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A B S T R A C T

In this work, the modified electrode based on composites of reduced graphene oxide/leucomethylene blue/pla-
tinum nanoparticles (rGO/LMB/PtNPs) was fabricated in-situ via an electron relay effect. Cationic dye of me-
thylene blue (MB) was absorbed on the surface of graphene oxide (GO) with through π-π bond interactions. Then
PtCl62− ions were self-assembled on the surface of the composites of GO/MB through Coulomb interactions. Using
NaBH4 as the reducing agent, PtNPs were formed and GO was reduced to rGO. With the aid of PtNPs, MB was
catalytically degraded to LMB and a rGO/LMB/PtNPs modified electrode was successfully prepared in situ. Due to
the excellent electrochemical properties of rGO and the well-established assistant reductant of MB, as well as the
catalytic amplifying effect of PtNPs, this as prepared rGO/LMB/PtNPs modified electrode showed excellent
properties for the voltammetric determination of Fe(II) with the linear range of 0.01 to 2 μM and a detection limit
of 3 nM. This modified electrode was successfully applied to detect the content of Fe(II) in seawater.

1. Introduction

Iron is an important micronutrient for almost all organisms [1,2].
The overuse of iron may cause serious problems in some conditions,
such as liver damage, kidney failure, etc. although iron is an essential
element for all life [3]. In oxic systems, iron ions exist at extremely low
concentrations because of the limited solubility of oxyhydroxide and
particulate forms of iron [4]. In seawater, iron exists in two oxidation
states: Fe(II) and Fe(III), and the former is more water-soluble, and is
found in anoxic and suboxic waters such as deep lakes and isolated
waters [5,6]. In river water, Fe(III) was mixed in estuarine water and
delivered into the sea, and in this way, estuaries can act as one source of
Fe(II) in seawater [7]. Fe(II) is easily oxidized into insoluble Fe(III) in
oxic water [8], thus it is essential to recognize the role of Fe(II) in
marine environments to better study the effects of redox iron species on
marine microorganisms. Since the concentration of iron in seawater is
relatively low, it is a challenge to accurately measure the iron content
during environmental analysis.

Fe(II) can be detected by many methods such as spectrophotometry
[9–11], fluorescence [12,13], phosphorescence [14], etc. Although
these methods have serious of advantages, they are usually incon-
venient, expensive, and time-consuming [15]. Comparatively, electro-
analytical techniques, such as square wave stripping voltammetry
(SWV) is an efficient technique for detecting trace Fe(II) and other
heavy metals owing to its high sensitivity and selectivity, portability,
low cost, and excellent performance with seawater [16,17]. Many stu-
dies on the determination of Fe(III) had been published [18–20].
However, only few electrochemical sensors for determination of Fe(II)
had been explored. Berg, et al. reported an indirect method to analyze
Fe(II) by masking it with bipyridyl as a complexant [6,8]. Mesquita
et al. reported a polyaniline modified graphite electrode to detect Fe(II)
with a limit of detection (LOD) of 1.90 mM [21]. Gholivand, et al. re-
ported a carbon paste electrode (GCE) modified with dithiodianiline
(DTDA) and gold nanoparticles (AuNPs) to detect Fe(II) with the LOD of
50 nM [22]. Disposable screen printed electrode modified with imine
receptor having a wedge bridge for selective detection of Fe (II) in
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aqueous medium was used by Sonia, with the LOD of 0.54 μM [23]. In
our previous work, a dual nanomaterial-modified electrode for vol-
tammetric stripping determination of trace Fe(II) in coastal waters with
a LOD of 0.03 nM was reported [24], but the process of making elec-
trodes was rather complicated. The electrochemical detection of Fe(II)
is feasible, but how to lower the detection limit is still a popular topic.
Increasing the surface area of the modified electrode seems to be a good
way to solve this problem. There are two main strategies to increase the
surface area of the modification material. One is to grow the material
directly on the electrode by electrodeposition, but this method makes it
difficult to control the morphology of the material. The other way to
synthesize a material with a controllable morphology is using self-as-
sembly [25].

