable fractions [a], [a+b], [c] and [b+c] explained by envi-
ronmental or spatial factors were significant across all grains.

For MSO(Y~E|S) (denoting MSO analysis for pRDA of 
community composition data with environmental variables 
as explanatory variables and MEM variables as covariates) 
and MSO(Y~S|E) at the 20  × 20 m2 grain size, the sum of 
explained and residual variance reached a sill and thus the in-
trinsic stationarity assumption was satisfied (Fig. 1c and d). At 
the same time, the sum of the explained and residual variance 
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Figure 1: multi-scale ordination with partial redundancy analysis of a simulated data set using environmental variables as explanatory vari-
ables and spatial variables as covariates (MSO(Y~E|S)) when (a) all environmental and spatial variables were used; (b) environmental variable 
1 was omitted from the data set; (c) MEM variable 5 representing spatial structure of environmental variable 1 was omitted; (d) both environ-
mental variable 1 and MEM variable 5 were omitted; (e) both environmental variable 2 and MEM variable 13 were omitted; (f) both environ-
mental variable 3 and MEM variable 35 were omitted. ‘CI for total variance’ is the confidence interval envelope for the variogram of the sum of 
explained and residual variance of community composition. ‘Explained variance’ is the variogram of the variance constrained by the explana-
tory variables after accounting for the conditioning variables, which is pure environment-explained variation (fraction [a]) for MSO(Y~E|S), 
or pure space-explained variance (fraction [c]) for MSO(Y~S|E). ‘Residual variance’ is the variogram of the residual variance. ‘Explained plus 
residual’ is the sum of ‘explained variance’ and ‘residual variance’. ‘Conditioned variance’ is the variogram of conditioned variance, which is 
the variance explained by the joint effect of spatial and environmental variables (fraction [b]). Filled box symbols indicate a significant correla-
tion of the residual variance at distance classes. The dotted line indicates half the maximum distance between observations, beyond which the 
variogram should not be interpreted.
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in most of the distance classes between quadrats fell within 
the envelope of the sum of explained and residual variance, 
indicating that correlations between the species-explaining 
variable were scale-independent at most distances (Fig. 1c 
and d). The residuals were not spatially autocorrelated be-
yond distance classes 70 m (Fig. 1c and d). These results indi-
cate that almost no significant residual spatial correlation was 
found in the variation partitioning model at the 20 × 20 m2 
grain size (Fig. 2c and d). We also found similar results at the 
40 × 40 m2 and 50 × 50 m2 grains (Fig. 2e–h).

We did find residual correlation at the 10 × 10 m2 grain size 
(Fig. 2a and b). Although the intrinsic stationarity assump-
tion was satisfied and the species-explained variation was 
scale-independent in most of the distance classes for both 
MSO(Y~E|S) and MSO(Y~S|E) (Fig. 1a and b), the residual 
variance exhibited significant correlation in both analyses of 
MSO(Y~E|S) and MSO(Y~S|E) (Fig. 1a and b). This indicates 
that significant residual spatial correlation occurred in the 
analysis at grain size 10 × 10 m2.

DISCUSSION
The relative roles of ecological processes in structuring beta 
diversity are of considerable interest to ecologists (Anderson 
et al. 2011; Kraft et al. 2011; Ricklefs and He 2016). However, 
inferences in some studies of beta diversity are problematic 
because of oversights, such as failure to include some impor-
tant environmental or spatial factors in the analysis or scale 
mismatches, resulting in residual autocorrelation (de Knegt 
et al. 2010; Wagner and Fortin 2005). In this study, we dem-
onstrated that residual spatial autocorrelation likely occurred 
even when analyses were performed using up to 24 topo-
graphic and edaphic variables mapped with high resolution 
as well as a set of spatial variables with structures at all scales 
created using MEM method.

Our simulation showed that significant residual spatial 
correlation occurred when both spatially structured envir-
onmental variables and the spatial variables representing 
their spatial structures were omitted from the analyses 
(Fig. 1b–d), thus important components of beta diversity 

remained unexplained. This suggests the omission of both 
important spatially structured environmental variables and 
related spatial variables at particular scales will lead to sig-
nificant residual spatial correlation (Fig. 1d–f), and under-
estimation of environmental or spatial processes. Thus, in 
order to avoid residual spatial correlation, important spatial 
structures of communities at all scales should be accounted 
for in beta diversity analyses.

The fractions explained by environmental and spatial vari-
ables in Table 1 are similar to those found by Legendre et al. 
(2009). After edaphic variables were included into this ana-
lysis, the joint effect of environmental and spatial processes 
([b]) increased by 10% compared with results from Legendre 
et al. (2009) (Table 1).

At 20 × 20 m2 to 50 × 50 m2 grain sizes, we found almost 
no significant residual autocorrelation in the analyses. This 
validated variation partitioning results and significance test 
of fractions at these grains. These results demonstrate that 
environmental and spatial variables at 20 × 20 m2 to 50 × 
50 m2 grains explained the beta diversity in Gutianshan plot 
quite well.