Reduced grapheme oxide (rGO) is usually obtained by the chemical/
electrochemical reduction of grapheme oxide (GO). Recently, rGO was
used to improve the performance of electrochemical sensors, because it
has high theoretical surface area [26]. Despite the great application
potential, graphene possesses zero band gap and inertness to reaction,
which reduced the competitive strength of graphene in the field of
semiconductors and sensors. It meant was that rGO needs decoration
with other materials to improve its properties. Researchers had devoted
efforts toward designing and constructing reduced grapheme oxide-
derived nanomaterials to make rGO with superior properties. Many
functional nanocomposites derived from rGO had been reported in
catalysts [27–29], sensors [30], electrochemical energy storage
[31–33], etc. rGO modified with noble metal nanoparticles (NPs) had
been used for electrochemical detection because noble metal NPs ex-
hibited high catalytic activity via the size effect [34,35]. Platinum NPs
were widely applied for detection of metal ions due to the high surface
reaction activity, strong adsorption ability and ability to accelerate the
catalytic process of PtNPs [36]. Methylene blue (MB) is a cationic
thiazine dye and is widely used in many applications like aqua culture,
chemotherapeutics, and medicine [37]. According to previous work
[34,38], MB has many π electrons, and it will bind together by π–π
interactions with GO, which could avoid the aggregation of GO and
increase the dispersity. MB adsorbed on the surface of the GO could
attract PtCl62−, allowing MB to act as the anchor for PtCl62−, uniformly
distributing PtCl62− on the surface of MB, and increasing the GO dis-
persity. It is well-known that dyes are a major environmental concern,
and metal nanoparticles (NPs) are often used as catalysts in catalytic
dyes. Among the various metal NPs, PtNPs had good catalytic capacity
for Fe(II) [20]. So, PtNPs was chosen in this work. The Langmuir–-
Hinshelwood approach can be used to describe the mechanism of cat-
alytic reactions. This mechanism assumes that prior to a reaction, a dye
will first be adsorbed on the surface of the NPs (catalyst), and the na-
noparticles will act as an electron transfer media, and then the electrons
transfer from the BH4

− through the metal to reduce methylene blue and
graphene oxide [39]. In other words, the electron transfer step is vital
to many homogeneous and heterogeneous reactions. In this step, a large
redox potential difference will exist between the donor and acceptor
which may restrict the passage of electrons. An effective catalyst should
possess an intermediate redox potential value between the donor and
acceptor, which can accelerate the electron transfer and act as an
electron relay system [40].

Herein, we fabricated the rGO/LMB/PtNPs/GCE modified electrode
for determination of Fe(II). To prepare the nanocomposites, cationic
dye of MB was absorbed on the surface of GO with negatively charged,
which is favorable to the self-assemble of PtCl62− on the surface of GO/
MB. After adding the reductant of NaBH4, the composites of rGO/LMB/
PtNPs was obtained. Where LMB is the abbreviation of leucomethylene
blue. Thus, the rGO/LMB/PtNPs/GCE modified electrode was fabri-
cated in situ. In the presence of 2,2′-bipyridyl (Bp), the sensitivity and
selectivity of the as-prepared rGO/LMB/PtNPs/GCE to Fe(II) were im-
proved significantly. This modified electrode was also applied to detect
Fe(II) in real coastal water samples with satisfactory results.

2. Experimental

2.1. Reagents

All reagents used are of analytical grade or better. Chloroplatinic
acid (H2PtCl6) was purchased from Sinopharm Chemical Reagent Co.,
Ltd. (China). Graphene oxide was purchased from Nanjing XFNANO
Materials Tech Co., Ltd. Methylene blue, iron sulfate heptahydrate, and
2,2′-bipyridyl were purchased from Sigma-Aldrich (Shanghai, China).
Iron sulfate was dissolved in 0.01 M HCl to prepare an iron stock so-
lution, and a new Fe(II) solution was prepared before each experiment.
Standard artificial seawater (salinity of 4.998, 29.998, and 34.999)
were purchased from Beijing Putian Tongchuang Biological Technology
Co. Deionized water (with specific resistance of 18.2 MΩ cm) was
supplied by Pall Cascada laboratory water system. Unless stated
otherwise, the electrochemical experiment was carried out in a 0.1 M
acetate buffer (pH 4.5).

2.2. Apparatus

All electrochemical experiments were performed with an electro-
chemical work station (CHI 660E, CH Instruments, Inc., Shanghai,
China) using a conventional three-electrode cell. A glassy carbon elec-
trode (3 mm in diameter, Chenhua instruments, Shanghai, China) was
used as the working electrode, with Ag/AgCl and platinum foil serving
as the reference and counter electrodes, respectively. Polarographs (VA
797 Metrohm) were used for comparative testing. Scanning electron
microscopy (SEM, Hitachi S-4800, Japan) and transmission electron
microscopy (TEM, Oxford XMAX 80T) were used to observe the mor-
phology of the nanomaterials, X-ray photoelectron spectroscopy (XPS)
measurements were carried out on a photoelectron spectrometer
(Escalab 250 Xi). X-ray diffraction (XRD) was performed using an X-ray
diffractometer (D8, ADVANCE). UV–Vis spectra were measured in a
spectrophotometer (DU 800, USA).

2.3. Preparation of rGO/LMB/PtNPs nanocomposites

The synthesis process of rGO/LMB/PtNPs nanocomposites was
showed in Scheme 1. Firstly, 20 mg GO was added into 30 mL deionized
water and sonicated for 1 h until a uniform solution was obtained. Then
4 mL MB (1 mM) was added to the GO solution and stirred for 30 min,
yielding the GO/MB nanocomposites. Afterwards, 1 mL of H2PtCl6 so-
lution (10 mM) was added and the mixture was magnetically stirred for
10 min. Finally, cautiously added, dropwise, 2 mL NaBH4 (0.20 M) so-
lution and magnetically stirred for an additional 30 min to reduce GO,
MB and PtCl62−, yielding rGO/LMB/PtNPs. The as-prepared nano-
composites were collected by centrifugation, washed with deionized
water, and dried in a vacuum drying chamber (70 °C) for 1 h.

2.4. Preparation of rGO/LMB/PtNPs/GCE and electrochemical analysis

Prior to modification, the GCE was polished with 0.3 μm and
0.05 μm aqueous slurry of alumina powder, and sonicated for 3 min in
ethanol and water, respectively. After dried in a stream of nitrogen,
10 μL rGO/LMB/PtNPs (0.4 mg mL−1) was spread on the surface of GCE
and dried under an infrared light. The as-prepared rGO/LMB/PtNPs/
GCE was used to detect Fe(II) by an SWV method. The following
parameters were used in the SWV: deposition potential of −0.1 V, de-
position time of 90 s, scan potential 0.4 ~ 1.4 V, amplitude of 0.025 V,
increment potential of 0.004 V, frequency of 15 Hz, and quiet time of
2 s.

2.5. Determination of Fe(II) in real seawater samples

Seawater samples were collected from the Dong Ying Station
(Dongying City, Shandong Province, China), and stored in Teflon
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bottles at 4 °C before determination. Prior to detection, N2 was bubbled
into the water samples and filtered through 0.45 μm membrane
(Millipore). After adding 0.1 M acetate buffer (pH 4.5) and 60 μM Bp in
the water sample, the concentration of the Fe(II) was detected by the
aforementioned SWV method using rGO/LMB/PtNPs/GCE as the
working electrode.

3. Results and discussion

3.1. Characterization of rGO/LMB/PtNPs

The TEM and SEM images of rGO, rGO/MB and rGO/LMB/PtNPs
were shown in Fig. 1. It can be seen that the as-prepared rGO and rGO/
MB exhibit a pleated surface and black misty structure, respectively.
Because MB can provide a positively-charged site for the uniform dis-
persion of PtCl62−, PtNPs were uniformly dispersed on the surface of
the rGO/MB-based substrate after a reduction reaction with NaBH4

(Fig. 1C & D). In addition, part of PtNPs were sandwiched within the
rGO/LMB, which could enhance the conductivity and catalytic perfor-
mance of the nanocomposites. As can be seen from the XPS spectra in
Fig. S1 in Electronic Supplementary Material (ESM), N 1s, S 2p and Pt
4f peaks were occurred in the rGO/LMB/PtNPs composite. The EDS
pattern of rGO/LMB/PtNPs in Fig. 1E also indicated that C, O, Pt, and S
were the major elements in the composites. The C, O and S might come
from rGO and LMB, Na from aluminum foil. The peak of Pt reveals the
existence of PtNPs. Thus, LMB and PtNPs were proven to conjugate on
the surface of rGO.