However, we indeed found significant residual autocorrel-
ation at 10 × 10 m2 grain size, which invalidated the results 
of the variation partitioning model and significance tests of 
fractions explained by environmental and spatial variables 
at this scale (Table 1). Residual spatial autocorrelation was 
found in both MSO(Y~E|S) and MSO(Y~S|E) analyses, indi-
cating that the spatial structures of communities were not 
fully accounted for by either spatially structured environ-
mental variables or spatial variables. On the one hand, the 
missing spatially structured environmental variables were 
likely caused by: (i) failure to include some important spa-
tially structured environmental variables such as some local 
soil nutrients or light in our analysis or (ii) a scale mismatch 
arising from interpolation of the environmental variables 
from measurements on a 30  × 30 m2 grid, despite using a 
multi-scale systematic soil sampling scheme. On the other 
hand, the standard forward selection procedure of MEM vari-
ables likely could not detect spatial structures of communities 
at local scales. Therefore, some important spatial variables, 

Table 1: variation partitioning results for different grain sizes

Scale [a] [b] [c] [d] [a+b] [b+c] Number of significant MEM variables

10 × 10 m2 0.0093 0.3074 0.3147 0.3686 0.3167 0.6221 187

20 × 20 m2 0.0728 0.3871 0.1738 0.3664 0.4599 0.5608 151

40 × 40 m2 0.1813 0.3720 0.0982 0.3486 0.5533 0.4702 29

50 × 50 m2 0.1479 0.4085 0.0593 0.3843 0.5563 0.4678 19

Fraction [a] is variation explained only by the environmental variables, fraction [c] is variation explained only by the MEM variables, fraction 
[b] is the intersection of the amount of variation explained by linear models of the two sets of explanatory tables, fraction [d] is the unexplained 
variation. Environmental variables used to compute [a+b]: edaphic and topographic variables described in methods section. MEM variables 
were the explanatory variables used to calculate fraction [b+c]. Fraction [a], [a+b], [b+c] and [c] are testable, whereas fraction [b] and [d] are 
not testable.
The reported values are adjusted R-squares.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article-abstract/12/4/636/5280041 by Yantai Institute of C

oastal R
esearch for Sustainable D

evelopm
ent user on 01 April 2020



642 Journal of Plant Ecology

which represent local community dynamics, such as inter-
specific or intraspecific interactions, were not selected by the 
forward selection procedure. These results demonstrate that 
residual spatial autocorrelation arose even when up to 20 soil 
nutrients were mapped with a high resolution and a set of 

spatial variables with spatial structures at all the scales were 
created using the MEM method. This suggests that some im-
portant components of community composition especially at 
local scales induced by neighborhood competition, likely re-
main unexplained. The unexplained components will lead to 

Figure 2: multi-scale ordination with partial redundancy analysis using environmental variables as explanatory variables and spatial factors as 
covariates (MSO(Y~E|S)) at grains of (a) 10 × 10 m2, (c) 20 × 20 m2, (e) 40 × 40 m2, (g) 50 × 50 m2 and with spatial variables as explanatory 
variables and environmental variables as covariates (MSO(Y~S|E)), at grains of (b) 10 × 10 m2, (d) 20 × 20 m2, (f) 40 × 40 m2, (h) 50 × 50 m2. 
Symbols in Fig. 2 have the same meaning as in Fig. 1.
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problematic inferences, i.e. underestimation of either envir-
onmental or spatial processes. This provided strong empirical 
justification that ecologists should examine the significance of 
residual spatial autocorrelation before interpreting the results 
of variation partitioning of beta diversity.

When significant residual autocorrelation is found in 
canonical analysis, changes to the experimental design and 
hypothesis testing are required in order to discern whether 
residual spatial autocorrelation is due to the omission of 
important spatially structured environmental variables or 
spatial variables or caused by a scale mismatch. In this study, 
further soil nutrient sampling at a finer scale (e.g. a 20 × 20 
m2 grid based multi-scale sampling scheme) and measure-
ment of more soil nutrients to account for residual spatial 
autocorrelation in the analysis at scale of 10 × 10 m2 would 
be required. On the other hand, the individual species selec-
tion model, which applies the forward selection procedure to 
each species separately, provides an easier solution to pick up 
the missing spatial variables or the missing spatial structures 
of environmental variables (Peres-Neto and Legendre 2010). 
However, the individual species selection model is likely com-
putationally infeasible due to large number of MEM variables 
at 10 × 10 m2 quadrats (1327 MEM variables × 2400 quad-
rats) and species in the Gutianshan plot (159 species). This 
may inform future attempts to refine and optimize individual 
species selection models for large ecological data set.

In summary, our main findings were: (i) ecologists should 
check for significant residual autocorrelation before interpret-
ing results of variation partitioning of beta diversity and (ii) 
MSO provides a complementary tool to test for significant 
residual spatial autocorrelation to avoid problematic infer-
ences, i.e. underestimation of either environmental or spatial 
processes. We believe testing for significant residual spatial 
autocorrelation is critical for understanding the relative roles 
of different ecological processes in shaping beta diversity 
among communities.
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