XRD is an effective method to investigate interlayer changes and
crystalline properties of nanomaterials. As shown in Fig. 1F, GO ex-
hibited a prominent diffraction peak at about 2θ = 10.9 deg. (001),
which was identical to a reported value [41]. The as-prepared rGO had
a slight shorter peak at (001) (2θ = 9.7 deg.), implying that the re-
duction of GO by NaBH4 could remove the oxygen-containing func-
tional groups. In addition, there was a small peak at (002)
(2θ = 22.7 deg.). According to the Prague formula, oxygen-containing
functional groups were presented on the surface of the GO, and the
inter-layer d-spacing of GO was calculated to be 0.81 nm. As oxygen-
containing functional groups were presented on the surface of GO, it
could easily form a large interlayer d-spacing, causing the formation of
the diffraction peak (002). In the composite of rGO/LMB/PtNPs, the
(001) peak was nearly disappeared, implying the catalytic activity of
PtNPs in the reduction of GO. The lattice planes of the platinum face-
centered cubic crystal (111) appeared at typical diffraction peaks at

2θ = 38.13 deg. Compared with rGO/MB, the interlayer d-spacing of
the rGO/LMB/PtNPs was increased to 0.36 nm (2θ = 24.7 deg.) due to
PtNPs entering into the interlayer spaces of rGO [42]. The insertion of
PtNPs into the composites played an important role in the anodic re-
sponse to Fe(II)-Bp.

Fig. S2 showed the UV–Vis spectrum of the rGO/LMB/PtNPs com-
posites. It can be seen that the absorption peaks of MB at 660 and
289 nm were obviously changed as MB was reduced to LMB in the
composites. The absorption peak at 675 nm indicated that LMB was
adsorbed on the rGO surface [34]. In addition, the typical absorption
peak of GO at 223 nm [43] was disappeared and the absorption peak of
rGO at 261 nm was occurred, suggesting the existence of rGO in the
composites.

3.2. Electrochemical behaviors of rGO/LMB/PtNPs/GCE

The comparison between the different modified electrodes was in-
vestigated in an acetate buffer (0.1 M, pH 4.5). To increase the se-
lectivity and sensitivity for Fe(II) determination, Bp was used as the
complexing agent to form the complex of [Fe(Bp)3]2+. Firstly, cyclic
voltammetry (CV) was used to verify the effect of the modified elec-
trode on Fe(II) detection. The CV response curves of different electrodes
are shown in Fig. S3. It can be seen that only very weak redox peaks can
be observed on bare GCE. In the case of rGO/GCE, the redox peaks were
enhanced due to the electrocatalytic activity of rGO. When the rGO/
MB/GCE electrode was used, the redox peaks were enhanced further
because MB, as an electron mediator, would accelerate the electron
transfer. As expected, the redox peaks were much enhanced in rGO/
LMB/PtNPs/GCE, indicating that LMB and PtNPs could synergistically
improve the anodic current response of Fe(II)-Bp. Hence, rGO/LMB/
PtNPs/GCE electrode could be used to detect Fe(II) with the help of
2,2′-bipyridyl.

The dependence of the peak current in cyclic voltammograms of
rGO/LMB/PtNPs/GCE on scan rate were shown in Fig. S4. It can be
seen that cathodic (Ipc) and anodic (Ipa) peak currents were in linear
correlations with scan rate, indicating that the electro-anode reactions
of Fe(II)-Bp at the rGO/LMB/PtNPs/GCE surface were typical adsorp-
tion controlled processes [44].

Because higher sensitivity can be obtained by square wave vol-
tammetry (SWV) than that by CV, the SWV responses of rGO/LMB/
PtNPs/GCE was also investigated. As shown in Fig. 2, the bare GCE and
PtNPs/GCE had little response to low concentration of Fe(II)-Bp (curves
a and c). In rGO/GCE, a small anodic peak near 0.8 V was observed due

Scheme 1. Schematic illustration of the fabrication process of rGO/LMB/PtNPs/GCE and determination of Fe(II).
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to the electrocatalytic activity of rGO (curve b). In the cases of rGO/
PtNPs/GCE and rGO/MB/GCE, the current responses was enhanced but
the shapes of the voltammograms were irregular (curves d and e). In the
square wave stripping analysis, PtNPs had high catalytic activity to Fe
(II) while rGO were employed as a support material and also could
transfer electrons acquired from the catalytic process of the PtNPs to
electrodes, which might accelerate the catalytic process. Therefore,
rGO/PtNPs modified GCE had a higher peak current compared to only
PtNPs modified GCE at about 0.8 V. Meanwhile, MB, as an electron
mediator, would accelerate the electron transfer, which could promote
the transformation from [Fe(Bp)3]2+ to [Fe(Bp)3]3+ [39]. rGO/LMB/
PtNPs/GCE (curve f) also had an obvious higher SWV current response

than rGO/MB/GCE, indicating that synergistic and catalytic effects
could notably improve the response of this fabricated electrode to Fe
(II). The structure of LMB was the same as phenothiazine [45] and it
was a bridge to connect the rGO and PtNPs. It was easy to find that the
peak potential of target modified electrode shifted to the right com-
pared with other peaks. In other words, [Fe(Bp)3]2+ was more easily
oxidized on the target modified electrode.

As shown in Scheme 1, Fe(II)-Bp was electrodeposited onto the
surface of rGO/LMB/PtNPs/GCE. Hence, Bp has obvious effect on the
response of rGO/LMB/PtNPs/GCE. Although Bp itself has no obvious
redox signal in the potential range used (Fig. 3b). In the absence of Bp,
the response of rGO/LMB/PtNPs/GCE to Fe(II) was very weak (Fig. 3c).

Fig. 1. TEM images of rGO (A), rGO/MB (B) and rGO/LMB/PtNPs (C), SEM images (D) and EDS pattern (E) of rGO/LMB/PtNPs, and XRD patterns (F) of GO (a), rGO
(b), rGO/MB (c), and rGO/LMB/PtNPs (d) composites.

S. Ma, et al. Microchemical Journal 151 (2019) 104210

4



After the addition of Bp, the peak current was 7.5 times than that
without Bp (Fig. 3d). During the process of electrochemical deposition,
Fe(II)-Bp might be adsorbed onto the surface of rGO/LMB/PtNPs/GCE.
The complex followed a simple one-electron transfer process in aqueous
solution. The specific mechanism was reported by Lin et al. using
Fourier transformed alternating current (FTAC) votammetry [46].

3.3. Optimization for Fe(II) determination using rGO/LMB/PtNPs/GCE

To obtain a better analytical performance for Fe(II) determination,
the main experimental conditions were optimized. As shown in Fig.
S5A, the peak current was increased with increasing pH value in the
range from 3.5 to 4.5 then decreased at higher pH value. The reason is
that Fe(II) can be easily oxidized under weakly acidic or alkaline con-
ditions. On the other hand, Fe(II)-Bp could not exist stably under
neutral or alkaline conditions. Hence, the pH value of 4.5 was used for
Fe(II) determination. In the concentration range from 0.05 to 0.4 M, the
peak current of rGO/LMB/PtNPs/GCE was related slightly to the con-
centration of acetate buffer (Fig. S5B in ESM). Accordingly, the acetate
buffer (0.1 M, pH 4.5) were used in this work.

The dependence of the response of rGO/LMB/PtNPs/GCE to Fe(II)
on the content of modifier was depicted in Fig. S6A. It can be seen that
the maximum response signal was obtained at the concentration of
0.4 mg mL−1. Hence, 10 μL of 0.4 mg mL−1 rGO/LMB/PtNPs were used
to fabricate the modified electrode in this work. As shown in Fig. S6B,
with the concentration of Bp increased from 30 to 60 μM, the response
signal was increased slightly then decreased at higher concentration.
Too much free Bp would compete with Fe(II)-Bp to adsorb on the
modified electrode. Therefore, 60 μM of Bp was chosen for Fe(II) de-
termination.

To obtain better stripping response, the deposition potential of Fe
(II)-Bp at the modified electrode was investigated in the ranged from
−0.4 V to 0 V. As shown in Fig. S7A in ESM, with deposition potential
of −0.1 V, the modified electrode showed a better current response.
Additionally, an increase in the peak current was observed when the
potential gradually increased from −0.4 to −0.1 V, which was likely
due to the strong adsorption of the positively-charged Fe(II)-Bp com-
plex onto the surface of the modified electrode, since rGO/LMB/PtNPs
had a negative charge. However, the peak current showed a decrease as
the potential increased from −0.1 to 0.0 V, which was due to a suffi-
cient amount of positively-charged Fe(II)-Bp complex not being ad-
sorbed on the surface of the negatively-charged modified electrode.
Thus, such deposition potential was used for Fe(II) determination. As
shown in Fig. S7B in ESM, the response signal was increased near-lin-
early with increasing deposition time from 15 s to 60 s, and then tended
to increase slowly. Therefore, 90 s was chosen in the following SWV
method for Fe(II) determination.

3.4. Analytical performance in Fe(II) detection

Under optimized experimental conditions, the calibration curve of
Fe(II) determination using rGO/LMB/PtNPs/GCE by SWV method was
shown in Fig. 4. The concentration of Fe(II) was studied in the range of
0.01 ~ 8 μM. The results showed that it had a good linear relationship
in the range of 0.01 to 2 μM. The linear regression equation was
Ip= 1.7105C+0.5531 (R2 = 0.996), where Ip is the peak current and C
is the concentration of Fe(II) (μM). The sensitivity was 1.71 μA/μM,
with the LOD of 3 nM (S/N=3). Additionally, the comparison of the
analytical performance between the proposed method and some other
analytical methods was listed in Table 1, indicating that the proposed
method offers an acceptable sensitivity and linear range for Fe(II) de-
termination. The selectivity of the proposed electrode was tested and
demonstrated in Fig. 5. Under the experimental conditions used, for the
determination of 2 μM Fe(II), 50-fold Cr(III), Zn(II), Ag(I), 40-fold Co
(III), Pb(II), Mg(II), 20-fold Cd(II), Hg(II), and 10-fold amounts of Cu(II)
and Bi(III) had negligible interfere (< 5% of response current change).
The good selectivity was based on the fact that Fe(II) can form a strong
bond with Bp in weak acidic solution conditions. The complex of Fe(II)-
Bp can be enriched on the surface of rGO/LMB/PtNPs/GCE in an SWV
process.

In addition, the reproducibility of the rGO/LMB/PtNPs/GCE was
tested in the solution containing 2 μM Fe(II) and 60 μM Bp. It was
shown that the relative standard deviation (RSD) of the response signals

Fig. 2. SWV response curves of bare GCE (a), rGO/GCE (b), PtNPs/GCE (c),
rGO/PtNPs/GCE (d), rGO/MB/GC (e) and rGO/LMB/PtNPs/GCE (f) in 0.1 M
acetate buffer (pH 4.5) containing 60 μM Bp and 2 μM Fe(II).

Fig. 3. SWV response curves of rGO/LMB/PtNPs/GCE in different solutions. (a)
0.1 M acetate buffer (pH 4.5), (b) 0.1 M acetate buffer (pH 4.5) and 60 μM Bp,
(c) 0.1 M acetate buffer (pH 4.5) and 2 μM Fe(II), (d) 0.1 M acetate buffer
(pH 4.5) containing 60 μM Bp and 2 μM Fe(II).
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among five independently-modified electrodes was 4.0%, implying that
the as-fabricated rGO/LMB/PtNPs/GCE offers an acceptable reprodu-
cibility. On the other hand, the RSD of eight parallel determinations by
using the same electrode was 4.9%, revealing an acceptable repeat-
ability in continuous determination.

3.5. Detection of Fe(II) in seawater samples

To evaluate the practical application of the established electrode,
the rGO/LMB/PtNPs/GCE was employed to detect Fe(II) in standard
artificial and seawater samples. As listed in Table 2, the amounts of Fe
(II) in three real seawater samples 1 was calculated to be 23.3 nM, and
in seawater sample 2 and sample 3, the concentrations were calculated
to be 20.6 nM and 51.1 nM, respectively, Because the concentration of
Fe(II) in seawater was very low and the determination of Fe(II) needed
special treatment, the results were agreed with those measure by a
reference method based on catalytic cathodic stripping voltammetry
(CSV) [24]. In addition, the recoveries in a standard addition method
were in the range of 92 ~ 101% in the real and artificial seawater
samples. These results illustrated that the fabricated electrode had a
good applicability for Fe(II) determination in real water samples.

4. Conclusions

In summary, a novel and effective rGO/LMB/PtNPs-modified GCE
was used for the sensitive determination of Fe(II), which obtained a
good detection effect upon real sample. Compared to other electro-
chemical sensors, the modified electrode in this work had a lower de-
tection limit, good reproducibility, repeatability, and selectivity. It was
facile to fabricate the rGO/LMB/PtNPs. GO and MB combined with
each other by mutual π-π interactions. The cationic dye MB had a slight
positive charge and could be combined with PtCl62− through opposite
charge interactions. By using NaBH4 as the reducing agent in the pre-
sence of PtNPs, the MB (blue) could be degraded into LMB (colorless),
and the GO was reduced to rGO. In summary, the electrode fabricated
in this work was reliable and suitable for determination of Fe(II) in
actual seawater.

Fig. 4. The calibration curve for Fe(II) detection. Inset: SWV voltammograms of
the rGO/LMB/PtNPs/GC in 0.1 M acetate buffer (pH 4.5) containing different
Fe(II) concentrations (from 0.01 to 2 μM). Scan rate: 25 mV.s−1.

Table 1
Comparison of the analytical performance of the proposed electrochemical sensor with other methods for Fe(II) determination.

Methodsa Electrode/agentsb Linear range (nM) Detecting limit (nM) Sensitivity (μA/μM) References

Colorimetry FTO coated glass – 5357.10 NCc [14]
Colorimetry Silica sol 1250–25,535.70 285.70 NC [9]
Phosphorimetry MPA-Mn: ZnS-QDs 10–10,000 3 – [12]
Fluorometry Au7(DHLA)2Cl2 – 3800 – [10]
CSV HMDE – 0.12 – [6]
CV PANI/G 892.86–892,860 267.90 0.03 [21]
DPV SPE 600–4000 540 1.27 [23]
DPASV DTDA/AuNPs/CPE 10–100 0.05 4 [22]
SWV TiCNPs-Nafion/PtNFs/GCE 10–6000 0.03 5.02 [24]
SWV rGO/LMB/PtNPs/GCE 10–2000 3 1.71 Present work

a Methods: CSV, catalytic cathodic stripping voltammetry; DPV, differential pulse voltammograms; DPASV, differential pulse anodic stripping voltammetry.
b Electrode/reagents: FTO, fluorine-doped tin oxide; MPA-Mn: ZnS-QDs, phosphorescent 3-mercaptopropionic acid (MPA) capped Mn-doped ZnS quantum dots;

HMDE, hanging mercury drop electrode; PANI/G, polyaniline/graphite; SPE, screen printed electrodes; DTDA/AuNPs/CPE, dithiodianiline/gold nanoparticles/
carbon paste electrode; TiCNPs-Nafion/Pt NFs, titanium carbide nanoparticles-Nafion/platinum nanoflowers.

c NC: not comparable.

Fig. 5. The interference of other metal ions to Fe(II) detection. Experimental
conditions: 0.1 M acetate buffer (pH 4.5) containing 60 μM Bp and 2 μM Fe(II).
Concentration of other metal ions: 50-fold Cr(III), Zn(II), Ag(I), 40-fold of Co
(III), Pb(II) and Mg(II), 20-fold Cd(II) and Hg(II), and 10-fold of Cu(II) and Bi
(III).
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